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Abstract

The main strength of GIS (Geographical Information Systems) is the common analysis of compound
spatial and attributive data. These latter are collected by samples. The values of the collected type of
data can be expanded to the sites where no samples are available using interpolation methods. The
interpolation can be performed either in the phase of data production or when the data are used for
spatial analysis. In the second case the interpolation is a GIS function.

A brief review of interpolation methods is given with emphasis on the applicability of the
particular method to one of the cases mentioned above.

The possibilities of two new methods – thewavelet transformation and the artificial neural
network (ANN) approach are also discussed.

Especial attention is given to the possibilities of artificial neural networks in model building
and interpolation.

Connection between the data model and ANN approach is examined. In context of ANN the
links between interpolation, classification and GIS functions are explained.

As conclusions, several statements about GIS functions and modeling are given.

Keywords: GIS, GIS functionality, GIS tools, spatial data models, data production, interpolation,
classification, artificial neural networks.

Introduction

In the paper (SÁRKÖZY, 1999) analyzing the recent situation and possible further
development trends of GIS in context of the systematization of GIS functions I have
recommended the more exact separation of data production from data analysis, that
is the functions of data preparation from standard GIS functions.

However, the functions for expanding and deepening the target space can be
used in both phases of spatial informatics.

At this point I should refer to my recommendation related to a new data
model representing the natural phenomena (SÁRKÖZY, 1994). This data model
called ‘function field’ assumes the determination of functions describing the phe-
nomena. If the input data are compiled as functions and the GIS software can handle
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this model, then the basic GIS analysis functions do not have to perform further
interpolations.

That is from point of view of system principles the belonging of interpolation
functions either to the data production functions or to the GIS analysis functions
depends also on the data model of the particular GIS.

However, in both cases the importance of interpolation methods is contin-
uously growing especially by connecting the GIS with some kind of modeling
software.

1. The Role of Interpolation

More and more phenomena can be measured and might be involved in the spa-
tial analysis. Among others we can mention the precipitation, temperature, soil
parameters, ground water characteristics, pollution sources, vegetation data.

We are not able to measure the values of the particular phenomenon in all
points of the sphere, but only in sample points. The interpolation gives us values in
such points where we have no measurements.

The goodness of interpolation can be characterized by the discrepancy of
the interpolated value from the true value. Because the true value is not known in
general, we can select some measured points for testing the interpolation procedure.

In the stage of data production we can calculate the values of a particular
phenomenon in predefined spots using interpolation procedures. For example if
we want to deliver the data in a regular grid, but the samples are measured in
scattered points we have to calculate the values of grid points from the samples
using interpolation procedures.

In the phase of analysis we face another problem. We can have the different
attributive data in different (regular) spots. For example we have two phenomena:
temperature and precipitation (average and agglomerated for a month, respectively),
given in two not coinciding grids. To perform the interaction computations we
should transform the data to a common grid (to a common co-ordinate system) with
the same discrete steps.

Seemingly similar tasks of interpolation are used for the creation of area ob-
jects representing a particular interval of the data in question. The construction of
iso-lines or iso-surfaces in 3 dimensional case, however, aims to create and visu-
alize aesthetic features and not too accurate ones (because of the generalisation of
individual function values into interval membership, that is because of the artificial
degradation of resolution the high accuracy in interpolation has no reason).

Discussing the role of interpolation we should pay attention to theglobal and
local subdivisions of interpolation approaches. Even if we take into consideration
that the global approaches turn into local ones by numerical solutions, we have to
realize that the GIS requiresmore local (or lessglobal) methods, while the data
productionmoreglobal (lesslocal) procedures.
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We have also to note that the GIS interpolation computations should be fast
and desirably automatic without setting a large amount of parameters.

2. Interpolation Methods

There are different ways of classifying the interpolation methods. Probably my
approach does not satisfy strict mathematical requirements, but attempts to clarify
the issue for the wide community of people using GIS.

We will discuss the following groups of methods:

• Method of geometrical nearness;
• Statistical methods based on weighted average;
• Methods using basis functions;
• Method of artificial neural networks.

2.1. Method Based on Geometrical Nearness – the Voronoy Approach

As a consequence of involvement in research on geometric aspects of crystallog-
raphy the Russian mathematician VORONOY Georgy Fedoszeevich (1868-1908)
discovered in the first decade of the century a special continuous subdivision of the
space by convex polyeders. In 2 dimensions the polyeders are turning into polygons
calledVoronoy cells.

Fig. 1.

The geometric rule defining the cell is very simple: each cell has only one
sample point and all other points inside the cell are closer to this sample point than
to any other sample outside the cell.
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To construct the Voronoy cell for a sample point we have to connect all data
points to the selected one and to drop the bisecting perpendiculars to each link.
The bisectors will intersect each other. Now we can select on each bisector two
intersections the nearest to the sample point two determining the cell. InFig. 1only
those parts of the effective bisectors are shown which are forming the cells.

As interpolation method the Voronoy cells are mostly used for precipitation.
Using the measured values of rain in the sample points the method extends their
validity for the particular cell, that is, it supposes that these values are characteristic
of the entire cell. This type of interpolation results in sudden changes of the function
values on the borders of the cells. Therefore its use is limited.

However, at least two other applications make it worth speaking about it.
The Voronoy approach is suitable for dynamic spatial object condensation

(W. YANG and Ch. GOLD, 1995) that is for realization of nested GIS implemen-
tation models that allow storage and processing of the objects at different levels of
generalization.

The second application, theDelone triangulation, is directly related to our
topic.

