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Abstract

A new approach is presented for the analysis of structures with time-dependent loading based on
mathematical programming in the function spaceL2. The solution occurred in the vector space. In
this paper the computational model of the structures with damping is detailed by the use of internal
variables. The energy dissipation is taken into account. A comparison between the conventional and
this new model can be read.
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1. Introduction

In structural mechanics and in engineering practice the time-dependent loading
plays an important role and mathematically it is necessary to apply complex knowl-
edge. Our purpose is to analyze the effect of the time-dependent loading and to
take the energy dissipation into consideration in the case of damping. The presented
models include the theoretical results of the earlier studies where the damping ef-
fect was neglected. Furthermore we will point out the limitation of the classic
mechanical models.

In Chapter 2 the mathematical background is discussed shortly. The non-
equilibrium state and the properties of the internal variables are dealt with in Chap-
ter 3. The model of nonholonomous system of time-dependent loading of the
structures is presented and the inertia forces are taken into consideration as well
in Chapter 4. The damping models can be found later in this chapter. At first
the Coulomb-type friction model is discussed and later the application of internal
variables are detailed in the case of damping. This paper is closed by a comparison
of the classic and the newly introduced model in Chapter 5.
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2. Mathematical Background

The structure is discretized in the usual way. The state variables depend on the time
continuously(u(x, t)) and they are approximated by:

u(x, t) ≈
n∑

i=1

x(t) · N(ξ), (1)

whereN(ξ)denotes the function system of approximation depending on the position
vector(ξ) and the coefficientsx(t) depend on time. Within the context of the small
displacement theory the position vector does not depend on time. The state variables
are given in both local and global coordinate systems as vector–vector functions
which elements depend on time. These elements are described in a function space,
which is determined on the local coordinate axes. It means that the state variables
can be given as a vector with function elements on the local coordinate axes in a
function subspace. The state variables(x(t)) can be expressed by the generalized
Fourier series according to the basis of the function subspace:

x�(t) =
s∑

j=1

[ ∞∑
i=1

αi j Pi (t)

]
e�

j , αi j ∈ �, Pi (t) ∈ L2, t ∈ [t1, t2], (2)

where e� ( j = 1, . . . , s): j -th unit vector of the local coordinate system or-
dered to the�-th node,

s: number of degrees of freedom at the nodes,
Pi(t): i-th element of basis of the function subspace

(orthonormal polynomial system in the interval
[t1, t2]),.

The state variables are described in every node in the following space:F =
L2

1 × L2
2 × . . . × L2

s and on the whole structure

Fn = (L2
2 × L2

3 × . . . × L2
s )

n, (3)

wheren is the number of the nodes.
To describe the process a nonlinear mathematical programming problem is

created in spaceFn where the variables are Fourier coefficientsαi j . It has been
proved [9] that the Fritz-John theorem and Wolfe’s duality [1],[3] are valid in space
Fn.

The solution of the nonlinear programming problem is a stationary curve.
The limitation of the presented model is:

• at least one continuous component has to be assumed,
• the small displacement theory is valid,
• stability problems are neglected.

For the numerical solution it is necessary to transform the problem into the
�2 space where the Fritz-John theorem is valid [3] and the results are mapped back
to the spaceFn.
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3. Non-Equilibrium State

In a real system there are different processes at the same time. The system can
reach its equilibrium only in limit state and very often the local equilibrium states
are not stationary. Due to interactions such dissipative changes are created in
the microstructure of the material of the structures which have influence on the
macroscopic behaviour of the phenomena. In the case of macroscopic analysis of the
structures it is not possible to take these microstructural changes into consideration
at micro level. Even if we have not enough information and deep knowledge of
the processes in the phenomena of the structure far from the equilibrium state, the
mathematical description of the process can be performed by the use of internal
variables.

The structure is in non-equilibrium state between the local equilibrium states
and the non-equilibrium state can be described by the use of internal variables. The
definition of the internal variables is described very clearly by KESTIN [4] and this
definition can be used generally. Concerning the thermodynamical state variables
we distinguish between external and internal variables. External state variables like
stress or temperature are measurable and controllable. Internal state variables are
measurable but not separately controllable. Their changes depend on the history of
external variables.

The equilibrium equations are inequalities in the case of non-equilibrium state
and the equilibrium equations can be defined by the use of internal variables and
state variables.

