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Abstract

Symbolic computation has been applied to Runge-Kutta technique in order to solve a two-point bound-
ary value problem. The unknown boundary values are considered as symbolic variables, therefore
they will appear in a system of algebraic equations, after the integration of the ordinary differential
equations. Then this algebraic equation system can be solved for the unknown initial values and
substituted into the solution. Consequently, only one integration pass is enough to solve the problem
instead of using an iteration technique like shooting method. This procedure is illustrated by solving
the boundary value problem of the mechanical analysis of a liquid storage tank. Computations were
carried out by the MATHEMATICA symbolic system.
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1. Introduction

There are many engineering models represented by ordinary differential equations
with split boundary value problem. Shooting and finite difference methods [1–2],
trial function expansion based on variational principle or weighted residual method
as well as different types of collocation, quasi-linearization [3], and perturbation
techniques [4] have been widely used for a long time to solve such problems.

Computer algebra systems like MACSYMA, REDUCE, MAPLE,
MATHEMATICA, and to a certain extent other types of systems as MATLAB and
MATHCAD, give possibility to carry out not only numerical but also symbolical
computations. Many traditional algorithms can be improved, sometimes consider-
ably, via embedding symbolical parts into the numerical algorithm. These hybrid
techniques involving numeric as well as symbolic manipulations, provide arbitrary
precision in defeating instability problems and reduce the number of iterations in
general.

The application of hybrid techniques to boundary value problems was studied
in [5] for the case of second and third order, linear and non-linear ordinary differen-
tial equations including eigenvalue and stiffness problems. In this paper a method
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proposed in [5], the so-called slope retention technique has been extended for non-
autonomous, linear system of differential equations, using symbolic Runge-Kutta
method.

2. Boundary Value Problem

Let us consider a linear, non-autonomous differential equation system ofn variables
in matrix form :

∂

∂x
y(x) = A(x)y(x) + b(x),

whereA is a matrix ofn ×n dimensions,y(x) andb(x) are vectors ofn dimensions,
andx is a scalar independent variable. In the case of a boundary value problem, the
values of some dependent variables are not known at the beginning of the integration
interval, atx = x1, but they are given at the end of this interval, atx = x2. The
usually employed methods need subsequent integration of the system, because of
their trial-error technique or they require solution of a large linear equation system, in
the case of discretization methods. In this paper a new technique is suggested, which
is based on the symbolic evaluation of the well known Runge-Kutta algorithm.
This technique needs only one integration of the differential equation system and
a solution of the linear equation system representing the boundary conditions at
x = x2.

3. Symbolic Runge-Kutta Method

The well known fourth-order Runge-Kutta method, in our case, can be represented
by the following formulas :

R1i = A(xi )y(xi ) + b(xi ),

R2i = A

(
xi + h

2

)(
y(xi) + R1i h

2

)
+ b

(
xi + h

2

)
,

R3i = A

(
xi + h

2

)(
y(xi) + R2i h

2

)
+ b

(
xi + h

2

)
,

R4i = A(xi + h)(y(xi) + R3i h) + b(xi + h)

and then the new value ofy(x) can be computed as :

yi+1 = y(xi) + (R1i + 2(R2i + R3i ) + R4i )h

6
.

A symbolic system like MATHEMATICA, is able to carry out this algorithm not
only with numbers but also with symbols. It means that the unknown elements
of y(x1) can be considered as unknown symbols. These symbols will appear in
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every evaluatedy value, as well as iny(x2), too. The following MATHEMATICA
procedure can carry out this symbolic computation:

RKSymbolic[x0_,y0_,A_,b_,M_,N_,h_]:=
Module[{R1,R2,R3,R4,y,i,j,ylist},
y=y0;ylist={};
For [j=1,j<=M,j++,

ylist=Append[ylist,0];
ylist[[j]]={{x0,y0[[j]]}};

];
For[i=1,i<=N,i++,
R1=Expand[A[x0+i h].y+b[x0+i*h]];
R2=Expand[A[x0+i h+h/2].(y+R1 h/2)+b[x0+i h+h/2]];
R3=Expand[A[x0+i h+h/2].(y+R2 h/2)+b[x0+i h+h/2]];
R4=Expand[A[x0+i h +h].(y+R3 h)+b[x0+i h+h]];
y=Expand[y+(R1+2 (R2+R3)+R4) h/6];
For[j=1,j<=M,j++,

ylist[[j]]=Append[ylist[[j]],{x0+i h,y[[j]]}];
];

];
{y,ylist}

];

Let us consider a simple illustrative example. The differential equation is :(
∂2

∂x∂x
y(x)

)
−

(
1 − x

5

)
y(x) = x .

The prespecified boundary values are:

y(1) = 2
and

y(3) = −1.

After introducing
y1(x) = y(x)

and

y2(x) = ∂

∂x
y(x),

the matrix form of the differential equation is:

[
∂

∂x
y1(x),

∂

∂x
y2(x)

]
=

[
0 1

1 − 1

5
x 0

]
[y1(x), y2(x)] + [0, x].