First we should consider that three points determine a plane. If we want to
model the surface of the function with plane triangles fitted to the measured values in
sample points, then we have to construct a continuous triangulation network on the
points. However, if trying to connect the points, we will find that there are possible
different triangulations for the same points. The different triangulations represent
different interpolation surfaces and as a consequence different interpolated values
in identical sites. That means that without unique triangulation the interpolation by
plane triangles is useless.

In the thirties of our century, DELONE Boris Nikolaevich, professor of mathe-
matics at the Moscow University, found out the dual task of the Voronoy subdivision.
He proved that the field of scattered points could be uniquely transformed to a tri-
angulated network using the links determined by the Voronoy cells of the points.
With other words if we use the links belonging to the border lines of the cells (thin
lines inFig. 1), then the unique triangulation is established.

On the basis of this result work the TIN modules of the different GIS software.
For correctness we should mention that the interpolation method itself belongs

to the third group (methods using basis functions), the geometrical partitioning,
however, has so strong ties to the Voronoy cells, which gives reason to deal with
both together.

2.2. Statistical Methods

The statistical methods interpolate the function value in the unknown point using
weighted average of the known values in the sample points:

F∗(x0) =
n∑

i=1

λi,0 · F(xi ) , (1)
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whereF∗(x0) is the interpolated value in the placex0, F(xi ) is the value measured
in the sample pointxi , i = 1, . . . , n, and numbersλi,0 are the weights.

As a rule the statistical methods are local, because they involve into the average
only a number (n in Eq.(1)) of neighboring samples located usually inside a distance
limit (e.g. rangein the kriging) from the point to be interpolated.

All statistical methods have the property of smoothing the data reducing the
sudden juttings and dips. As we pointed out (F. SÁRKÖZY and G. GÁSPÁR, 1992)
statistical methods could interpolate only values that are inside the interval between
the largest and smallest sample value involved in the average building.

Fig. 2.

2.2.1. Area Stealing Interpolation (Ch. Gold, 1991)

This method, often called also as ‘natural neighbor interpolation’, determines the
weights using the Voronoy tesselation.

In Fig. 2 we constructed the Voronoy cells for the sample points
P1 . . . P7 with measured heightsh1 . . . h7 (P1 is outside the figure).We want to
interpolate thehQ height of the new pointQ.

To interpolate to a point we have to redefine the tesselation with the addition of
the interpolation point. Now we have two tesselations, the original one and the new
cell system constructed after inserting the new point. The cell of the new point (filled
with patterns inFig. 2) covers some parts of cells originally owned by particular
sample points. These particular points will be involved into the interpolation of
the new point. That is this method automatically selects from the sample points
those which should take part in the interpolation. These points are called as natural
neighbors.

The weights of the natural neighbors are nothing else but the areas which the
new cell cuts out from the original cell owned by a particular neighbor. These areas



68 F. SÁRKÖZY

Fig. 3. a,b

Fig. 4. a,b,c

are the ‘stolen areas’, denoted inFig. 2 by ti . After computing the average we have
got thathQ = 135.8.

2.2.2. Weighting with Inverse Distances

This simple method uses for weights some power of the inverse distance:

λi,0 =
1

d p
i,o∑n

i=1
1

d p
i,0

, (2)

wherep = 1, 2 or 3.
If we select p = 2, and use the same subset of sample points which was

determined by the stealing area method, then we gethQ = 129.5. The results are
rather different; and less accurate is undoubtedly the latter one.

Moreover, the main disadvantage of this method lies in the arbitrary definition
of the interpolation subset since the method itself does not generate the points to be
involved in the interpolation.

2.2.3. Kriging

As a more sophisticated method some versions of ‘kriging’ can be used (for more
details about kriging see some of the textbooks of geostatistics e.g. (E.H. ISAAKS,
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Fig. 5.

R. M. SRIVASTAVA , 1989)). Kriging estimates the unknown values with minimum
variancesif the measured datafulfill some conditions of stationarity(first order
stationarity, second order stationarity, intrinsic stationarity). In the cases when
no stationarity hypotheses can be stated theuniversal kriging can be used. This
method, however, has not a unique solution and needs a large amount of interactive
input and subjective assessment during the processing.

For the topic of our discussion a relatively new branch of kriging theco-kriging
has essential importance. This method uses one or moresecondary featureswhich
are usually spatially correlated with the primary feature (e.g. heights secondary,
rain primary). If the secondary features have more dense sample sets than the less
intensively captured primary feature, with cokriging we can estimate with higher
accuracy without any surplus expenditure.

The first step in kriging is the computation of a so calledexperimental semi-
variogramusing the following formula:

γ (h) = 1

2n(h)

n(h)∑
i=1

[F(xi ) − F(xi − h)]2 , (3)

whereγ (h) is the estimated semi-variance for the distanceh, n(h) is the number
of measured point pairs in the distance classh, F(.) is a measured value in(.).

Eq.(3) is relatively easily computable if the measured points are ordered in a
regular grid and the field has isotropy, that isγ (h) depends only onh, but not on its
direction. If the known points are located not regularly, distance classes have to be
formed, and in the lack of isotropy different semi-variograms should be constructed
in the typical groups of directions.

In the next step the experimental semi-variogram(s) should be approximated
by some kind of functions fitted to the experimental data by means of the least
squares method.

The real computation of weights used in (1) to interpolate theZ(x0) unknown
function value is performed by the solution of a system of(n + 1) linear equations
in the form as follows:

�0 = K−1C0 , (4)
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Fig. 6.

where�∗
0 = |λ1,0 . . . λn,0|, C∗

0 = |c0,1 . . . c0,n1| and the so called matrix Krige

K =

∣∣∣∣∣∣∣∣∣∣

c11 c12 c13 · · · c1n 1
c21 c22 c23 · · · c2n 1
...