Properties of the internal variables are [5] :

• the value of the internal variable is zero in the case of local equilibrium states,
• generally they are symmetrical tensors and their order depends on the prob-

lem,
• the internal variables are of deformation type (extensive internal variables),
• as a generalized force an intensive variable (ξ ) can be created to each defor-

mation type internal variable([�]) as a pair and the dissipative energy can
be expressed by the following formula:

Ẽd(t) = T · ξ · [�] =
n∑

i=1

T (ri , t)
s∑

j=1

f∑
k=1

f∑
v=1

ξv(r
j

i , t)Lvkξk(r
j

i , t). (4)

The change in time of the above formula 4 can be written as follows:

dẼd

dt
= T ξ

d · [�]
dt

. (5)

Such a connection is possible with the neighborhood which can transfer the gen-
eralized force(ξ) and these forces which belong to the deformation type internal
variables can be taken into consideration in the equilibrium equations.
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Neglecting the generalized forces (ξ ) the system reaches such a state which

is proportional to velocity
d[�]k(r j

i ,t)
dt and any limitation exists in it according to the

k-th internal variable component.
Each process can be determined by the instationarity relaxation time of the

deformation type internal variables[�].
A process can be modelled by the use of one or more internal variables de-

pending on type of the problem. If several internal variables are used which have
different instationary relaxation time, the local equilibrium states can exist in the
subset of internal variables having the same instationary relaxation time.

An intensive internal variable such as the pair of the deformation type internal
variable exists in the equilibrium equations if any part of the structure is in plastic
state. The value of the intensive internal variable should be bounded. If the intensive
internal variable reaches this given limit, the plastic region of that plastic point
involves the total cross-section and irreversible plastic deformations occur.

4. Analytical Model for Time-Dependent Loading

In the dynamic problem the strain and the kinetic energies are taken into consider-
ation. First the problem without damping is discussed. The continuous functions
of displacements and stresses can be determined by the help of mathematical tools
(Chapter 2), it means the resonance cannot be handled in this way. In the mathemat-
ical programming model bounds are given for the stresses to cut the non continuous
part of the stress functions.

It is assumed that

• the structure is in equilibrium state at the beginning of loading,

• the external load is decomposed in two parts, the ratio of them is unknown
and it is changed during the process:

1. the first part causes elastic deformations,
2. the second part of the external load is moving the structure.

• Resonance is not examined. The bound values are given for stresses, if this
limit is reached, the process reaches the resonance state.

4.1. Dynamic Problems without Damping

The coenergy minimum theorem is used to write the mathematical primal problem
[5]. The strain and the kinetic energies are taken into consideration in the form
deducted by [6]. For the sake of simplicity linear elastic material is assumed. The
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transfer matrix is given in the global coordinate system.

min :
{

G∑
k=1

ρ

(
1

2
σ ∗

e (t)[F]σe(t)+

+1

2


 t∫

0

(σd (τ )) dτ



∗

×

×[M]−1


 t∫

0

(σd (τ )) dτ






 ,

(coenergy function) (6.a)

−Pe(t) − Pd(t) + P(t) = 0,
(decomposition
of the external load)

(6.b)

〈ρ〉∗[B]∗σe(t) + Pe(t) = 0,
(equilibrium equations
for elastic part)

(6.c)

〈ρ〉∗[φ]∗
t∫

0

σd (τ ) dτ+

+
t∫

0

Pd (τ ) dτ = 0,

(equilibrium equations
for dynamic part)

(6.d)

σe(t) + σd(t) − σL ≤ 0, (limit for stresses) (6.e)

u j
i

∣∣
SI Ii

− ˆ̂u j
i

∣∣
SI Ii

= 0, i = 1, . . . , SI In ,

j = 1, . . . , s,

P
j
i

∣∣
SIi

− ˆ̂P
j

i

∣∣
SIi

= 0, i = 1, . . . , SIn ,

j = 1, . . . , z,

(boundary conditions) (6.f)

σe(t0) + σd (t0) = 0 (initial conditions) (6.g)

(t, σe(t), σd(t), Pe(t), Pd(t)) ∈ [t1, t2] × �4mGz, ∀t, t ∈ [t1, t2],
whereσL is a given stress limit, the indexese andd show the stresses originated
from the elastic or dynamic parts of the external load, respectively,[B] and[φ] are
the transfer matrices of the stresses originated from the elastic or dynamic parts.
The inequalities cut the resonance state.G is the number of the Gaussian points,m
denotes the number of elements andz is the stress-freedom of the Gaussian points.

