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Abstract

Systematization of complex nonlinearities, the wide-ranging linearization concepts are detailed in [3],
[4] related to material, strain, displacement and loading type nonlinearities and their interaction. Inthis
paper, an illustration of the full geometric nonlinearity, the interaction of the strain and displacement
nonlinearities are presented, by means of the finite element model of the Timoshenko beam.
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1. Introduction

As the basis of the nonlinear structural analysis, systematic derivation of the fam-
ily of tangent stiffness matrices and the possible linearization and approximation
aspects were discussed in [3], [4]. The analysis of the tangent stiffness matrix was
extended to the effect of hnonconvex strain energy functional, namely to material soft-
ening, moreover, to convex and nonconvex external potential due to deformation-
sensitive loading devices. The aim of the paper [4] was to help in orientation in
the large family of the wide-ranging used tangent stiffness matrices of the nonlin-
ear finite element analysis. The tematerial tangent modulus was extended to

the effect of deformation-sensitive loading by introducing the terading tangent
modulus. An overall approach was presented: from the analytical origin to the
finite element discretization. Full structural nonlinearity was assumed: nonlinear
material, nonlinear strains, nonlinear displacements and nonlinear loading devices
were considered.

In this paper, an illustration of the systematic derivation of the tangent stiff-

ness matrix is presented. For this reason, the basic concepts detailed in [4] are
collected here.



58 M. KURUTZ
2. Derivation of the Tangent Stiffness Matrix in Fully Nonlinear Cases

Let us consider isothermal deformations of a time-independent solid body subject
to a quasi-static conservative loading program. Nonlinear material and nonlinear
loading program are concerned.

In the Lagrangian descriptio§; is the second Piola—Kirchhoff stress tensor
andE;; isthe Lagrange—Green strain tensor. The material is specified by a nonlinear
function§; (Emn), thus, as the firdtnearization condition, the incrementally linear
relation can be established as

o aSIj (Emn)
d5; = 0Ew

whereD{; ), (Emn) is the instantaneousaterial tangent modulus tensor.

Let us consider that in the volum# the body forceds, and on a parBy
of the surfaceS the surface tractiong), while on the complementary pa&;,
the displacements; are specified. Let us assume a scalar loading pararheter
to be varied continuously and infinitely slowly in time. Fundamental classifica-
tion of loading types is detailed in [1], [2] by distinguishing the tedead and
configuration-dependent load. Dead type loading device supposes the applied load
to be independent of the occurring deflections. In this case, during a loading pro-
cess, the loa# can be controlled by a scalar load parametehusF = A K, and
dF = dx Fo (Fig. 1a).

AEkI = Ditjk| (Emn) AEkl, (1)

- F r
F =T
F : dAFA+1du 1
+ T Ffa)=AF+fu
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Fig. 1. Configuration-dependentloading

Configuration-dependent loading assumes the applied load to be dependent on
the occurring deflections, characterized by a load-deflection diagrasmF (u) =
A Fo+ f(u), which is divided into two parts: theontrollable parti iy governed by
the load parametex, and thedeformation-sensitive part f (u) specified as a linear
or nonlinear functionKig. 1b). For linear variable load, the loading modultis
is constant.
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Inthe case ofonlinear variableload, incrementally linear analysis is needed.
Namely, forF = F (uj) = A Fo + fi(u;), the increments @ = di Fig + df; =
dr Fig + Mitj (ux) Auj contain the second order tensl\mlfj = df;j/du; being the
loading tangent modul us tensor

of;
dfi = —IAUJ = Mitj (uy) AUJ', (2)
3Uj

which linearization condition is formally the same as in (1).
The tangent stiffness matrix is based on the incremental virtual work, which,
completed by the terms of the deformation-sensitive loading is as follows

SAW = fVo (SJ + AS])(SAE”' dvy —
— v, [3Fio + fi) + A (AFio + f)] §Au; dVo —
— Jopo [(APio + P1) + A (AP0 + p)] AU dS = 0, 3)

wheref; = fi (uj), pi = p (uj) are the deformation-sensitive parts of the volume
and surface loading, respectively [4]. The terrepresents the total increment
ands indicates the variation. Notice that these forms are the correct versions of the
incremental virtual work since here the total incrementppear. However, for the
stresses in (1), and for the loading in (2) we assumed first order increments, thus, in
(3) further linearization assumptions AS; = dS;, Afj = dfi andAp = dp; can

be applied. Obviously, for the scalar parametefa . = di. Thus, the incremental
virtual work (3) yields

SAW = fVo (SJ +d3j)5AEij dVo —
— Jv, [AFio + fi) + d (A Fio + f)] 8Au; dVo —
— Joo, [(APio+ ) + d (L Po + pi)] 8AU; dS = 0. (4)

Let us consider now the required variational and incremental form of the strains
and displacements appearing in the above expression.
In the Lagrange—Green strain tensor

1
Eij = > (Ui +Uji + UgiUj) (%)
linear and nonlinear parts can be distinguished in terms of the displacement gra-
dientsuy; j. In the case ofarge displacement gradients, large or finite strains are
considered, while in the casesshall displacement gradients, thatisy ; <« 1,small
or infinitesimal strains are distinguished, by neglecting the higher order small term
Uk, Uk, j -

As for the increments and variations of the strain, we can conclude that they
depend on both the increments and variations of the displacements suy
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and§Auy,. However, these terms can be analyzed after the discretization of the
displacements only.

The displacement functiorier a single finite element within the body can be
expressed interms of the geometric and functional coordixeaeslg, respectively,
as

ui(X, g1 up (Xq, X2, X33 01,02, ..., C)
u=uX,q) =| WwX,d2 [=| u(Xy, Xz, X3;01,%,....%) |, (6)
@) @) us(X, gs) Uz (X1, X2, X3; 01,02, - .-, )

whereX are the coordinates of the discretizgsbmetric space, andg are the coor-
dinates of the discretizednction space, r is the number of generalized coordinates
of the elements.

Here we distinguishmall/largedisplacements, functionsu to belinear/nonlinear
in g, respectively. Practically, in the case lafge displacements, parametergy
contain rotational elements, that is, trigopnometrical relations. ifror small dis-
placements, functionsu are linear ing, thus, the variableX andq in (6) can be
separated by the linear combination

Ui =Y qfe*, (7)
k=1

whereg*(X) are theinterpolation or shape functions corresponding to the nodal
points of numbem. Expression (7) leads to the classical basic expression of the
linear finite element displacement method

uX,q) = N(X) q, (8)
(©)] @r) (n

where matrixN(X) contains the shape functiop§(X) of the classical linear FEM
approach.

In the case ofarge nonlinear displacements, the direct separation (8) cannot
be applied. In such casascrementally linear analysis is needed [3], [4], [6].