...
...

...
...

cn1 cn2 cn3 · · · cnn 1
1 1 1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣
. (5)

The vectorsC0 are different for each new point to be interpolated, the coefficients
ci, j have to be computed from the interpolated (theoretical) semi-variogram. The
theoretical semi-variogram achieves its maximum value (or its 95%) at a distance
H , called therangeof the phenomenon. The coefficients belonging to points spaced
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on the range or farther become zero, the rest of them is calculated by the formula:

ci, j = γ (H) − γ (h) ,

whereh is the distance between pointsxi andx j .
As mentioned above, if the stationary hypothesis does not hold or with less

sophisticated words if the phenomenon (e.g. the thickness of a coal stratum) has
systematic changes in function of the location, then the systematic changes should
be separated from the random ones. For this sake one can fit a plane or a surface
of higher order to the sample data. This surface, of course, cannot pass through the
points, it lies only near the points as a new reference frame. Now, the value of an
interpolated point will consist of two parts: the systematic part that one computes
from the equation of the fitted surface (often calledtrend), and the random part
computed by kriging, related to the new reference frame. This complex method is
called as universal kriging.

Co-kriging uses besides semi-variograms for each variable also cross-vario-
grams for the variable couples. Let us consider the simple case of two variables.
We haven sample points of the primary variable andm sample points of the single
secondary variable (for simple writing we supposem = n+1). For this caseEq.(4)
and matrix (5) get the form as follows:

W0 = K−1V0 , (4a)

whereW∗
0 = |λ1,0s1,0 . . . λn,00sm,0µ1µ2| (the notationsi,0 stands for the weights of

the secondary phenomenon,µ1µ2 are the Lagrange multipliers),
V∗

0 = |C0,1Q0,1 . . . C0,nQ0,n0Q0,m11|, and

K =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1,1 0 c1,2 cr1,2 · · · c1,n cr1,n 0 0 1 0
0 q1,1 cr1,2 q1,2 · · · cr1,n q1,n 0 q1,m 0 1
...

...
...

...
cn,1 0 cn,2 crn,2 · · · cn,n crn,n 0 0 1 0
0 qn,1 crn,2 qn,2 · · · crn,n qn,n 0 qn,m 0 1
0 0 0 0 · · · 0 0 0 0 0 0
0 qm,1 0 qm,2 · · · 0 qm,n 0 qm,m 0 1
1 0 1 0 · · · 1 0 0 0 0 0
0 1 0 1 · · · 0 1 0 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5a)

The coefficients in (5a) have to be computed as follows:ci, j = γ primary(H) −
γ primary(h); qi, j = γ secondary(H) − γ secondary(h), the same is valid also for the co-
efficients in capital letters(Q0,i andC0,i ) related to the interpolated point;cri, j =
γ ps(H) − γ ps(h) whereγ ps is the regular representation of the empirical cross-
variogram:

γ ps(h) = 1

2n(h)

n(h)∑
i=1

[Fprimary(xi ) − Fprimary(xi + h)][Fsecondary(xi )−
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− Fsecondary(xi + h)] . (6)

In this brief review we cannot discuss more details. However, we should underline
that the formulas above are related to the theoretical case of absolute stationarity.
In the real cases the global shape of the phenomena is first modelled with some kind
of functions, usually polynomials. In this practical case these functions are also
included intoEq.(4a) instead of the rows and columns with numbers one, which are
ensuring that the sum of weights related to a particular feature equals the unity. For
example if the primary feature’s trend surface is the plainf (x) = A + Bx + Cy,
and the secondary feature is approximated with another plaing(x) = D+ Ex+ Fy,
then the formulas (4a) and (5a) should be overwritten in the following way:

W0 = K−1T0 , (4b)

where the right hand side vectorT∗
0 = |C0,1Q0,1 . . . C0,nQ0n0Q0,m f (x0)g(x0)|, and

the matrix Krige takes the form

K =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1,1 0 c1,2 cr1,2 · · · c1,n cr1,n 0 0 f (x1) 0
0 q1,1 cr1,2 q1,2 · · · cr1,n q1,n 0 q1,m 0 g(x1)
.
..

.

..
.
..

.

..

cn,1 0 cn,2 crn,2 · · · cn,n crn,n 0 0 f (xn) 0
0 qn,1 crn,2 qn,2 · · · crn,n qn,n 0 qn,m 0 g(xn)

0 0 0 0 · · · 0 0 0 0 0 0
0 qm,1 0 qm,2 · · · 0 qm,n 0 qm,m 0 g(xm)

f (x1) 0 f (x2) 0 · · · f (xn) 0 0 0 0 0
0 g(x1) 0 g(x2) · · · 0 g(xn) 0 g(xm) 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(5b)

The short summary of the kriging methods shows that this approach has several
drawbacks. First of all I should mention the ambiguities by handling the trends and
the unisotropies. That is the estimates can be biased due to the inappropriate choice
of the trend expression and the regular model for variogram approximation.

Another problem is that for creation of an empirical cross-variogram only
those spots are used where both the oversampled secondary variable and the un-
dersampled primary variable have measured values. For taking into consideration
the entire information content of the oversampled variable in the cross-variogram
construction several research projects are in progress.

The model is a local one, but even so the processing takes a significant run
time. Especially the inversion of the huge matricesK can cause numerical troubles
and memory overflows. A new research of (LONG and MYERS, 1997) aims to split
the co-kriging matrix into simple kriging matrices of the involved phenomena and
express the co-kriging weights by the inverses of these smaller matrices (and some
other terms).