The unknowns are:σe(t), σd(t), Pe(t), Pd(t).
The dual problem can be formed by the help of Stieltjes derivatives [7]. The

dual problem expresses the energy minimum theorem and it is proved by the equiv-
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alence of the results among the primal – dual problems and the classic solutions
[6].

The dual problem is

min :
{

G∑
k=1

ρ

(
1

2
σ ∗

e (t)[F]σe(t)+

+1

2


 t∫

0

(σd (τ )) dτ



∗

×

×[M]−1


 t∫

0

(σd (τ )) dτ






−

 t∫

0

Pd(τ ) dτ



∗

v(t)−

− (Pe(t))∗ u(t)

}
,

(energy function) (7.a)

[F]σe(t) + [B]u(t) + y(t) = 0,
(compatibility equations
for displacements)

(7.b)

[M]−1


 t∫

0

(σd (τ )) dτ


+

+[�]v(t) + y(t) = 0,

(compatibility equations for
velocities of the displacements)

(7.c)

u(t)∗ = v(t)∗
[

Pd(t)

Ṗ j
d (t)

, j = 1, . . . , ns

]
,

(the connection between the
displacements and velocities
of the displacements)

(7.d)

(σe(t) + σd (t) − σL)∗y(t) = 0, (switch) (7.e)

y(t) ≥ 0, (sign restriction) (7.f)

u j
i

∣∣
SI Ii

− ˆ̂u j
i

∣∣
SI Ii

= 0, i = 1, . . . , SI In ,

j = 1, . . . , s,

P
j
i

∣∣
SIi

− ˆ̂P
j

i

∣∣
SIi

= 0, i = 1, . . . , SIn ,

j = 1, . . . , z,

(boundary conditions) (7.g)

σe(t0) + σd (t0) = 0, (initial conditions) (7.h)

(t, σe(t), σd(t), Pe(t), Pd(t), u(t), v(t), y(t)) ∈ [t1, t2] × �5mzG+3ns ,

∀t, t ∈ [t1, t2],
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Fig. 1. The direction of the Burger’s vectors

The unknowns are:

σe(t), σd(t), Pe(t), Pd(t), u(t), v(t), y(t),

whereu(t) andv(t) are the dual functions ordered to the equilibrium equations for
elastic part and equilibrium equations for dynamic part, respectively,y(t) are the
dual functions of stress inequalities. Their values have to be zero if the resonance
does not appear. The number of the nodes is denoted byn ands is the displacement-
freedom of the nodes.

In the case of free motion the velocities are the derivative functions of the
displacements functions. Because of the boundary conditions the structure has
no free motion, the connections between the velocities and the displacements are
presented by the third equation system.

4.2. Dynamical Problems with Damping

First the damping is taken into consideration as an internal friction according to the
Coulomb law.

4.2.1. Application of the Coulomb-type friction model

In that computational model the damping is taken into consideration as an inter-
nal Coulomb-type friction at micro-level of the phenomena. The direction of the
Burger’s vector is determined by the microstructure of the phenomena [5]. Using
this direction and knowing the internal friction angle it can be determined whether
the internal friction exists or not and damping occurs or not.
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min :
{(

1

2
σ ∗

e (t)〈ρ〉[F]σe(t)+

+1

2


 t∫

0

σd (τ ) dτ



∗

〈ρ〉[M]−1


 t∫

0

σd (τ ) dτ






−
R R∑
k=1

(
1

2
σ s

e (t)∗〈ρ〉[F]σ s
e (t)

)
−

−
R R∑
k=1

1

2




 t∫

0

σd(τ ) dτ



∗

〈ρ〉[M]−1×

×

 t∫

0

σd (τ ) dτ






 ,

(coenergy function) (8.a)

where

σ s
e (t) =

R R∑
kk=1

µ
((

(σe(t)) b⊥
k

)
⊗ bk−

−(σe(t))bk) ,
t∫

0

σ s
d (τ ) dτ =

R R∑
kk=1

µ




 t∫

0

σd (τ )b⊥
k dτ


⊗ bk−

−
t∫

0

σd (τ )bk dτ


 ,

−Pe(t) − Pd(t) + P(t) = 0,
(decomposition of the
external load)

(8.b)

[B]∗〈ρ〉σe(t) − [B]∗〈ρ〉σ s
e (t) + Pe(t) = 0,

(equilibrium equations
elastic part)