Let us consider the increments lafge displacements as Au = du + dfu,
where

ou(X,
du = ﬁ dg; = H(X, g, dg = H, dq, 9)
&) 99; I, @n O @0
and
1 9%u(X 1 1
du =2 LMD g g, = ZdqT WX, o) 99 = ZdgT W, dg (10)
® 2 090;00« |, 2.0 3D () ® T30 M

are thefirst and second order increments of the large displacements, respectively,
related to then-th configuration. MatrixH, has 3x r elements, while matrixV,
is three dimensional of measurex 3 x r. Theincrementally linear relation (9)
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can be considered as the basic relation of an iteration processradritieear finite
element displacement method while matrixW,, represents thaonlinear geometry.
Thefirst variations of the large displacements

ou(X,
su — X, q)
) 00

§q; = H(X, q) éq (11)
€Ay} (r)

result in a new function sindd contains botlX andq as variables.
By considering thevariation and increments of large displacements, table
(12) illustrates all the necessary terms in a concise form.

Increments and variations of displacements
Small Large
displacementsg displacements
First variation su Né&q Hsq
First increment du Ndq Hndg
Second increment d’u |0 1/2dq " Wy dg
Total increment Au | Ndg Hndg + 1/2dq" Whdq
Variation of firstincrement | §du | Nédq Hnpddg
Variation of second incrementsd?u | 0 dg" Whédq
Variation of total increment | §Au | Nédq Hnddg + dg " Wnédg

(12)

In these expressions, matrix = N(X) of shape functions of the linear finite
element procedure is constant during the total state change analysis, while matrices
H, and W, change during the iteration process. Namély,= H(X, gn) and
W, = W(X, q,) are related to tha-th equilibrium configuration, being constant
in then-th iteration sub-step only.

By expressing the nonlinear Green—Lagrange strains in terms of the displace-
ment gradients, for the discrete version we can use the form

1
E=Euw=Au+Zu"B" C u, (13)
® ® 633 23 3909633

whereE are in vector arrangement as
E'=[ Eu Ex» Ess 2E; 2E;3 2Ex |,
moreoverA, B andC are differential operators with respectXo concerning the

displacement gradients represented by thiénear term Au in the small (infinitesi-
mal) strains, and, by thenonlinear term 1/2u"BTC u in the case ofarge (finite)
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strains. Matrix C is three-dimensional, consisting of six layers of sub-matrices

of measure % 3.
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(14)

Let us consider now the different forms of increments and variations of the strains

in terms of the displacements in the frame of the FEM analysis, detailed in [4]. Here
we emphasize the difference between large and small strains and displacements as
the effect of the approximation level, as seen in the following concise form (15) in
terms of the matriced, B andC relating to the geometric space, aNgdH, and

W,, referring to the function space.

Increments and variations of strains

Large strains Small strains
A B,C A only
SE (AH(q) + u(q)TBTCH) 5q AH(9)sq
dE (AHn +ul BTCHn) dg+ AHndq + 1/2dqT AWndg
+1/20q7 (AWn n u;BTCWn> dq
d?E | = 1/2dq"H BT CHpdq 0
AE (AHn +ul BTCHn> dg+ AHndq + 1/2dqT AWndgq
Large +1/2dqT (AWn +ulBTCWh+
displ. n HIBTCHn) dq
HW | sdE (AHn +ul BTCHn> sdg+ AHnsdq + dqT AWnsdq
+dqT (Awn n uJBTCWn) 5dq
8d2E | = dqTH,IBT CHpsdg 0
SAE (AHn +ul BTCHn> sdg+ AHnsdq + dgT AWnsdgq
+dgT (AWn +ulBTCWn+
+HTBT CHn) 5dq
8E | ANsq+qTNTBTCNsq ANSq
dE | ANdg+ ! NTBTCNdq ANdq
d?E | 1/2dq"NTBTCNdq 0
Small | AE | ANdg+ g NTBTCNdg+ ANdq
displ. +1/2dg"NTBT CNdq
Nonly | 8dE | ANsdg+glNTBTCNsdg ANsdg
8d?E | dg"NTBTCNsdq 0
SAE | (AN + gl NT BTCN) sdg-+ ANsdq
+dg"NTBTCNsdq

(15)
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The results detailed in tables (12) and (15) are used in the several versions of the
tangent stiffness matrix which is derived from the matrix form of the incremental
virtual work

SAW = [, (ST + AETDy) sAEdV, —
— Ju [(WFS +1T) + (dA F] +dfT) ] sAudVo —
— o, [(-P +P7) + (dr P +dpT)] 5AUdS, = O. (16)

Due to the nonlinearity of the state variable functions, caused hyaienearity of
the material, loading, strains anddisplacements, the expression of the incremental
virtual work is fully nonlinear, thus, further concepts of linearization are necessary,
detailed in [3], [4]. Moreover, expression (16) is stilhomogeneous in terms
of the increments and variation of the generalized paramgtefor obtaining a
homogeneous tangent stiffness matrix, further simplifications are needed, detailed
in [4].

Thelinearized and homogenized form of the incremental virtual work in the
case of nonlinear material and loading with large strains and large displacements
yields [4]

SAW =dq" | [y, HT (AT + CTBuy) Dy (uBTC + A) Hy Vot
+ [y, ST (AW, +ufBTCW,, + HIBTCH,) dVo — [, HiM ttHq dVo —
— Js, HiM piHa dS — [, FTWhdVo — ¢ PTWndS — [, 2 FgWa dVo —

— Jo, PYWrdS | 6dq — i | f,, FTHadVo + 5, PTHn dSp| adg =0,
17)

from which, the different forms of the tangent stiffness matrices can be derived.
Details on the effect of variable loading on the tangent stiffness can be found in [5],
[6], applied to nonsmooth loading functions, too.

The iteration process is based on taegent stiffness matrix. By using the
detailed forms of the discrete strains and displacements, different forms of the tan-
gent stiffness matrix can be obtained. In the following table the main versions of the
tangent stiffness matrix modified by the different linearization and approximation
concepts are summarized.



Structural tangent stiffness

Nonlinear
material, Large strains Small strains
nonlinear (A,B,0O) (A)
loading
fvo HT (AT + CTBu,) D} (ufBTC + A)HndV, fvo HIATDIAH,dV,
Large +fvo St (AW, +u;BTCW, +HIBTCH,)dV, | + fvo ST AW ,dVy
displacements — i, HiM % HndVo — [¢ HIM{HadS — Jy, HaM 3 HndVo — [ HIM | HAdS
(Hn, Wn) - fvo fJWndVO - fSo p-rl;WndS) - fvo frTWndVO - fSo pIWndS)
— fvo AFJWrdVo — fso APJWdS — fvo AFJWndVo — fso APJWdS
Small fvo NT (AT + CTBun) D (ulBTC + A) NdVo fvo NTATDPANdV,
displacements + f,, S§ (NTBTCN) dV,
(N) —fvo NTMT,NdVo — fso NTMgtNdSO (N) —fvo NTMT,NdV, — fso NTMgtNdSO

(18)

S3ILIIYINITNON 40 NOILYHLSNTTI

S9
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Let us consider now the illustration of the different forms of the tangent
stiffness matrix.

3. lllustration of the Tangent Stiffness Matrix in the Case of Combination of
Large and Small Strains and Displacements

To illustrate the systematization of the different nonlinearities and the different
approximation conditions, the finite element model of Timoshenko beam detailed
in [7] will be presented. Some concepts of the nonlinear FEM models are based on

8], [9].