For the visualization (mapping) purposes a second method, usually spline
interpolation has to be used. The interpolated points can be stored in regular grid
structure that is convenient for data base manipulations and also for different com-
putational purposes.
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Fig. 7.

2.3. Methods Using Basis Functions

There are several methods that reconstruct the function using a linear combina-
tion of a set of basis functions with the closest fit to the samples. Depending on
the type of the basis functions we can distinguish among others polynomial in-
terpolation, splines with tension using radial basis functions, Fourier and wavelet
transformations (F. SÁRKÖZY, J. ZÁVOTI , 1995). These latter ones transform the
approximated function from the time or space domain to the frequency domain, that
is the interpolation has to be made there. The numerical methods of transformation
and inverse transformation, however, work for regularly located samples and in this
form are unusable for interpolation of scattered points data. Only a few new re-
search projects aim to solve the wavelet transformation of non-regularly distributed
data. We have to wait some years until the wavelet interpolation could be involved
in the solution of spatial interpolation problems.

2.3.1. Trend Surface Analysis

The GIS deals with spatial objects or spatial phenomena which are at least 2 di-
mensional, but the natural features are often modeled in 3 or 4 dimensions.

The TSA aims at the global interpolation of the phenomenon in question, it
has no interest in detecting local irregularities. Of course, the global interpolation
can be made also on different resolution level. The choice of this depends on the
task to be performed and the behavior of the sample itself.

As we have seen in context of universal kriging the trend surface can be
approximated by first order, second order, third order, in generaln-th order poly-
nomials. By choosing the order of the surface one should take into consideration
the rule of thumb: any cross-section of a surface of ordern can have at mostn − 1
alternating maxima and minima.

If applied to the terrain, one can see in advance the main characteristics of
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the surface and choose the proper order. However, the surface of other phenomena
(e.g. temperature) is not visible and one should make several attempts to find the
appropriate order.

The polynomials are fitted to the sample data using the least squares adjust-
ment (an alternative name of the fitting procedure is the regression).

This method minimizes the squares of differences of the given and interpolated
values, that is denoting thei -th sample value byzi , the interpolated value in the same
point by f (xi ), the number of samples byn, the adjustment fulfills the condition:∑n

i=1( f (xi ) − zi )
2 = minimum. Of course, the value of the minimum depends

on the suitability of the chosen model for the particular data set. As a measure of

the goodness of fitting we can use the quantitym = ±
√∑n

i=1( f (xi )−zi )
2

n−1 called mean
square error, abbreviated as MSE.

The flexibility of the polynomial depends on its order. If we choose higher
orders, we can model more complicated surfaces. However, the higher the poly-
nomial order, the more numerical problems might occur by risk of emerging huge,
ill-conditioned matrices which should be inverted. As a conclusion for most of the
practical tasks the order does not exceed 3− 5.

The method can be used also for three-dimensional modeling, however, in
this case it was called as polynomial regression (COLLINS and BOLSTAD, 1996).
The authors used for the estimation of the temperaturet the expression

t = b + b1x + b2y + b3x2 + b4y2 + b5xy+ b6x3 + b7y3 + b8x2y + b9xy2 + b10z .

In their opinion the difference between the TSA and the polynomial regression
consists of the number of independent variables (the TSA as a surface can have
only two) and the completeness of polynomial expansion (the TSA has complete
expansion, the polynomial regression can be set up using the linear combination
of independent functions). We can see that in the formula of the temperature the
variablez is applied only in linear form.

The polynomial trend surface has the unpleasant behavior to increase or de-
crease very rapidly in the places where the density of samples is rare especially at
the borders of the region.

2.3.2. Regularized Smoothing Spline with Tension

The first wide-spread commercial 3D modeling program package (SMITH and PAR-
ADIS, 1989) used the three-dimensional extension of the two-dimensional spline
interpolation worked out by (BRIGGS, 1973). The original method defines a set
of values at the points of a regular grid without finding first a continuous function
of the space variables that takes the values measured at given positions. To cope
with the problems of fitting two-dimensional piecewise polynomials to randomly
located observation points Briggs solved the differential equation of a thin sheet that
is equivalent to third-order spline. The solution was made numerically by the help
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of difference equations thus it puts the interpolated function values in a regular grid.
The endproduct of the procedure was the drawing of contour lines; the intersections
of the lines with the grid were interpolated by a four point cubic polynomial and
then the intersections were joined by a cubic spline.

(MITAŠOVA and MITAŠ; MITAŠOVA et al., 1993) gave an explicit solution of
variational conditions with direct estimation of first and second order derivatives
for two-, three- and four-dimensional cases.

The regularized smoothing spline with tension is a radial basis function
method for interpolation from scattered data. The interpolation is flexible through
the choice of the tension parameter which controls the properties of the interpolation
function and smoothing parameter which enables to filter out the noise.

The function derived by minimization of the squared smoothness functional
containing all derivatives has the following form:

S(x) = T(x) +
N∑

j =1

λ j R
(
x, x[ j ]) , (7)

where the indexj denotes the measured points,λj the unknown coefficients,
R
(
x, x[ j ]) the basis functions.

For the related casesT(x) = a1 = constant. The basis functions for the two-,
three- and four-dimensional cases are as follows:

R2(r ) = −[E1(ρ) + ln(ρ) + CE] , R3(r ) =
[√

π

ρ
erf(

√
ρ) − 2

]
,

R4(r ) =
(

1 − e−ρ

ρ
− 1

)
,

whereCE = 0.577215... is the Euler constant,E1(.) is an exponential integral

function,r 2
j = ∑d

i=1

(
xi − x[ j ]

i

)2
, ρ = (

ϕr
2

)2
, ϕ is an arbitrarily selected parameter,

called ‘tension’ controlling the flexibility of the system,

erf(x) ≡ 2√
π

x∫
0

e−x2
dx = 2√

π

(
x − x3

3
+ 1

2!
x5

5
− 1

3!
x7

7
± ...