(8.c)

[�]∗〈ρ〉
t∫

0

σd (τ ) dτ−

−[�]∗〈ρ〉
t∫

0

σd (τ ) dτ +
t∫

0

Pd (τ ) dτ = 0,

(equilibrium equations
for dynamic part)

(8.d)

u j
i

∣∣
SI Ii

− ˆ̂u j
i

∣∣
SI Ii

= 0, i = 1, . . . , SI In ,

j = 1, . . . , s,

P
j
i

∣∣
SIi

− ˆ̂P
j

i

∣∣
SIi

= 0, i = 1, . . . , SIn ,

j = 1, . . . , z,

(boundary conditions) (8.e)
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σe(t) + σd(t) − σL ≤ 0 (limit for stresses) (8.f)

σe(t0) + σd (t0) = 0 (initial condition) (8.g)

(t, σe(t), σd(t), Pe(t), Pd (t)) ∈ [t1, t2] × G × G × F × F, ∀t, t ∈ [t1, t2].

The dual problem is:

min :
{(

1

2
σ ∗

e (t)〈ρ〉[F]σe(t)+

+1

2


 t∫

0

σd (τ ) dτ



∗

〈ρ〉[M]−1


 t∫

0

σd (τ ) dτ






−
R R∑
k=1

(
1

2
σ s

e (t)∗〈ρ〉[F]σ s
e (t)

)

−

 t∫

0

Pd(τ ) dτ



∗

v(t) − (Pe(t))∗u(t)

−
R R∑
k=1

1

2




 t∫

0

σ s
d (τ ) dτ



∗

〈ρ〉[M]−1×

×

 t∫

0

σ s
d (τ ) dτ






 ,

(energy function) (9.a)

where

σ s
e (t) =

R R∑
kk=1

µ
((

(σe(t)) b⊥
k

)
⊗ bk−

−(σe(t))bk) ,
t∫

0

σ s
d (τ ) dτ =

R R∑
kk=1

µ




 t∫

0

σd(τ )b⊥
k dτ


⊗ bk−

−
t∫

0

σd (τ )bk dτ


 ,

〈ρ〉[F]σe(t) + [B]u(t)−
−〈ρ〉[F]σ s

e (t) − [B]us(t) + y(t) = 0,

(compatibility
equations
for displacements)

(9.b)
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〈ρ〉[M]−1


 t∫

0

σd(τ ) dτ


+ 〈ρ〉[�]v(t)−

〈ρ〉[M]−1


 t∫

0

σ s
d (τ ) dτ


− [�]vs(t)+

+y(t) = 0,

(compatibility equations
for velocities
of the displacements)

(9.c)

u(t) = v(t)∗
[

Pd(t)

Ṗ j
d (t)

, j = 1, . . . , ns

]
,

(connection between
the displacements
and velocities
of the displacements)

(9.d)

(σe(t) + σd (t) − σL)∗y(t) = 0, (switch) (9.e)

y(t) ≥ 0, (sign restriction) (9.f)

ˆ̂P
j

i

∣∣
SIi

− P
j
i

∣∣
SIi

= 0, i = 1, . . . , SIn ,

j = 1, . . . , s,

u j
i

∣∣
SI Ii

− ˆ̂u j
i

∣∣
SI Ii

= 0, i = 1, . . . , SI In ,

j = 1, . . . , z,

(boundary conditions) (9.g)

σe(t0) + σd (t0) = 0, (initial conditions) (9.h)

(t, σe(t), σd(t), Pe(t), Pd(t), u(t), v(t), y(t)) ∈ [t1, t2] × �2×(mzG)+4×(ns),

∀t, t ∈ [t1, t2].
In the compatibility equations the effect of internal friction has appeared.

At the optimal function both the primal and the dual constraints are valid.
Assuming the initial and boundary conditions are satisfied and the stress limit is
neglected, the complementary problem is:

−Pe(t) − Pd(t) + P(t) = 0,

[B]∗〈ρ〉σe(t) − [B]∗〈ρ〉σ s
e (t) + Pe(t) = 0,

[�]∗〈ρ〉
t∫

0

σd(τ ) dτ − [�]∗〈ρ〉
t∫

0

σ s
d (τ ) dτ +

t∫
0

Pd(τ ) dτ = 0,

[F]σe(t) + [B]u(t) − 〈ρ〉[F]σ s
e (t) − [B]us(t) = 0,
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[M]−1


 t∫

0

σd(τ ) dτ


 + [�]v(t) − [M]−1


 t∫

0

σ s
d (τ ) dτ


− [�]vs(t) = 0 .