3.1. Beam Element Based on Different Approximations

Let us consider first the so-called Timoshenko beam based on the following kine-
matic assumptions: each point of the cross sections moves paralleixy phaene,

and the cross sections being initially perpendiculax temain plane but not nec-
essarily perpendicular to the deformed axis of the beam, sdég.ig.

Fig. 2. The Timoshenko beam

3.1.1. Large and Small Displacements

Fig. 2shows that the displacement&x, y) andv(X, y) of an arbitrary poinP (X, y)
are the functions of the displacemenits<) andv(x) of the centroidC(x, 0) and
the angular displacementx) of the cross section

u(x, y) = u(x) — ysing(x), v(X,y) = v(X) — y(1—cosp(x)). (19)
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By introducing the scalar values of the displacements at the nodal points

Q' =[u v o1 Uz v2 @ | (20)
as generalized coordinates, thhus- 6, moreover, the shape functions
N1 = N1(X), N2 = Na(x) (21)

associated to the nodal points, respectively, by means of the finite element approx-
imation

u(x) = upN1(X) + Uz Nz (x), v(X) = v1N1(X) + 12N (X),

p(X) = g1N1(X) + p2N2(X) (22)
the following nonlinear displacement function seen in (6) can be specified:

U= | Uy U, ..oogp) | u(x) — ysing(x) _
@ LvY.Ui....¢) v(x) — y(1 — cosp(x))

_ UrN; 4+ UsNy — ysin(eiNy + ¢2No) B

B [ v1N; + 2N, — Y (1 — cos(g1Ny + ¢2Ny)) ] =uX,q  (23)

since this functionis nonlinear inthe generalized coordingtés this way, function
(23) represents thiarge displacements.

In the case o$mall displacements, the approximations sin= ¢ and cog =
1 can be applied, thus (19) is simplified to

u(x, y) = ux) —ye(x), v(X, y) = v(X) (24)
and (23) changes to thimear form

u= u (Xv y9 usg, ..., ¢2) _ U(X) - ygo(X) _
Tl v, Y, UL, .., 00) | T v(X) -
| usNg+u2N2 — y (@aN1 + ¢2Np) |

_[ 1Nz 2v1?\|1+v2%\|21 2 N2 ]_u(X,q), (25)

which represents thamall displacements. In this case (25) can be separated with
respect to the coordinates of the geometric and function spacelq, respectively,
by the linear combination (8) as

UrNz + Uz2N2 — Y (91N1 + ¢2No)
X = =
u( (2’) q) |: v1 N1 + v2Ny
e
U1
Nt 0 —yNs N 0O —-yNp ¥1
= N(X 2
[ ON O O N, O Us g, (26
U2
| ¥2 |
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where the matrix of the shape functions is

N, 0 —yN; N, O —yNz}
N(X) = . 27
1% [ O N O 0N 0 @7)

However, in the case of large displacements, this direct separation cannot be exe-
cuted. In this case, the linear combination can be applied to the increments only,
related to an equilibrium configuratian

dU1
dvy
du = 34 dq- _ Mo —lecos((pTNlﬂpgNz) Ny 0 —yNzcos<<p?N1+ngN2) der
@ 3gj [ 0 Np —yNg sin(¢fNp+¢9N2) 0 Ny —yN sin(¢DNy+¢3Np) duz
v2
ez

= H(X,qgn)dg = H, dq, (28)

(2.6) ©® (2.6) (6)

where matrixH, contains the shape functions and the paramefekaown in the
configurationn

_ Nl 0 7yN1 CO#(p:T N:|_<|»(p£1 N2) N2 0 7yN2 cos(<p’1‘ N1+(pr21 Nz)

H Ui
n - [ 0 N1 —yNpsin(e] N1+¢)Nz) 0 Nz —yNo sin(ef Ny+¢) Na) ] :

= — (29)
26  0Q;

n

In the case of large displacements, the second order increments of the displacements
can also be specified for the configuratiorthat is

>, 1 9%
u=-=
@ 2 00;00

1
dq; dox = Equ W (X, dn) dq, (30)
n (6) (6,2,6) (6)

where the three-dimensional matki (X, gn) containing also the shape functions
and the known parameteq8 consists of two layers as follows

~00 0 00 0
) 00 0 00 0

W)t = 0°U1 | | 00 yNZsin(!Ni+¢DN2) 0 0yNiN; sin(¢f Ni+]Ny) (31)
n)"=7——| =|oo0 0 00 0
(6,2,6) 00;00k |,, 00 0 00 0

|0 0yNiNzsin(¢] Ni+@5N2) 00 yNZ sin(gf Ny+¢8 Np)

and
00 0 00 0
) 00 0 00 0
(W,)? = 9°U2 | | 00 —yN2cos¢fNi+¢INy) 0 0 —yN;Np cos(e! Ni+¢fN;)
n)" = =100 0 00 0
(6,2,6) 0000k |, 00 0 00 0

L 00 —yNyNp co(pf! Ny +¢5Np) 00 —yN2Z cos(f! Ny +¢3 Np)

(32)
MatricesH, (X, g,) andW, (X, gn) are used in all forms of variations and incre-
ments of the displacements and strains as the basis of the iteration process.
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3.2. Large Srains with Large Displacements

In the case of large strains with large displacements, in the first two terms of the
tangent stiffness matrix, the expressiohbl, and ulBTCH,, moreover,AW,,
uBTCW, andHBTCH, are needed. These terms can be obtained by using the
differential operator matrice&, B andC, which, in our two-dimensional geomet-
rical spaceX” =[x v], by considering the strair8" = [ Exx 2Exy] and the stresses

ST = [s« Sy], take the form

= 0 =
A= aax J j|a B= 9 [8( s
L 9y 9x ay
0O <
ay
- 3
% 0 w9
0o < 0 31
Ci= o &I Ca=| , 6’ (33)
X
| 0 0 0 2

=5
x

By introducing the abbreviations related to the fixed equilibrium configuration

UINL +UNz = u", ofNp + 03Nz = 0", N1 +pNa =", (34)
o Ny oNy o Ny Ny
Uigx Ty —We Mg U = v
dN; dN,

n n — " 35
Y1y T2 TP (35)
sin(@fNi +¢IN2) = S",  cos(plNy + ¢3N,) = C", (36)

o N Ny
My, Ny 37
9% 1,x 9% 2,X ( )

which are kept constant during the sub-cycles between the configuratiand
n + 1 of the total iteration process. The symmetric tangent stiffness migtrix
associated with the-th configuration can be obtained in the following blocks

kD kD
kn _ 3,3 (3,3
Sk k| 38)

3,3 33
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First we express the term&H, and uBTCH,, containing the material moduli.
Thus,

Nz,x 0
0 N1 x
T AT _ | NaygS"—NyxyC" —Ni(1+yp)C"—NyxyS"
(ts' 5) é 5 N 0 ’ (39)
’ i 0 N2.x