)

is the error function.
TheN +1 unknown parameters(λ1, . . . , λN, a1) are obtainable from the following
system ofN + 1 linear equations, wherez[i ] is the measured value in the pointx[i ];

a1 +
N∑

j =1

λ j R
(
x[i ], x[ j ]) = z[i ], i = 1, . . . , N ,

N∑
j =1

λ j = 0 . (8)

In connection with this explicit method several questions require further analy-
sis. Firstly the practical application of general global methods is problematical
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because of the long processing time growing proportional with the third power of
the measured values. In (MITAŠOVA and MITAŠ, 1993) the authors recommend a
segmented processing procedure that approximates the global method with several
overlapping local ones.

From point of view of the GIS functions we should not forget that this global
method does work in 3 dimensions, but its results are doubtful for most of natural
phenomena, nevertheless its visualization possibilities are excellent.

2.3.3. Method of Local Polynomials

In 1992 the author of the present paper together with a young associate of the
department of surveying Mr. P. GÁSPÁR published a simple interpolation method
(SÁRKÖZY and GÁSPÁR, 1992). We can summarise the essence of our method as
follows.

For each pointri in which the valueui of the in general unknown function
f (r) is given we can construct aGi (r) approximating function that is properly near
to the original function in the neighborhood of the point. The function should be
definedeverywhereover the global model and give good approximation at least for
the neighboring points. The simplest local function is the polynomial, in 3 D with
three independent variables, or in the case of the given two-dimensional example a
third-order polynomial with two independent variables:zk = zi + a1uk + a2vk +
a3u2

k + a4v
2
k + a5vkuk + a6u2

kvk + a7v
2
kuk + a8u3

k + a9v
3
k.

The co-ordinate transforms are as follows:uk = arctg(c(yk − yi )), vk =
arctg(c(xk − xi )). For each polynomialGi (r) the coefficientsaj are calculated
from the given values of the primary and (in case of need) secondary neighbors
using weights considering the distance and the level of neighborhood as well.

The accuracy of approximation depends on the distances from the central
point of the function. The discrepancies of the function values and the known data
are computed using the expressionδi j = Gi (r j )− uj . We can order the discrepan-
cies into distance intervals and compute the squared dispersions belonging to each
interval by the formulaσ2

d = 1
K

∑K
i=1 δ2

i , whereK is the number of discrepancies
in the particular interval.

In general for isotropic fieldsσ2
d (d) ≈ σ 2

m + a · db + c, a, b, c ≥ 0, whereσm
is the dispersion of the function values in the nodal points. Parametersa, b, c can
be computed from the related pairsd, σd. We can handle also the anisotropy and
the special behavior of each local model.

From the dispersions we compute the weightss(d) = σ2
0

σ2
d
, and as the weighted

average (or linear combination of basis functions) the interpolated value of the
function:

ûr =
∑M

i=1 si · ui,r∑M
i=1 si

. (9)
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For the sake of easier comparison the 500 m×500 m simulated study area
was covered by the regular functionz = 200+ 100sind

d , with the notationd =
= π

100

√
(y − 100)2 + (x − 100)2. First of all we computed the true values of the

20 m×20 m grid points, as shown in parta of Fig. 3. After that, we randomly
generated the co-ordinates of 200 spots and computed their heights (partb, Fig. 3).

Using the heights of the scattered points we interpolated the grid by the meth-
ods of inverse distances, kriging and polynomials (Fig. 4, partsa, b andc respec-
tively).

2.4. Method of Artificial Neural Networks

The method of ANN is relatively, but absolutely new in the domain of spatial
interpolation. This is the reason why we have to explain some basic ideas of this
approach before discussing its application for our purposes.

2.4.1. What is an Artificial Neural Network?

The research of the human neural system showed that it could response to the
signals from the sensing organs by a highly interconnected large system of relatively
simple activation elements – the neurons. That is if we have a large number of
interconnected simple processing elements we can solve very complex tasks.

This idea stimulated initially a small part of researchers in artificial intelli-
gence to try to solve their tasks by artificial neural networks.

The theory and basic algorithms of ANN were worked out mostly in the last
decade, software products have appeared since 1992–93, the first applications for
spatial interpolation emerged in 1997.

There are different types of ANN architecture, however, for interpolation
tasks it is satisfactory to discuss the default structure: the multilayer feedforward
network.

In Fig. 5we sketched out a simple MLP (MultiLayer Perceptron) network (for
the clarity we plotted only 1 hidden layer, however, themultilayer model allows
arbitrary number of those).

As we can see, the structure consists of nodes (neurons or perceptrons) or-
ganized in layers and links. There are three principally different types of layers:
theinput layer (only one), thehidden layer (arbitrary number), and theoutput layer
(only one).

The number of nodes in the input layer corresponds to the number of indepen-
dent variables of the particular task, while the number of nodes in the output layer
depends on the number of scalar functions involved in the common evaluation, or
if we have to approximate a vector function, the output nodes can represent the
components of the vector.
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As a default, each node is connected to each node of the forward next layer.
There are algorithms which can prune the ineffective links and there are network
architectures with not only sequential but also backward (recurrent) links.

The nodes of hidden layers and output layers own activation functions which
can differ from each other by nodes and/or by layer types. These functions are
mostly nonlinear, easily differentiable functions as sygmoid or hyperbolic tangent
or the Gaussian bell curve.