Expressing the stresses

σe(t) = −[F]−1[B]u(t) + [F]−1[F]σ s
e (t) + [F]−1[B]us(t),

t∫
0

σd(τ ) dτ = −[M][�]v(t) + [E]

 t∫

0

σ s
d (τ ) dτ


 + [M][�]vs(t)

and substituting into the complementary problem:

−〈ρ〉[B]∗[F]−1[B]u(t) − 〈ρ〉[B]∗[F]−1[B]
[

Pd(t)

Ṗ j
d (t)

, j = 1, . . . , ns

]
v(t)+

+〈ρ〉[�]∗[M][�]a(t) − [�]∗[M][�]

v(t)

[
Pd(t)

Ṗ j
d (t)

, j = 1, . . . , ns

]−1

+

+u∗(t)

[
Pd(t)

Ṗ j
d (t)

, j = 1, . . . , ns

]−1

 = p(t).

Considering that[M]ü j (t)u j (t) = 1
2[M]u̇ j (t)2, one can write ü j (t) =

= 1
2[M]

[
u̇ j (t)2

u j (t)
, j = 1, . . . , ns

]
, and u(t) = u̇(t)∗

[
Pd (t)

Ṗ j
d (t)

, j = 1, . . . , ns

]
. By

the use of these two expressions the damping matrix can be written in the following
form:

[C] = −〈ρ〉[B]∗[F]−1[B]
[

Pd(t)

Ṗ j
d (t)

, j = 1, . . . , ns

]
−

− [�]∗[M][�]
[

Pd(t)

Ṗ j
d (t)

, j = 1, . . . , ns

]
. (10)

It can be seen that the damping matrix is the linear combination of the stiffness matrix
and the mass matrix, as it is supposed in the literature [10]. The coefficients of that
linear combination depend on the external dynamical forces and their derivatives.
The external force can be decomposed into dynamical force and the ‘elastic’ force.
The second one causes only elastic deformations. The proportion of these two
forces changes in time and they are influenced by the geometry of the structure
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and the boundary conditions. This is the reason why the validity of the damping
matrices determined by experience is rather narrow.

It is easy to create the well-known form of complementary problem of damp-
ing. The equation can be written in the following form:

〈ρ〉[�]∗[M][�]ü(t) + [C]u̇(t) + 〈ρ〉[B]∗[F][B]u(t) = p(t), (11)

where the stress limit and the boundary conditions are not taken into consideration,
yet.

4.2.2. Application of internal variables

If the damping is not connected to Coulomb type internal friction but it is expressed
by the internal properties of the phenomena, matrices[A] and[L] should be created
by experience and they contain material coefficients belonging to the part of elas-
tic and kinematic damping, respectively. A damping condition should be created
what involves a stress limit. If the stresses reach this limit the damping is started.
Furthermore an additional equation is needed able to control the existence of the
damping. For the sake of simplicity the temperatureT is taken into consideration
with a given value which means that the effect of the temperature is neglected. The
internal variables are signed byξ(t). The primal problem can be written in the
following form:

min :
{(

1

2
σ ∗

e (t)〈ρ〉[F]σe(t)+

+1

2


 t∫

0

σd (τ ) dτ



∗

〈ρ〉[M]−1


 t∫

0

σd (τ ) dτ




+T ξ∗
e (t)〈ρ〉[A]ξe(t)+

+T


 t∫

0

ξd(τ ) dτ



∗

〈ρ〉[L]

 t∫

0

ξd (τ ) dτ






 ,

(coenergy function) (12.a)

−Pe(t) − Pd(t) + P(t) = 0,
(decomposition of the
external load)

(12.b)

f(σe, σd , material coefficients)≤ 0, (damping conditions) (12.c)

f(σe, σd , material coefficients)ξ(t) = 0, (control equations) (12.d)

〈ρ〉[B]∗σe(t) + 〈ρ〉T [B]∗ξe(t)+
+Pe(t) = 0,

(equilibrium equations
for elastic part)

(12.e)
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〈ρ〉[�]∗
t∫

0

σd (τ ) dτ + 〈ρ〉T [�]∗
t∫

0

ξd (τ ) dτ

+
t∫

0

Pd (τ ) dτ = 0,

(equilibrium equations
for dynamic part)

