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Abstract

This study deals with the application of the active control of high-rise buildings with composite load-
bearing structures. After introducing it, the theoretical solution is described, and then a numerical
example shows the practical application of the method.
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1. Preface

Actively controlled structures are a new strain of structural system and their appli-
cation plays a dominant part of nowadays vibration control of high-rise buildings.
The study deals with the problem of active control in the case of composite load-
bearing structures. It means that the building to be analyzed consists of horizontal
floors and supporting (load-bearing) vertical walls, columns, frameworks, or some
combination. If vertical structural load-bearing members are other than bisymmet-
rical, the storeys vibrate in a ‘coupled’ mode (simultaneous torsional and bending
vibrations) in their plane. In the following the study gives theoretical and practical
instructions for the application of active control of the mentioned buildings.

2. The Differential Equation System of Motion

Complying with linear-elastic system with viscous damping, using a co-ordinate
systemx, y, z in the same direction for any mass, and with origins along the same
vertical line, the matrix differential equation of motion becomes [1], [2]:

Ad̈ + Cȧ + Kd = Du(t)+ E p(t). (1)

Accordingly, terms in the matrix differential equation system (1), properly parti-
tioned, are hypermatrices:

A =
[

M O −YsM
O M XsM

−YsM XsM I0

]
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Fig. 1.

M = 〈m1,m2, . . . ,mn〉 diagonal matrix including masses concentrated in each
storey plane;

I0 = 〈I01, I02, . . . , I0n〉 diagonal matrix including mass moments of inertia
of masses concentrated in each storey plane, referred to the origin of the coordinate

system;
Ys = 〈ys

1, ys
2, . . . , ys

n〉
Xs = 〈xs

1, xs
2, . . . , xs

n〉
}

diagonal matrices including mass centroid

coordinates (seeFig. 1).
Element ofK andC are the stiffnes and damping matrices,

d =
[

X
Y
ϕ

]
hypervector of 3n dimensions, describing displacements:

X =




x1
x2
...

xn


 y =




y1
y2
...

yn


 ϕ =



ϕ1
ϕ2
...
ϕn


 displacement ordinate;

p(t) =
[

px(t)
py(t)
m(t)

]
and px(t) =




p1x (t)
p2x (t)
...

pnx (t)


 etc.

representing applied load or external excitation at the originate of the coordinate
system, andu(t) is them dimensional control force vector. Then × m matrix D
andn ×n matrixE are location matrices which define locations of the control force
and exitations, and 3 Control Algorithms, respectively.
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To facilitate discussions, let us useEq. (1) to represent the structure under
consideration which, using the state – place representation, can be written in the
form [3]; [4]:

ż(t) = Lz(t)+ Bu(t)+ Hp(t), z(o) = zo, (2)

where

z(t) =
[

q(t)
q̇(t)

]
is the 2n dimensional state hypervector

L =
[

0 I
−A−1K −A−1C

]
(3)

is the 2n × 2n system hypermatrix and

B =
[

0
A−1D

]
and H =

[
I

A−1E

]
(4)

are 2n×m and 2n×n location hypermatrices specifying the locations of controllers
and external exitations in the state-space, respectively.0 andI denote the null matrix
and the identity matrix of appropriate dimensions, respectively.

When the control vector is regulated by the state vector one has

λ̇ = LTλ+ 2Qz, (5)
u = −R−1BTλ (6)

and
λ(t) = P(t)z(t) (Closed-loop control). (7)

The matricesQ and IR referred to as weighting matrices, whose magnitudes are
assigned according to the relative importance attached to the state variables and to
the control forces in the minimization procedure [3], [4].

The unknown matrixP(t) can be determined by substitutingEq. (7) into
Eqs. (2,6,7). One can show that it is satisfied ifp(t) is zero:

P(t)+ P(t)L − 1

2
P(t)BR−1BT P(t)+ 2Q = 0. (8)

The optimal control theory,Eq. (8) is referred to as the matrix Riccati equation and
P(t) is the Riccati matrix. Methods for solving the matrix Riccati equation are well
documented in the literature [5], [6].