N2y S"—N2 x YC" —N2 (1+yey ) C"—Nz x yS"

while the termH CTBu, is as follows

NlX(unx Yol X ) —Nl,xsn N
le(vnx y ) —N1x(1-C")
legax(unXS”—v CM)—  —Ng{(uy—ye%)C+vi S} +
T T —Nyxy (UL C"+o S —yo +NgxyS"
S B | o s . @)
(6,2) (224 (42 (2) 2x X 2X
N2 X nx y¢7 X Sn) - NZ,X (1_Cn)
Noyel (U S"—oCM = —Na{(u—ye'y)C +v7, S} +
_b_NZ,Xy( nxC +vr1xsn_y‘pr]>() +N2,Xysn -

in this way, the sum of (39) and (40) is

Nl.x (1+Un —Yo XC”) 7N1,x sh N
Nl,X(U,x ywvx Sn) _Nl,ch
Noygl{(1+u%)S" =R CM = —Ny{(1+ul)CM+v5 S}
T T T . 7Nl.xy{(l+u[‘x)C"+vf‘XS”7y<pf‘x}
Hn (A + C B un)— N2 (1+u y¢7 n) N, Qn
(6,2) 2,2 (2,24 (4,2) (2 X X X X
Na, x( —Yo xSn) N xC"
Nzygx{(1+u, )= CM = —Np{(1+uf)CN+0 "}
L —Noxy{(1+u) C+05 S"—ye |

(41)
Consequently, since we assumed uniaxial material functions represented by the
diagonal construction of the matrix of the material constants

DR, O EfJx) 0
DI = = B (42)
0 Dj, 0 GMAKX)

containing the Young and shear moduli, and the moment of inertia and the reduced
area of the cross section, respectively, the blocks (38) ofjimmetric material
tangent stiffnessmatrix (k{‘;ﬁg)” of (18) related to tha-th equilibrium configuration,

as a component of the total system gradient maqtiaf (18) are as follows



| +DJy {N1Np xS™ (1 +uy) C" + 013 S} -

(kt“;?,;)ll—/ (Hy (AT + CTBu,) D} (usB"C + A)H ) dVp =
Vo

xx(Nl X)Z (1+ Urlx - y(p,nxcn)2+ Dn [(Nl x)z (l+un
+Dyy (Nl,X) (Sn)z ( — Yo Xsn)}
—Dyy(Nl,x) (s"ch)

O | (M) (1%~ yeho") ’

(% — e xsn)} -
0y (N (S7CT)

DRx (Nl,x) U,nx - W’,nxsn)2+
+DY (Np.x)? (C")?

DRx {NlNl,xW’,nx (1+ U?x - y‘ﬂ,nxcn) : Dix {NlNl xy<ﬂ X ( W’nxsn)
(@) - e (@) 507 -

— (Np)?y (1+ U7y — ygkCh) - — (N1x)?y (% — y@'kS") -
(A4 ul)CM+ S -yl )+ ((1+U”)C”+v"5” o)} -

- W’,nxcn)'

gy {NLNg xC" (14 uTy) C" + 0% ")}

Dxx {Nl Nl,xW’,nx (1 + Uf]x - W’,nxcn) :
(14 ul) 8" = iCN) -
- (Nl,x)2 y (1 + U[]x - y‘ﬂ,nxcn) :

(A4 ul) CM+ S —yely) )+
+D9y {N1Np xS" ((1+uTy) C" + "} ")}

Dxx{NlNle‘/’x( — Yo xsn)
((1+uny) S - Cn)
— (N1 )%y (0% — vk ") -

: ((1+u[]x) Cn"'v,n s" - W’,x)}_

—DYyNiNg xC" ((1+uTy) C" + 04 S")
DI, {N1ye'k ((1+ ux) S" — v CM)
—Npxy ((1+U) C"+ %S - ypl) )2 +
+Dfy {Ng ((1+ufy) C" + 07, 8"}

dVo

(43)
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and
t
(kang
[ DINpxN2x (14Ul — ye'iC)? +
+DJy Ny xNp x (S7)?
D X{NlXNZX (1+Ux W’,nxcn)’
( nx Yo xsn)}
D Nl,x NZ’XSnCn
DRx {Nl N2, x W’,nx (1 + U?x - W’,nxcn) :
(14 ul) 8" = vkCh) -
- (Nl,x)2 y(1+ Uf]x - W’,nxcn) :

1+ u[]x) CN+ ST — Yo} +
+DJy {N1Ng xS™ ((1+u'y) C" + 07} S} -

Dxx {Nl XN2 X (1+ un y‘/’,nxcn) :
(v nx Yo'k )}
D Nl’XNz’XSnCn
DxlexNZX( W’nxsn)
+Dy Ny« N x (CM)?
Dx {Nlle)’Wx( y‘/’xsn)'
((1+U”) — v’k C")
(Nl x) ( — Yo xsn)
((1+U”)C”+vnSn o)} -

By {NNLCP (14 U3) C W3SV Ny yNp (14 UT) € + 0k S — yol})?) +

o= [ (T (A7 +CTB1r) 7 (W[BTC-+ A) H), Vo =
0

Dxx {N1N2,xy§0,nx (1 + Ur]x - W’,nxcn) :
((1+ uf‘x) s — vf]XCn) -
—N1xNo xy (1 + Uf]x - W’,nxcn) :

A+ ul) CM ST — vl +

+DYy {N1N2 x S™ (1 + u}) C" + 5 S")}
Dxx{NlNZXy‘/’x( yw”xsn)
(14 uy) ST =T c”)

—Nyp x N2,xy(v,nx - W’,nxsn) :

(A4 ul) CM+ ST -y ) b -

—DJyN1N2 xC" (14 uT}) C" + 01§ S")

DRx {NlNz (vo% (1 +u) 8" — vkCM)?
- (Nl,x N2 + N x Nl) :

'yz‘/’,nx (1+ u[]x) s - U,nxcn) ’
((T+ux)CM+ %S — yol) +

2
+Dfy [NaNz (1 + u) € + v} )7

dVo

(44)

[

Z1NINY ‘W



J

| +DJy {N2N2 xS™ ((1+uy) C" + 0% S")} —

and

tang

DRy (N2x)? (1w yo%C?+ DR (Nax)? (1 + U — yekCn)-
+Dyy (NZX) (Sn)z (v~ ye xsn)}
—Dyy(Nz,x) (s"cn)
n 2 n nen n 2/ n n 2
Dxx [(NZ,X) (1+ Ux — Yo xC ) Dxx (NZ,X) Ux — W’,xsn) +
(V% - yelST)} + +DJy (N2.)* (C")°
2
+D9y(N2’x) (s"cm
DQX {NZNZ,XyW,nx (1+ ur]x - y‘/’,nxcn) : Dx {NZNZ XyW X ( y‘/’nxsn)
(14 u) 8T —%C) - ((1+ U”) ,”C”)
— (N2)?y (14U — ygfkCh) - — (N2)?y (% — 'k ") -
(LU CM o S -y} + ((1+u”)C”+v”S” yel)} -

DYy {N2N2,xC" ((1+u}) C" + 7% S")}

(K83, = [ (4 (A7 + CTBu) O (WB7C + A) ) o =

Dxx {NZNZ,xyw,nx (1+ Uf]x - W’,nxcn) :
A((1+ul) S"—kC) -
— (N2x)?y (1+ Uy - ygTkCn) -

((1+ Uf‘x) CN"+ 58" - W’,nx)} +
+DYy, {NaN2 x S™ ((1+uTy) C" + 01} ")}

Dxx{NZNZXY‘/’x( y‘ﬂxsn)
((l+ uf‘ ) SETL C”)
—(Nz,x)zy( R ACHE

(L4 €4 03 — v -
—DJyNaNp xC™ (14 uTy) C" + 01§ S")

DRx {YN2¢l ((1+ul)) S" — vk C")
yN2 x ((1+ U[]x) C"+ U,nxsn - y‘/’,nx)} +

2
+Dfy N2 (1 +uf) "+ o172

dVo

(45)
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in which, through the abbreviations (34) — (37), also the teBn€", ¢7, u"}, v}
contain the shape functiors, No.