The formulae for these functions are as follows:
For the sygmoidy = 1

1+e−Ds ; D > 1. The function values are in the domain
[0, 1], if s = 0, y = 0.5. The hyperbolic tangent is determined by the formula
y = 1−e−Ds

1+e−Ds ; D > 1. The interval of output values is in the range[−1,+1], if
s = 0, y = 0. Nowadays the Gaussian activation function with the formula:
y = e−D2s2

gains more and more popularity. It has output values among 0 and 1, if
s = 0, y = 1.

The diagrams for these functions forD = 1 andD = 1.5 are shown inFig. 6.
Pay attention that the ‘useful’ inputs (for which different inputs involve different
outputs), range about[(−2.7) − (+2.7)] and[(−4) − (+4)], depending onD.

2.4.2. How Does an Artificial Neural Network Work

The objective of a particular ANN is to give desired outputs in response to the inputs
of the user. For example if we want to interpolate the heights, we can choose for
input locations and hope that the outputs of the network will contain the heights in
the given spots. But how can the network find out the heights. This is made by
learning from known input–output couples of data.

What can change in the network according to the information extracted from
the known data, called training set? The answer is: weights denoted inFig. 5 by
wi j .

The procedure adjusting the weights to fit the given data is called training or
learning. To understand this process first we should cast a glance at the way the
network processes the input data.

For the network inFig. 5 thet-th sentence (record) of training data consists of
the input vectorxt

j , ( j = 1, 2) and the desired outputyt . The input passing forward
(from left to right) results in the output:

ot
21 = f 2

1

[
w

1(t−1)
11 f 1

1

(
xt

1w
0(t−1)
11 + xt

2w
0(t−1)
21

)
+

+w
1(t−1)

21 f 1
2

(
xt

1w
0(t−1)

12 xt
2w

0(t−1)

22

)
+

+w
1(t−1)

31 f 1
3

(
xt

1w
0(t−1)

13 xt
2w

0(t−1)

23

)]



GIS FUNCTIONS 79

or

ot
21 = f (2)

1

[
3∑

i=1

w
1(t−1)

i1 f (1)
i

(
2∑

j =1

xt
j w

0(t−1)
j i

)]
. (10)

In Eq.(10), f (l)
i denotes the activation function of thei -th node (from top to bottom)

in the l -th layer (l = 0, 1, 2).
The output valueot

21 in general is not equal to the desired valueyt . To
approach this equality we should perform a backward pass to adjust the network’s
weights. From this processing step has obtained this training method the name of
backpropagation.

First we have to determine an expression characterizing the error in the output,
called error function. This function has to be minimized in the training process.
Usually the expression

E(w) = 1

2

k∑
j =1

(yt
j − ot

j )
2 (11)

is chosen for error function, wherek is the number of output nodes (in our simple
casek = 1).

One of the ways of minimizing a nonlinear objective function is the application
of the so-calledgradient descent method. The negative gradient−∂E(w)

∂w is a vector
that shows thelocal direction of the descent. If we pass along these directions
with small steps we can hope to reach the global minimum. Passing along the
directions practically means that we change the weights (independent variables)
proportionally to the components of the negative gradient. The step sizeη is called
learning ratein the backpropagation algorithms. Thus

wt+1 = wt + �w (12)

and

�w = −η
∂E(w)

∂w
. (13)

Do not forget that in (13) both the error and the weights have the values computed
in the t-th cycle.

The derivatives of a complex function have to be computed applying the chain
law. For the derivative ofE with respect to weightswi j associated with the links
between thei -th node of the last hidden layer and thej -th node of the output layer
(in our example with respect tow1

11, w1
21, w1

31) we have

∂E

∂wi j
= ∂E

∂oj

∂oj

∂pj

∂pj

∂wi j
, (14)

where the input of thej -th node of the output layerpj = ∑
i wi j oi . The derivatives

in (14) are as follows:

∂E

∂oj
= ∂

(
1
2(yj − oj )

2
)

∂oj
= −(yj − oj ) ,
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∂oj

∂pj
= d f (pj )

dpj
= f ′(pj ) ,

∂pj

∂wi j
= ∂

(∑
i wi j oi

)
∂wi j

= oi .

Substituting the derivatives into (14) we get

∂E

∂wi j
= −(yj − oj ) f ′(pj )oi , (14a)

thus, the weights between the last hidden layer and the output layer should be altered
with the value

�wi j = η(yj − oj ) f ′(pj )oi = ηδ j oi . (15)

The termδ j = (yj − oj ) f ′(pj ) in Eq. (15) is called local error, and the expression
itself is often cited asdelta rule.

The terms in (15) are known from the training set (yj ), and from the forward
pass of thet-th cycle. For example for the network inFig. 5, oj is computed from
the entire formula (10),pj is the term in square brackets in the same formula and

oi = f (1)
i

(∑2
j =1 xt

j w
0(t−1)
j i

)
.

The delta rule in form (15) is only suitable for the weights of connections
ending in the output nodes because termδj is computed from the actual outputoj .
To find out the changes of weights associated with links pointing to hidden layer
we should ‘backpropagate’ the error.

Let us suppose we haven hidden layers. For computing the changes of
weightswi j associated with connections between the(n − 1), n layers (that isi is a
node number in layer(n − 1), j in layern) we have to express the local error in the
node j of then-th layer. For this sake we can use the already computed local errors
of the output layer’s nodes. Indeed, the error backpropagation is proportional to the
local errors of the successor layer’s nodes. Using indexk for these nodes we can
express the local error of nodes in a hidden layer

δhidden
j = f ′(pj )

∑
k

δkw j k . (16)

Thus, the weight updates also in this case are computed by formula (15) but the
local errors have to be considered as expressed in formula (16).