The substitution ofEq. (7) into Eq. (6) shows that the control vectoru(t) is
linear inz(t). The linear optimal control law is

u(t) = Gz(t)− 1

2
R−1BT P(t)z(t) (9)

where
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Fig. 2.

G(t) = 1

2
R−1BT P(t).

Upon substitutingEq. (9) into Eq. (2) the behaviour of the optimally controlled
structure is described by

ż(t) = (L + BG)z(t)+ Hp(t) z(o) = zo. (10)

3. Example

Most of the environmental loads, such as wind and earthquakes, to which civil
engineering structures are subjected are random in nature. Hence, the analysis of the
behaviour of an actively controlled as well as an uncontrolled structure is based on
the theory of random vibrations, we will use the following example to demonstrate
some steps involved in such an analysis using [7]. By using a two degree of freedom
structural system (contemporary elongation and torsion), relative merits of several
different control configurations can be examined in an elementary way. The reader
is referred to [8], [9] for a review of some basic principles in random vibration
analysis.

Consider a one-storey building with the storey layout shown inFig. 2, which
is excited by an earthquake-type ground accelerationẌo(t). In this example,̈Xo(t)
is modelled by a nonstationary Gaussian shot noise with

Ẍo(t) = ψ(t)W (t) (11)

in which W (t) is a stationary zero-mean Gaussian white noise andψ(t) is a deter-
ministic modulating function of the form

ψ(t) = g(eαt − eβt )2h(t),

whereh(t) is the unit step function andg, α andβ are constants. Accordingly the
mean ofẌo(t) is zero and its covariance is

E[Ẍo(t)Ẍo(s)] = g2(e−αt − e−βt)2h(t)Dδ(t − s),
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Fig. 3.

whereD is the power spectral density ofW (t). For numerical calculations we will
set

α = 0.25 s−1, β = 0.63 s−1, g = 3.00 and D = 0.04 m2s−4.

Since the excitation is random, the structural response is random and the control as
determined fromEq. (9) is also random. (These random quantities will be written
in capital letters.)

The state-space equation in this case has the form

ż(t) = Lz(t)+ Bu(t)+ hẌ0(t), z(0) = 0,

with

z(t) =



X (t)
ϕ(t)
X (t)
ϕ̇(t)


 ; h =




0
0

−1
0


 , u(t) =

[
u(t)

u(t)d = M(t)

]
.

X (t) andϕ(t) is the displacement of the centroid inx direction andϕ the torsion,
respectively. For numerical computations, the following structural parameter values
are used:m = 4000 kg,

I0 = 1000 kg m2 = g m2, ξ = C

Ckr
= 0 · 0.2,

ω01 =
(

kx

m

)2

= 2Hz, ω02 =
(

kϕ
I0

)2

= 1.5Hz.
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Fig. 4.

Finally the weighting matrices are assumed.

Q =



1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 R = γ

[
1 0
0 1

]
,

whereγ is a parameter representing the relative importance between the covariances
of the response and those of the control forces. With the optimal control determined
fromEq. (9), the mean of the controlled structural response is zero, and its covariance
matrix att = s, defined by

Rzz(t) = E
[
(z(t)zT (t)

]
satisfied the first order matrix differential equation [6]

Ṙzz(t) = (L + BG)Rzz(t)+ Rzz(t)(L + BG)T + 2hRẌ0 Ẍ0
(t)hT

with initial condition
Rzz(o) = 0.

The covariance matrix of the control vector att = s can be obtained fromEq. (9)
as

Rnn(t) = GRzz(t)GT . (12)

The variance,σ2
x (t), of the relative displacement of the centroid between the foun-

dation and the floor under optimal control is plotted inFig. 3 if γ = 10−10. The
case is also plotted inFig. 3 if σ2

x (t) is without control. The varianceσ2
ϕ (t) of the

relative torsion between the foundation and the floor is shown inFig. 4 together
with the no control case.
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