Let us consider now the term#\,,, u' BTCW, andH BT CH,, concerning
theinitial stresses or geometric tangent stiffn&s(kgtgoﬁs)” of (18) as the part of the
total tangent stiffness matrix (18). The two layers of the three-dimensidnal
are

~00 0 00 0 .
00 0 00
00 NZyeh C"+ 00 N1N2ye',C"+
AW >1 B +2N1N1Xysn +(N2N1,x + N1N2,X) ysn
(2,2) (2,6,%) B 00 0 00 0
00 0 00 0
00 NiNpRyC"+ o0 NZ % yC"+
+(N2Npx + NiNzx) yS? +2NaNoyyS'
(46)
and
00 0 00 ]
00 0 00
00 NI(L+yph)S'— 00NNy (14 ygh) S'—
A W L —2NiNxyC" — (NaN2,x + N2Nix) yC"
(2,2) (2,6,%) N 00 0 00 0 ’
00 0 00 0
00N1IN2 (1+ygf)S'— 00 NZ(1+ygl)) S
— (N2N2x + N2Ng x) yC" —2N2 N xyC" i
(47)

while the two layers of the three-dimensiondBT CW, are
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NEARITIES

1
<uI BT C wn> =
,6,6)

(2 24 422 2

roo 0 00
00 0 00

00 N1 Noyeh (URC" + S —yp'i)+ 00
+ (N1N2x + NaNp ») y (U S" — ok C")

00  NZygT (uRCM+ %S - ypTh) +  00NiNaygp' (uhCM + 3 S" — yo'}) +

+2N1 Ny yy (U S" — 01, C") + (NgN2 x + NaNp ) y (U S" — o C")
00 0 00 0
00 0 00 0

szy‘ﬂ,nx (u,nan + ”,nxSn - W’,nx) +
+2N2N2’Xy (U?XSn — v’nXCn)

2
(u} BT C Ww, ) =
2) (2,3) (3.2,2) (2,6,6)

00 0 00
00 0 00

—2N;Npxy (1 -C"

00 0 00
00 0 00

— (N2Nzx + NiNp ) y (1 —CM

0
0

oo N2 (uf‘XS” — v CN — y<pf‘XS'") — 00NN, (uf‘XS” — v CN — ygof‘XS'") —

— (N2Ngx + NiNo ) y (1 —CM)

0
0

00 N1Nz (uf‘XS” - v C" — wa‘XS") —o00 N2 (uf‘XS” - v C" — ygof‘XS'") —

—2NoNpxy (1 —C™)

moreover, the two layers of the three-dimensiaddB™ CH,, are as follows

75

(48)

(49)



1
= (HI BT C Hn) =
(6,2) (2,4) (4,3,2) (2,6

(N1x)? 0 — (N1x)?yC'+ Nyx Nz 0 —Nz,xN2xyC"+ ]
+N1 Nz x Y} S" +N2Ng xye S
2
0 (N1x)? — (N1x)“yS'+ 0 Nyx Nz —Nz,x N2 xyS"+
+N1Ng xyeh, C" +N2Ng x Y, C"

2 2 2
- (Nl,x) yC'+ — (Nl,x) yS'+ — (Nl,x) y2+ —Ng x N2,xyr?n+ —Ny x NZ,xynSn‘ir; Nz, x N2,xy2+
FNINLxYg ST +NINLYORCT 2 (n)?y2 TNEN2xY9lST +NaN2 @l Ch NN (gn)? y2

2
XNpxNpx 0 —Nz,xN2,xyC"+ (N2x)? 0 — (N2,x)“yC"+
+N1N2 xye'y S +N2 N2 x Yy S"

2
0 Nz x N2,x —N1.x N2,xy5n+ 0 (N2.x)2 — (NZ,X) yS'+
+N1Nz xyp', C" +N2 N2 x i C"

2 2 2
—N1,xN2 xYC"+ —Ng x N2 xyS"+ N1 x Nz,xy2+ - (Nz,x) yC"+ — (NZ,X) yS'+ (NZ,X) y2+

n nen
FN2NLxYg ST +N2NLx YRR CT Ny N, (1) y? +N2Nax Yok +NaNoxyolkCh N2 ()% y2

(50)

9,

Z1NINY ‘W
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2
and(HI BT C Hn) _
(6,2) (2,4) (4,3,2) (2,6)

- 0 0 —NpNyp ,C" 0 0 —NpNp 4 CM o
0 0 —NgNg  S" 0 0 —NpNg x S"
—NgNpwCT =NgNp ST 2NgNpyxy  —NgNp»CM —NyNp S"(NlNz,x+N2N1,x)V
0 0 —NgNp C" 0 0 —NgNp yC" (51)
0 0 —NgNp x S" 0 0 —NNp  S"
[ —NpNg xC" *NzNl,x5”(N1N2,x+N2N1,x)y*N2Nz,xC" —NgNp  S" 2NpNp Yy

By considering the stress€6 = [ s« Sy ], the blocks of thesymmetric initial
stress stiffness matrix or geometric stiffness matrix related to then-th equilibrium
configuration, as a component of the total system gradient matrix take the form

KL, = [ (5 (AW TBTCW, + HTBTCH,), o =
5 Vo ’

2 2
S}Qx(Nl,x) 0 - ((Nl,x) yc" —
- N1N1,xy<P,"xS”) -
*S)rgleNl,an
2 2
0 SQx(Nl.x) - ((Nl.x) ys" +
/v + NpNg xye'kC) -
—SQleNl,xSn
2 2 2
-S {(N1,><> ye — - {(Nl.x> ys" + S (N1,><> y2+
2
— NgNpy Yok ST =+ NpNgcyeken} - +$r<r:x"‘1y</’,nx {a+ “.nx)nC” :v.nxr?"}:
~SRyNgNg xC" —SPYN1Ng x S” +S><X2’\2‘1va><y{(1+ ulk) ST - vk Ch
L +SQVN1 {(1+uf) ST —v%cy