Employing MATHEMATICA’s notation :
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A[x_]:={{0,1},{1-1/5 x,0}};
b[x_]:={0,x};
x0=1;
y0={2.,s}

The unknown initial value iss. The order of the systemM = 2. Let us consider
the number of the integration steps asN = 10, so the step size ish = 0.2.

ysol=RKSymbolic[x0,y0,A,b,2,10,0.2];

The result is a list of list data structure containing the corresponding(x, y) pairs,
where they values depend ons.

ysol[[2]][[1]]
{{1,2.},{1.2,2.05533+0.200987 s},{1.4,2.22611+0.407722 s},
{1.6,2.52165+0.625515 s},
{1.8,2.95394+0.859296s}, {2.,3.53729+1.11368s},
{2.2,4.28801+1.39298 s},
{2.4,5.22402+1.70123 s},{2.6,6.36438+2.0421 s},
{2.8,7.72874+2.41888 s},{3.,9.33669+2.8343 s}}

Consequently, we have got a symbolic result using traditional numerical Runge-
Kutta algorithm.

4. Solving Boundary Value Problem

In order to compute the proper value of the unknown initial value,s, the boundary
condition can be applied atx = 3. In our casey1(3) = −1.

eq=ysol[[1]][[1]]==-1
9.33669+2.8343 s==-1

Let us solve this equation numerically, and assign the solution to the symbols:

sol=Solve[eq,s]
{{s -> -3.647}}
s=s/.sol
{-3.647}
s=s[[1]]
-3.647

Then we get the numerical solution for the problem:

ysol[[2]][[1]]
{{1,2.},{1.2,1.32234},{1.4,0.739147},{1.6,0.240397},
{1.8,-0.179911}, {2.,-0.524285},{2.2,-0.792178},
{2.4,-0.980351},{2.6,-1.08317}, {2.8,-1.09291},{3.,-1.}}

The truncation error can be decreased by using smaller step sizeh, and the round
off error can be controlled by the employed number of digits.
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5. Mechanical Analysis of a Liquid Storage Tank

Let us consider a cylindrical liquid storage tank, where the thickness of wall/radius
ratio is small enough to ensure membrane stress state, seeFig. 1. The four differ-

Fig. 1. Liquid storage tank

ential equations describing the deflection,w(x), rotation,α(x), bending moment,
Mb(x), and transverse shear force,FQ(x) distributions along the length of the stor-
age are the following [6]:

∂

∂x
w(x) = α(x),

∂

∂x
α(x) = − Mb(x)

No δ(x)
,

∂

∂x
Mb(x) = FQ(x),

∂

∂x
FQ(x) = Do δ(x)w(x) − γ x,

where

Do = Et0
R2

,

δ(x) = t (x)

t0
and

No = Et3
0

12(1 − ν2)
.

The boundary conditions are:

w(L) = 0,

α(L) = 0,

Mb(0) = 0,

FQ(0) = 0.
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Let us suppose that the thickness of the wall is linear function ofx , namely

t (x) = 1 + x
L

2
.

Introducing variablesyi , i = 1, 2, 3, 4:

y1(x) = w(x),

y2(x) = α(x),

y3(x) = Mb(x),

y4(x) = FQ(x),

one may get:

∂

∂x
y1(x) = y2(x),

∂

∂x
y2(x) = − 8y3(x)

No
(
1 + x

L

)3 ,

∂

∂x
y3(x) = y4(x),

∂

∂x
y4(x) = Do

(
1 + x

L

)
y1(x)

2
− γ x

and

y1(L) = 0,

y2(L) = 0,

y3(0) = 0,

y4(0) = 0.

The matrix form of the system is:[
∂

∂x
y1(x),

∂

∂x
y2(x),

∂

∂x
y3(x),

∂

∂x
y4(x)

]
=

=




0 1 0 0
0 0 −8 1

No(1+ x
L )

3 0

0 0 0 1
1
2 Do

(
1 + x

L

)
0 0 0


 [y1, y2, y3, y4] + [0, 0, 0,−gρx].

Let us consider the following data:
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R=5.
L=1.5
E=4000000000.
t0=0.1
ρ =1000.
ν =1/6
g=9.81

then

A[x_] := {{0, 1, 0, 0}, {0, 0, -8/(No(1 + x/L)∧3), 0},
{0,0, 0, 1}, {D0/2(1 + x/L), 0, 0, 0}}

b[x_]:={0,0,0,-g ρ x}
x0=0
y0={s1,s2,0,0}
m=4
n=100

wheres1 ands2 are the unknown initial values.

ysol=RKSymbolic[x0,y0,A,b,m,n,L/n];

Now we have a linear equation system for the unknown values

eq1=ysol[[1]][[1]]==0
0.00299378-8.41784 s1-1.59483 s2==0

eq2=ysol[[1]][[2]]==0
0.00656905-13.3954 s1-6.51855 s2==0

The solutions are

sol=Solve[{eq1,eq2},{s1,s2}]
{{s1 -> 0.000269739,s2 -> 0.000453442 }}

We assign these values to the symbolic solution

s={s1,s2}/.sol
{{0.000269739,0.000453442}}

Let us display the different curves of the mechanical analysis, evaluated with
MATHEMATICA (see Fig. 2:

6. Conclusions

The extended form of the slope retention technique can be applied to solve linear
boundary value problems for non-autonomous linear differential equation systems.
To carry out this application, symbolic Runge-Kutta technique can be employed fol-
lowed by numerical solution of a linear algebraic system representing the boundary
conditions at the end of the integration interval.
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Fig. 2. Graphical representation of the mechanical analysis

Although the method needs only one integration pass, because of symboli-
cal operations, the computation speed will slow down as compared with the pure
numerical integration. In the future, the speed of symbolic calculation could be
increased considerably through software and hardware developments similar to
graphical operations.

Both examples demonstrated that the proposed method could be useful espe-
cially in the case of systems with many unknown initial conditions.
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