The most critical point for backpropagation is the choice of the learning rate
η. It can be chosen from the range[0.05, 0.5]. If the rate is too small, the learning
process is slow, if it is too large, the training oscillates around a local or global
minimum. There are algorithms which can automatically control the learning rate
in function of the slope of the error surface.

The backpropagation can be realized in two ways: theon-linebackpropaga-
tion changes the weights after processing of each sample, thebatchbackpropagation
performs the weight improvement only after the entire training set is processed. This
latter works slower.
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For improving the convergence of the learning process numerous modifica-
tions of the standard backpropagation are in use.

For elimination of flat spots on the error surface thebackpropagation with mo-
mentumgives some hope. The idea of this method is that the weights are improved
with a linear combination of the recent and former weight changes:

w
(t+1)
i j = w

(t)
i j + �w

(t)
i j + µ�w

(t−1)
i j , (17)

where the value of momentumµ lies in the interval[0, 1].
The method of weight decaytries to prevent the weights to grow too large.

The weight updates for this method are computed as follows:

w
(t+1)
i j = w

(t)
i j + �w

(t)
i j − γ �w

(t−1)
i j , (18)

coefficientγ ranges from 0 until 1.
The resilient backpropagationis essentially not a gradient descent

method but somehow or other is similar to it. The method uses batch learning,
that is the gradient is computed as the sum of the gradients belonging to each
sample of the training set.

The method uses only thesignsof the gradient and orders inoppositionto
those signs to the updates. The absolute value of the update factor depends on the
relation of the actual and former gradient. If their signs are equal, this value is 1.2,
if not, the value is 0.5. The absolute value of the update itself equals the product
of the update factor and the absolute value of the former update. For the exception
when the product of the new and old gradient is equal to nil, the new update has the
same absolute value as the old one. The explanation above can be compressed in
the following formulae:

�w
(t)
i j =




−�
(t)
i j , if

∂E(t)

∂wi j
> 0 ,

+�
(t)
i j , if

∂E(t)

∂wi j
< 0 ,

0, else,

(19)

�
(t)
i j =




1.2�
(t−1)
i j , if

∂E(t−1)

∂wi j

∂E(t)

∂wi j
> 0 ,

0.5�
(t−1)
i j , if

∂E(t−1)

∂wi j

∂E(t)

∂wi j
< 0 ,

�
(t−1)
i j , else.

(20)

A very special variation of the MLP networks is theradial basis function (RBF)
network. This network type has a basically fixed architecture shown inFig. 7.
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The network consists of three layers: the input layer, the only hidden layer
and the output layer. In the case ofFig. 7 the input vector has three components that
is we have three input nodes, one summing up output node andn training patterns.

The activation function in the hidden layer is some type of radial basis func-
tion, usually the Gaussian one, expressed by the formula

h(x) = e
−
(

(x−c)T (x−c)
r2

)
, (21)

where the vectorc represents the center, the scalarr the radius of the function. If
the input patternsx are one-dimensional, then the centerc is also a one-dimensional
shift and the Gaussian takes the form:

h(x) = e−( x−c
r )

2

. (22)

The output can work in two ways: without activation function, only summing up the
input, or with a sygmoid type activation function with bias that is with an unknown
shift b added to the input of the output neuron.

When the output operates without activation as inFig. 7, the network can
work in the following way. First we create as many neurons in the hidden layer as
training patterns are present. The centers could be set equal to the corresponding
input scalars (or vectors), the radii depend on the distances of the neighboring input
patterns, for normalized input data one can select 1. In this case the number of
unknown weights is equal to the training patterns. Because of the lack of nonlinear
changes in the process of solution the weights can be computed directly solving a
system of linear equations.

In the case of activation function with bias in the output we cannot use the
linear approach, however, the solution even in this case is much more simple as
in the case of general type MLP feedforward networks because thedelta rulecan
be used here in its simple form (we deal only with weight changes linked to the
output neuron(s)), expressed in formula (15). The number of hidden nodes in this
second case should be less than the number of training patterns, consequently the
determination of the centers is not straightforward any more, but the details of this
case are out of our discussion.

The training itself is not the goal of the network but the tool to prepare it for
the interpolation. This statement should be emphasized because of the fact that
several textbooks and software products as well are inclined to forget the basic task
of the network: to estimate the values of the particular phenomenon in unmeasured
spots.

That is after the training is performed successfully we should apply as input the
independent variables of the unknown points and get on the output the corresponding
interpolated function values. This procedure in opposition to the training is direct
and very fast.

At the end of this section a very important practical remark should be added.
The activation functions dependending onD are sensitive to the input values only in
range about[−1.5,+1.5], therefore the input data should be scaled to this interval.
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With exception of the linear activation function all others can give only outputs
which have smaller absolute values than 1, therefore the target values should be
also scaled corresponding to the output value range of the output activation function
[−1,+1] or [0,+1].

2.4.3. Some Remarks on the Architecture of Artificial Neural Networks

The main question, how many layers with how many nodes should be included
in a particular network, cannot be answered directly yet. There are strategies,
algorithms, rules of thumb related to this question, however, for a theoretically
consistent answer we have to wait for a while.

In fact the more layers and nodes are included in the network, the less more
flexible it is in training. On the other hand, the larger the network, the more
processing time is required for one training cycle and the more probable is its
overtraining.

The compromise can be found by one of the following strategies: beginning
the training with a small two hidden layer net with e.g. 5 nodes in each. If the
training is too slow (the MSE does not decrease in the proper way), then we add
gradually new nodes (until a reasonable limit e.g. 15) and new layers until the
training improves essentially. The algorithm called cascade correlation performs
automatically the network expansion.