(52)
stress\  _ T TRT TRT _
and (k3e)] , = fy,, (ST (AW + uf BTCW,, + HTBTCHy)), , dVo =
B SxN1x N2 x 0 —Sfx (Npx Nz yC" = .
— NaNqg x W’,nx Sn) -
—S>r<]yN2N1,an
0 SRxN1x N2 x - (Nl,x NpxyS" +
+ NNy xyefkC") -
/ —SRyNa Ny S” s (53)
Vo
- (Nl,x Nz,xycn +  -S (Nl,x NZ,XVSn + Sx:x N1 x NZ,)ﬁy2 n n
+ NiNp xY</1.nxSn)_ + NiNp xW."an)_ SN2y (1 ) O+ 1)
—SlyNgNp CP —ShyNg N S S (NLN2x + NaNp ) v-
) ’ S((1+uly) ST - ch
L SeyNiNp ((1+ufy) ST —fcM) .
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(kstress)” _ /\; (ST (AWn + UIBTCWn + HIBTCH”))Z,Z dVo =
()

geom /22 —

S (N2,X)2 0 -8 {(NZ,X)Z ycn —
- N2N3,XY‘/’PXSn} -
_SQyNZNZ,an
0 S (NZ,X)Z - {(NZ,X)Z ys" +
/ + NaN2 xyoiC") —
Vo 7$yN2N2,XSn
-Sk }(NZ,X)Z ych — -8 {(N2,x)2 ys" + $xy2 (N2,x)2+
~ NoNoyy@} S}~ + NaNauyehC) = +SRNZyel {(1+ul) C" + 038"} +
— Sy N2 N2 xC" —SeyN2Nz x S" +Sx2Na oy { (1 + uTy) S — o5 CM} +
+SYNZ {(1+uy) S" - CN)

(54)

in which, through the abbreviations (34) — (39), the te@h<", ¢}, u'}, v"} also
contain the shape functiors, No.

Letus consider now tHeading tangent stiffnesswith H! MH, of the configuration-
dependent loading containing the loading tangent mod#uBy assuming uni-
axial loading program represented by the diagonal matrix

) M, O
My = (55)
0 My,

related to the configuration, the concerning part in the system gradient matrix
reads



M, N2
0

—Mpy leycn

MRy N1 N2
0

—MJ, N1 NoyC"

0
n N2
Myy Nf
n N2
~MpyNTys"
0
MY, Ni N

—MJ, Ny Npy S

tang

()" = [ HE P Ho dve =
Vo

(6,2) (2,2) (2,6)

—MZ, NZyCh
2
—MyyNTys"

M2x Nl2 (ycn)22+
+M{NZ (yS")

—M2 Ny NoyC"
—MJ, Ny Ny S

M, Ny Np (yCM)2 +
+MI, NN (yS7)?

MQX N1N2
0

—MJ Ny NoyC"

MR N2
0

—MJ,N2yCn

0
MU, N1 N
— M, Ny NpyS”
0
n 2
Myy N3

2
—MyyN5ys"

- M>r(]x N1NpyC"
—ng N1 NoyS"

M, N1 Np (yCM)2 +
+MI, NN (yS7)?

—Mg, NZyCh
2
— M{,‘y N3 ys"

MRx N22 (ycn)22+
+MJ,NZ (yS")

(56)
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moreover, by considering the initial volume Iod= [ ff 7 ]and controllable load
ANFY = AM[ F? F9]in the configuratiom, the symmetric terms can be obtained, by
using the two layers of (31) and (32) as

n
(kgac)" = | fiW,dVo =
Vo
0 0 0 0 0 0
0 0 0 0 0 0
2 2

/ 8 8 fl”les”—OfZ”lec” % % flr‘NlNzyS”—OfZ”NlNzyC” iV
Vo

0 0 0 0 0 0

0 0 fI'NiNayS"— fIN;NoyC" 0 0 fAINZyS? — fANZyCh

(57)

and (ki2h)" = [, A"F§Wn dVo =

~0 0 0 0 0 0 7

0 0 0 0 0 0

0 0 FINZyS"-FINZyCc" 0 0 FONpNpyS"— FONpNpyC!

n

/k dVop
Vo 0 0 0 0 0 0

0 0 0 0 0 0

L 0 0 FONiNpyS"— FONiNpyC" 0 0 FONZys'— FINnZych

(58)

In this way, from the above detailed matricd® total system gradient matrix
k' = (kigng) " + (Kgeam)" — (kigng)" — (kgzbm)” — (ke

containing equally the material, geometry, variable and dead loading terms, can
be obtained. This total matrix is not detailed here.

3.3. Small Srains with Large Displacements
Inthe case a$mall strainswithlarge displacements, the above forms are simplified.

Namely, by using (39) only, the blocks of thaterial tangent stiffness (42) — (45)
are reduced to
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(k)" —/V (HIATD?AHH)Mde:
0

tang/1,1 —
2
DRx (N1.x) 0 DRxNx (Nyg'k S = Ny xyC")
0 ofy (N )2 ~DPyNg x {N1 (14 yelk) C" + Ny cys"}
/ yy (N1, Yy N1 x [N (1+ ek 1.xY o
Vo
2
DRxNpx (NpyelkST—  —DJyNp y [Ny (L+yeX)C'+ DRk {N1Y<P,nx5n —Ngx YC”}
_ n n 2
Ny xvC") +Np v S} DYy {~Np 1+ yelk) €M = Ny ys"}
(59)

(kmat )™ —/V (HIATD?AHH)LZde:
0

tang 1,2 -

DRx N1, x (Nzyfﬂ,nxsn*
—N2,xnd)

0 DYy Ny xNp x —DYyNy x {N2 (1+ ygf) C"+
/ +N2quSn} Y
Vo DRy N1,x {Nzywﬁxsn— —Dgle,x {NZ (1"" y‘/’?x) C"— DYy (NlW{nxSn - lexnd) : 0
—Nz xyC"} Nz xyS"} - (N2yexS" — N2 xyC") +
+DJy {(—=Nz (14 y¢fy) C" — Ny xyS") -
(=N2 (14 yglx) C" — yNp S}

DQX Nl,x Nz,x 0

(60)

and

(k5503 = [ (HTATDRAH,) NG =
0

DQX N2 x {NZY‘PPXS”—
- N2,Xnd}
0 DYy (N2.x)? —DJy Na x {N2 (1 + yg') C"+
/ +Np xyS"} dvo
V

% | DRNax {N2ygk S~ —DJyNax {Na (1+ yglx) C™+ DRy {NoyeyS" — Np xyC"}J? +
—NpxyC"} +Np xyS"} +D0y {—N2 (1+ ygy) C"—

2

—NpyS} J

i DQX(NZ.X)Z 0

(61)

moreover, thénitial stress or geometric stiffness matrices in (52) — (54) are simpli-
fied, too, namely

(kstress)” — STAWndVo —

geom
Vo
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roo 0 00 0 .
00 0 00 0
00 S {NZygncn+ 00 S}, {NLNz (1+ ') C"+
+2Ng Ny yS"} + + (N1N2 x + NaNg ) yS'} +
s [N rypny - PSS - on
_2NiN yC) — (N2N2,x + N2Ng x) yC"}
/v 00 0 00 0 dVo
0
00 0 00 0
00} (NiNz (L+y9l) €™+ 00 S {NBygncn+
+ (NzN2 x + N2Ng x) yS'} + +2NoNp xS} +
N{NpS—
tS(QNy{Nl i—N N1x) YC"} 5y {N3 (L+ o) '
i 1 N2 x 2N1x) Y —2N2N2,xyC"} |

(62)
Finally, theloading stiffness matrices are the same as detailed in (56) — (58).