(12.f)

σe(t) + σd(t) − σL ≤ 0, (stress limit) (12.g)
ˆ̂P

j

i

∣∣
SIi

− P
j
i

∣∣
SIi

= 0, i = 1, . . . , SIn ,

j = 1, . . . , s,

u j
i

∣∣
SI Ii

− ˆ̂u j
i

∣∣
SI Ii

= 0, i = 1, . . . , SI In ,

j = 1, . . . , z,

(boundary conditions) (12.h)

u(t)
∣∣
SI I

= 0, P(t)
∣∣
SI

= 0,

σe(t0) + σd (t0) = 0,
(initial conditions) (12.i)

(t, σe(t), σd(t), ξe(t), ξd(t), Pe(t), Pd(t)) ∈ [t1, t2] × �6mzG,

∀t, t ∈ [t1, t2].
According to the Wolf’s dual theory the dual problem can be written in the following
way:

min :
{

1

2

(
σ ∗

e (t)〈ρ〉[F]σe(t)+

+

 t∫

0

σd(τ ) dτ



∗

〈ρ〉[M]−1×

×

 t∫

0

σd (τ ) dτ


+ T ξ∗

e (t)〈ρ〉[A]ξe(t)+

+T


 t∫

0

ξd (τ ) dτ



∗

〈ρ〉[L]

 t∫

0

ξd (τ ) dτ




−

−

 t∫

0

Pd(τ ) dτ



∗

v(t) − (Pe(t))∗u(t)


 ,

(energy function) (13.a)

〈ρ〉[F]σe(t) + [B]u(t) + y(t) = 0,
(compatibility equations
of the displacements)

(13.b)

〈ρ〉[M]−1


 t∫

0

(σd (τ )) dτ


+

+[�]v(t) + y(t) = 0,

(compatibility equations
of the displacement
velocities)

(13.c)
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T 〈ρ〉[A]ξe(t) + T 〈ρ〉[L]ξd (t)

ξ̇d (t)
+

+[B]u(t) + T 〈ρ〉[�]∗ ξd (t)

ξ̇d (t)
v(t) = 0,

(compatibility equations
of the internal variables)

(13.d)

u(t) = v(t)∗
[

Pd(t)

Ṗ j
d (t)

, j = 1, . . . , ns

]
,

(connection between the
displacements and the
displacement velocities)

(13.e)

f(σe, σd , material coefficients)λ(t) = 0, (control equations) (13.f)

(σe(t) + σd (t) − σL)∗y(t) = 0,

λ(t) ≥ 0, y(t) ≥ 0,
(sign constraints) (13.g)

ˆ̂P
j

i

∣∣
SIi

− P
j
i

∣∣
SIi

= 0, i = 1, . . . , SIn ,

j = 1, . . . , s,

u j
i

∣∣
SI Ii

− ˆ̂u j
i

∣∣
SI Ii

= 0, i = 1, . . . , SI In ,

j = 1, . . . , z,

(boundary conditions) (13.h)

σe(t0) + σd (t0) = 0, (initial conditions) (13.i)

(t, σe(t), σd(t), ξe(t), ξd(t), Pe(t), Pd(t), u(t), v(t), y(t), λ(t)) ∈

∈ [t1, t2] × �6mzG+4ns , ∀t, t ∈ [t1, t2],

whereλ(t) is vector of the dual variables connected to the damping.

5. Conclusion

Comparing both models created by the use of Coulomb type internal friction and
the use of internal variables we can write the following:
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Coulomb type internal friction internal variables

• before the application of the model
one can decide whether damping
exists or not,

• the friction condition controls
when damping exists

• the displacements due to the inter-
nal friction are determined by the
Coulomb type model,

• the direction of displacements due
to the damping is determined by
the direction of the gradient of the
friction condition,

• Coulomb type model is used in the
expressions of energies,

• in the expression of energies the
formula for damping is given in
general form,

• using this model the dissipative en-
ergy cannot be determined,

• the dissipative energy can be deter-
mined by the use of internal vari-
ables,

• Coulomb type model can be de-
rived as a special case of the model
created by the use of internal vari-
ables,

• the different types of damping
models can be created as special
cases,

• the number of the unknowns are
identical with the unknowns of
model without damping.

• the number of the unknowns is sig-
nificantly higher.
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