The other strategy starts with an extended network and eliminates gradually
the superfluous nodes. A large number of pruning algorithms can cope with this
task automatically.

2.4.4. Artificial Neural Networks in GIS applications

Only a few applications are present in the GIS papers so far. Xingong Li (XINGONG,
1997) reports about the neural network used for precipitation estimation. His MLP
feedforward network had three layers, the input layer with 9 nodes, the only hidden
layer with 10 nodes and the output layer with one node.

The most interesting point of this case study is the choice of the nine input
parameters. These are the precipitation, the heights of the three closest weather
stations and the distances from those to the interpolating point.

I wonder whether the relative co-ordinates and the heights as input data could
not give a more general solution.

The training set consisted of 50 weather station data for four months, the
validation set of 18 similar station records. The interpolation was made on the
validation set points in order to be able to check the results. The interpolation
by neural network was compared to the truth value and to the results of other
interpolating methods (Voronoy cells, TSA, inverse distance weighted and ordinary
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kriging) and it was found that it performs consistently well the interpolation, in
comparison to other methods, in all months.

A more theoretic paper of D. Pariente (PARIENTE, 1994) deals with the use
of neural networks connecting the object oriented spatial data model with the func-
tion field data model (SÁRKÖZY, 1994). This idea can be developed further by
associating the data of a function field with a properly composed and trained neural
network.

The neural networks have very extended applications in classification issues.
This kind of application can be used in processing of multispectral remote sensing
scenes, pattern extraction from images and also for classification of land quality
in GIS as explained in (R. MUTTIAH at al., 1996). Though the interpolation and
classification are related fields (the classification is nothing else as interpolation
between predefined patterns) we have no possibility in this paper to dwell on the
applications in this field in more details. We only want to call the attention of the
readers to the fact that the authors of the referred paper developed a neural network
interface for the GRASS GIS to solve classification tasks. I suppose that without
essential changes the interface can be also used for interpolation.

3. Discussion

The main questions for discussion are as follows:

1. Where is the border between the interpolation procedures of data production
and interpolation procedures as standard GIS functions.

2. For both cases which particular method has the most benefit.
3. What is common and what is different in classification and interpolation using

artificial neural networks.
4. Aspects of data model in connection with artificial neural networks.

I hope that my answer to the majority of these questions is clear from the
paper. However, to be sure in it I will give their summary in the conclusions. But
let us see first some alternatives.

1. There are three possibilities. In the first case we try to include in the GIS as
standard function at least those interpolation methods which were discussed
in the paper. In the second case we include in the GIS only some local
interpolation methods. The third case ignores the interpolation procedures
as GIS functions.

2. Here we have several answers. There are people in favor of geostatistical
methods for both data preparation and GIS. Others are adherent of geomet-
rical methods based an Voronoy tesselation, first of all for GIS. The special-
ists with concern of computer resources often support the inverse distance
weighting. Mathematicians prefer the RBF polynomials, etc. The motiva-
tion of every group may be accepted for particular circumstances, however,
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to include a method into the GIS as a standard function the method and its im-
plementation should fulfill a couple of conditions. Among others the method
should be local, as precise as possible, the implementation should accept
the GIS data model and possess easy-to-use control tools, it should run fast
without exaggerated employment of computer resources.

3. The question can be approached from different directions. As far as ANN is
concerned, the MLP feedforward networks are equally usable for interpola-
tion and classification. Other types of ANN are exclusively or mainly suited
to unsupervised (SOM) or supervised (LVQ) classification. The main dif-
ference between interpolation and classification MLPs lies in the context of
input and output. The interpolation network uses point coverages for learn-
ing and estimation, the classification networks deal also with raster (pixel)
data. As for functionality classification is nothing else as interpolation of the
membership in given clusters. With other words we define a staircase like
function where a group of input variables’ intervals corresponds to a stair in
the function. An even more interesting GIS application of neural networks
is the environmental (erosion, pollution, etc.) modelling by neural networks.
This is essentially an approximation of a complex multivariate function with
reduced number of input variables. The input and output variables are usually
raster data.

4. The data model was several times mentioned already in the previous para-
graph. At this place we only want to remind the reader of the fact that a
trained network is nothing else as the approximation of an arbitrary function
valid for the region determined as the convex hull of training points.

4. Conclusions

• The fact that the production of digital spatial data has become an independent
industry results in the separation of data capture and GIS. However, even in
the case of excellent geospatial infrastructure one cannot avoid local inter-
polations in the GIS workflow. Thus,some local interpolation procedures
should get the status of standard GIS functions.

• The Voronoy approach and its developments are substantially local spatial
interpolation methods and should be included in every GIS software.

• For visualization the GIS, especially in 3D requires some type of spline
interpolation, too.

• The GIS software of a high standard has to be completed with the procedure
of implementing the method of local polynomials.

• The ANN simulators are tools of interpolation, classification, environmental
modelling. It is obvious that the future GIS should have ANN modules. It has
not been cleared so far which architectures, learning rules, etc. can combine
all ANN functions with easy-to-use control tools. Answering these questions
demands a lot of research.
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• The ANN is related to the data model in two ways. First it has to reach the
input and output data in form of the particular GIS data model, secondly it can
be a data model itself substituting for example the DEM grid or TIN triangles
for the elevation data. Although this approach seems to be very promising one
should remember that it requires strict standardization of network architecture
and very flexible choice of learning algorithms and parameters on the side of
data production. At the same time the GIS can use the learned networks very
easy running in recall mode forward propagation of the standardized network
architecture.
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