3.4. Large Srains with Small Displacements

In the case of small displacements, the approximationg Sip and cosy = 1 are
applied, thusV = 0, and we have the configuration-independent matkix= N
of (27) in the expressions (43) — (58). In this cadd, = AN, that is, (39) changes
to the configuration-independent form

- N 0
0 Nl,x
—YNpx —Ng
NT AT = * 63
62 (2,2) Nex 0O (63)
0 N2 x
L —YNox =Nz |

Let us observe that this matrix concerns the first order strains in the point

Fig. 2. The first column of this matrix represents the first order normal strain in the
directionx, since inFig. 2 for small displacements(x, y) = u(x) — yg(X), thus

_ U y) U 8p(X)
= Tax ax Y ox

while the second column represents the shear strain defined by Timoshenko as

Ex

: (64)

_ dv(X,y) 4 au(x, y) _ dv(X)

2E
Y ax y ax

- @(X). (65)
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Moreover, the higher order strains represented by the two layers of the three-

dimensional matrixd'BTCH,, = NTBTCN are also configuration-independent
as follows

(Npx)? 0 —(Nu)®y NixNax 0 —NiygNayy]|
. 0 , (N1x)? 0 i 0 Nay Nax 0
(NT BT C N ) _ —(Nx)%y 0 (N1x)“¥? —NixNayxy 0 Ny xNpxy?
(6.2) (2.4 (4.2.2) (2.6) NixNox 0 —NixNayy (Nax)? 0 —(N2x)?y
0 Npx N2 x 0 0 (N2x)? 0
L —NixNaxy 0 NuxNaxy? —(Nax)?y 0 (Ngyx)?y?

66)
concerns the normal strain in the directioim the pointP, while the second layer
0 0  —NpNix 0 0 —NpNix
0 0 0 0 0 0
T oT 2 —NiNyx O 2N1N1xy —NiN2x 0 (NgN2x+N2Nyy)y
N B C N =
(6,2) (2.4) (4,2.2) (2,6) 0 0 —NiNax 0 0 —NaNax
0 0 0 0 0 0

—NaNzx 0 (NtN2x+NaNgx)y —NaNoy O 2NoNp xy
(67)
concerns the shear strain in the directionin the pointP.
For thematerial tangent stiffness each layer (66) and (67) is multiplied by the
actual value ofy, andD}, thus, the matrix

(NTAT + NTC"BNq,,) D} (g NTBTCN + AN)

in the tangent stiffness becomes configuration-dependent, that is, associated with
the configuratiom. The termN"CTBNgq, is as follows

Nl,x(u,nx_)"/’,nx) _Nl,an
Nl,xvynx 0
—N u —yeh) —Nz(uh —ye"h )+Ni xo"
NT CT B N qn — l,Xy( X y‘p,x) 1( X y‘p,x) 1.x¢ (68)
(6.2) (2,2,4) (4,2) (2,6) (6) Nzx (U —ye'k) —Naxg"
Nox v’y 0

- N2,X y(Uf‘x—W,”x) —N2 (Uf‘x—)’w,”x)+ N2,X¢7n

and the sum of (39) and (40) changes to the sum of (63) and (68)

Nl.x(1+ul,1x*y‘ﬂ,nx) *Nl,an
Ny x v’y Nz, x
NT <AT + c" B N qn) | Nuxy(@ruk-vel)  —No(LHul)+yNoxe"
(6,2 \ (2.2 (2,2,4) (4,2) (2,6) (6 Na2,x (1+u —yoT)) —Ng x "
No.xv'% N2,x

—Nox Y(1Hu% —ye'k) —N2 (14U -y )+yNa xe"
(69)
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In the case of small displacements and large strains, the first block ofaiesal
tangent stiffness related to the configuratiom takes the form as follows

(K207, = [ (N7 (7 + CTBa,) D (6fB7C + A)N), o =
0

i Dyx (vax)z' Dk (lex)z' —DJx (Nl’x)z y: |
' (l+ ul — yw,nx)z"i' ’ (l+ uly — y(p,nx) v - (1+ ul - yw,nx)z-i-
D}, (Nox)? (0"?  ~Dfy (Nux)*e" +DJy { N1 N xo"-
: (l + u,nx - yﬁ”,nx) -
- (Nl,x)zyw”)z}
Dix (Nl»X)Z' DRx (Nl»X)Z (U,nx)2+ —D}x (Nl,x)ZY‘
) (1 + u,nx - yw,”x) U,nx_ +D9y (Nl’x)2 . (U,nx — wa‘XSn) vf‘x—
/‘ ~Dfy (N1x)*¢" ~DJy {NtN1x- dVo
v 1+ U,”xz— yoh) =
- (Nl,x) y@”}
— D3« (Nl’x)z y: —D3x (Nl,x)z y: Dy {Nl,xy'
: (l+ u,nx - qu,”x)er ) (v,nx - ygo,nxgq) U,nx_ . (l—l— uf‘x — ygof‘x)}2+
+DJ {NiNy xo™ —DJy {N1Ng x- +DJ {—Ny-
: (1 + u,nx - yﬁ”,nx) - : (1 + u,nx - y‘ﬂ,nx) - - (1 + U?X - ygaf‘x) +
- (Nl,x)zy(fp”)z} - (NLX)Z y‘ﬂn} + Nl,xyfpn}2

(70)

in which, through the abbreviations (34) — (37), also the teBn€", ¢", ', uf},

v, associated with the configurationcontain the shape functiorid, N> . The
other blocks of the matrix can similarly be obtained.

In the case of small displacements and large straingnitial stress or geo-
metric stiffness matrix is simplified to the matrig (N"BTCN) only, thus

(ke = [ SINTBTCNdV, =
Vo
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_ 2 2 -
$r<]x<N1,x) 0 *ggxy(Nl,x> — SiNixNax 0 ~ S YNy x N2 x =
— SNy Ng —SlyNaNp «
2
0 SQx(Nl,x) 0 0 S)r<]XN1,XN2,X 0
2 2
—$’<]><Y<N1,x) - 0 Sy? (Nl.x) + —SPxyNg x N2 x — 0 SxyZNg x Np x+
n
—S{yN1Np x +S0y2yNi Ny —SxyN1Np x +S>r<‘y)’(N1N2,x+
+N2N1,X)
n n n 2 n 2 dVO
Vo SkxN1,x N2 x 0 —SxxYN1,x N2 x — SXX(NZ,X) 0 _SXXV(NZ,X) -
—SQy N1 N x *SQy N2 N x
n n 2
0 SkxN1,x N2,x 0 0 Sxx(NZ.x) 0
2 2
*S>r<‘xyN1,xN2,x* 0 S>r<1)<y2’\'1,>(’\‘2,)<+ *SQXV(NZ,x) - 0 S}nyz(NZ,x> +
n
—SkyN2Ng x +5ny<N1N2,x+ —SQyNZNZ,x +5)r<1y23’N2N2,x
| + NaNypx)

(71)
in which, only the stresses depend on the configuraiion
Let us consider now thieading tangent stiffness which, in the case of small
displacements consists of a single term only, related to the deformation-sensitive
part of loading, containing the loading tangent moddjli Here the configuration-
independent matrii, = N is used, that is

(kidng)" = / NT M{' N dvp =
Vp (6,2) (2,2) (2,6)

[ MLN? 0 —MENZy  MRN1Np 0 —MRNIN2y ]
0 My, N2 0 0 MYy N1 Np 0
/ -MLNZy 0 MENZY? -MENiNpy 0 MR NiNpy? N (72)
Vo | MININ: 0 MRNiNzy MBNZ 0wy O
0 My N1N2 0 0 My N2 0
L —MNiN2y 0 M, NiNy?2  —ME, N2y 0 M NZy2 |

namely, in this matrix only the loading tangent moduli depend on the configuration

Finally, the first block of theotal system gradient matrix k' for small strains
and large displacements reads

(kt)g,l — (kmat 4 Kstress _ kload)n

tang geom tang/11 —
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[ Df, (Nux)” DR (N1x)°- —Df (N1x)?y:
’ (1+ U,nx - y€0,nx)2+ ’ (1+ u,nx - ywwnX) U?X_ : (1+ u,nx - y¢?X)2+
+Djy (N1x)? (™2 + —Diy (N1x)¢" +DJy {NiNLxe"-
+S (Nl,x)2 - (14Ul - yel) -
—MJ N2 - (Nl,x)zy(¢n)2}
_Szxy(Nl’X)z_
— Sy NaNy x+
+MR NPy
DYy (Nx)?- DR (NLx)® (v)°+ =Dl (Nox)®y:
(L4 U = YD) V= D (No)? + (0 — yelST) -
L T R R L
Vo —MJ,N? (LUl - yeh) -
- (Nl,x)2y€0n}
—D (N1x)®y- —DR(Nx)®y- D {Nuxy:
(L - ye)P (05— YRS o (1, - yen) )Pt
+D0, {N1Ngx"- —DJy {N1Np x- +Dyy {—N1:
AU —ye) — (LU= yel) = (LUl - ye) +
_ (Nl’X)Zy(q)n)Z} I (N]_,X)Z y<p”} + Nl,xy(pn}2+
Sy (Nux)? +Shy? (Nux)* +
— S, NN+ +%2N§Nzl'xy_
+MP ley —M NTY

) )
from which the interaction of the material and loading characteristics can be studied.

3.5. Small Srains with Small Displacements

In the case of small displacements and small strains, the system gradient matrix
consists of two terms only, the terms of the material and loading tangent moduli.
Thematerial tangent stiffnessrelated to the configuratiomtakes the form as follows

(k)" = / NTATDIANdV, =
Vo
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DQX(NI,X>2 0
0 DQY(NLX)Z

2
n n
—DXXy(NLX) ~DJy NNy &

*DQXY(NLX>2

—DJyNiNp x 0

DYy Np x N2 x 0

2
DQXVZ (Nl,x> + _DQXYNLXNZ,X _DgleNZ,x

Dgy Nl,x NZ,X

- DQXle,X N2 x
n
—DyyNaNyp x

DQX Vle,x N2 x
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n N2 DJ,yNy N
+Dny1 yy Y12 dV
n n n 2 n 2 0
Vo Dxx N1, x N2 x 0 —DxxYNp x N2 x DXX<N2,X) 0 *DXXY(NZ,X>
2
0 DPyNg xNax  —DJyNiNp 0 Dgy(NZX) ~DJyNaNy
2 2
—DRx YNy x Np x —DJyNoNy y DQXyZNl,X Np x+ _SQXV(NZ,X) — —DJyNpNy « DRxy? (Nz,x)
n
L +DyyyNINz  —SyNpNp i DYy NZ

where only the material moduli depend on the configuration the case of dead
loading program, this matrix is the total tangent stiffness matrix in itself since the
initial stressor geometric stiffness, is based on the nonlinear strains. In the case of
deformation-sensitive loading, theading tangent stiffness is equal to (72), thus,
thetotal system gradient matrix is as follows

n __ ,mat load __
kt - ktang ktang =
B n 2 n 2 n n T
Dxx (Nl,x) - 0 *DXXY(Nl,x> + DxxN1xNox— 0 —DxxYN1 x N2 x
n n
~MPNZ +MPyNZ —Mxx N1 Np MRx yN1 Np
2
0 Oy (Nix) = ~DJyNiNg 0 DPyNg xNax— —DJyNaNy
n N2 —MJ, Ny N
—MJy NE yy "2
n 2 n n 2 2 n n n 2
*Dxx)’(Nl.x) + —DyyNiNp x  Dxxy (Nl,x) + —Dxx¥YN1 x N2 x + —DyyyNiNg x Dxxy“Ng x N2 x
+MPyNZ +DJyNZ— +MR YN Np DYy yNs Np—
D2
~MRxy2NZ Mxxy“ N1 N2 dv
n n n 2 n 2 0
Vo DXxN1,x N2,x = 0 —Dxx¥YN1,x N2 x+  Dxx (Nz,x) - 0 —Dxxy<N2.x)
n n
—Mxx N1 Np +Mxx YNL N2 —MI NS MEy yNZ
n n n 2 n
0 DPyNy xNpx—  —DJyNiNp 0 Dfy (Nz,x) — —DJyNpNp i
n
—MyyNi Nz —M{yNZ
2 2
—DRxYNg xNp x+ —DJyNpNy Dgxyle,xNz,x‘*' —SQXV(NZ,X) — —DJyNpNy « DQXyZ(NZ,X)
n n
+Myny1N2 +D¥1ny1N2— —5»’<‘yN2N2,x+ Dgysz_
— n
i Mxx YN1 No +MIy yNy 7M9Xy2N§ |

by means of which the opposite effect of the material and loading characteristics
on the tangent stiffness can be made evident. Further illustrations of the effect of
configuration-dependent loading on the structural tangent stiffness can be seen in

[3] - [6].
4. Conclusions

The effect of different linearization or approximation conditions is in the focus
of the paper. The aim of this paper was to illustrate the different versions of the
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tangent stiffness matrices obtained by the possible combinations of the structural
nonlinearities and linearities detailed in [4] where full nonlinearity is supposed:
nonlinear material, strain and displacement, moreover, nonlinear loading device is
considered. As a consequence of the latter, the tangent stiffness matrix is extended
to the effect of the loading terms.

Through the example of the Timoshenko beam displacement nonlinearity
was represented. At the same time, strain nonlinearity was also considered. In
a systematic way, all the possible versions of the tangent stiffness matrices were
presented, from the most complicated fully nonlinear one to the most simple fully
linear version.

Analytical and numerical aspects of linearization were distinguished, by con-
structing the complete fully nonlinear discrete model. The difference between the
nonlinearity of the strains and displacements was strictly distinguished and empha-
sized.
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