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Abstract

SEILDEL – HABERFIELD’s [1] work was based on the analysis of the regular triangular asperities
and assumed that the asperities were rigid. They used normal stiffness shear stress (CNS) to measure
the joint dilatation rate and extended the LADANYI – ARCHAMBAULT ’s [2] approach. The aim of
this research is to investigate the dependence of the constant normal load (CNL) on the rate of the
dilatation. Three points were chosen on the bilinear failure envelope: the first in the first linear part,
the second in transition stress, and the third in the second part of the bilinear failure envelope. 12
regular triangular cement mortar specimens were used to carry out this research. These cement mortar
specimens were investigated by TISA – KOVARI [3] before so all the material and shearing constants
were well-known. The other purpose of this research was to observe the influence of the normal stress
on the dilatation–displacement curves.

Keywords: direct shear test, constant normal load, shear–dilatation and shear–displacement, rock
joints failure envelope.

1. Introduction

Generally rock is not homogeneous and isotropic due to the presence of disconti-
nuities. Therefore for practical applications a distinction between the terms ‘rock
material’ and ‘rock mass’ has to be made. Rock material refers to the continu-
ous body found between joints, faults, etc. and consists of one or more lithologic
units which form a structure framework and may or may not contain joints, faults,
etc. The term ‘discontinuity’ refers to a separation surface, i.e. a break in the
spatial continuity of a material. In the case of rock mass discontinuities can be
present in the form of joints, faults, cavities, stratification surfaces and shistosity
surfaces. The prediction of the shear strength developed in rock joint undergoing
shear displacements is a subject which has brought increased attention in recent
years.

Stability analysis in jointed rock is often governed by the stability of a critical
joint. In such cases, it is assumed that no interaction exists between the rock and the
joint; the joint can therefore be considered isolated. The mechanical characteristics
of the joint plane are necessary for assessing instability. The direct shear test is a
suitable experiment to determine these parameters. Apart from a few exceptions, the
normal force has been generally held constant in shear tests reported in the literature.
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This experimental boundary condition correspondsin situ to a rock block slide at
the surface (Fig. 1). The block is able to slide freely and the normal force acting on
the joint remains constant during the slide.

Fig. 1. Comparing the rock joint strength envelope

When non-planar surfaces are in sliding contact, they tend to dilate if the
boundary conditions permit such deformation. The amount of dilatation depends
on the geometry of the contacting surfaces, normal stiffness of the joint, deformabil-
ity of the surrounding media. Dilatation causes enhanced shear strength due to the
increased normal stress. Proper modelling of the shear behaviour of rock disconti-
nuities must take into account the conditions imposed by the rock mass rigidity. In
this situation, the normal stress path should be properly understood for the accurate
prediction of shear strength. Such behaviour is more realistically represented in
the controlled normal stiffness shear tests (CNS) rather than in the conventional
constant normal load (CNL) tests.

2. Theoretical Background

PATTON [4] performed a series of constant load stress direct shear tests with regular
teeth inclination,i , at varying normal stresses. From these tests he established a
bilinear failure envelope – failure from an asperity sliding and asperity shearing
mode. The equations for the two portions of the failure envelope are given below:

τ = σn tan
(
φµ + i

)
, (1)

τ = c j + σn tanφµ, (2)
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where
c j = cohesion;
φµ = basic friction angle;
i = regular teeth inclination.

LADANYI – ARCHAMBAULT [2] provided an extension to Paton’s model to
account for the sliding and shearing mechanisms found in natural rock joints. They
considered the shear resistance of joints comprising regular triangular asperities
with asperity angles ofi . They suggested that the joint strength of natural joints
could be determined from the applied normal stress, the basic angle of rock and
the joint dilatation rate. They used the energy principles and rewrote the Patton’s
equation in the asperity sliding mode as

τ = σn tan
(
φµ + ν̇

)
, (3)

where
φµ = basic friction angle;
ν̇ = the rate of dilatation at failure.

SEIDEL – HABERFIELD [1] analyzed using extensions of LADANYI – AR-
CHAMBAULT ’s [2] approach. They suggested that the shear resistance of multi-
asperity profiles in degrading rocks with varying asperity angles should be com-
puted by combining the individual shear resistance of each individual asperity face
as follows:

τ = σn tan

[
tani + tanφµ

1 − tanφµ

]
, (4)

where
φµ = basic friction angle;
ν̇ = the rate of dilatation at failure,
i = regular teeth inclination.

According to (4) the effective friction angle is given:

φdeg rade= tani + tanφµ

1 − tanφµ

. (5)

Even though the bilinear model is easier to use, the rock joint strength is better
characterized by a curve than by a bilinear envelope. JAEGER’ S [5] equation has
been proposed for this conceptually simple case, and the contributions to joint
strength from different factors can be separated easily. Jaeger’s basic equation is
shown with Patton’s equation inFig. 2 and is given by:

τ = c j

[
1 − ebσn/qu

] + σn tanφµ, (6)

where
c j = cohesion;
b = empirical constant;
σn = normal stress;
qu = uniaxial compressive strength;
φµ = basic friction angle.



182 B. VÁSÁRHELYI

Fig. 2. Schematical view of the shear apparatus used in combination with a loading machine

3. Test Equipment

The CNL (constant normal load) equipment was designed and built in the Rock
Mechanics Laboratory of the Swiss Federal Institute of Technology, Zurich [3]. To
transmit force to the specimen it was cast in epoxy resin in the usual manner. The
shear box fits exactly between two massive L-shaped steel pieces (Fig. 3). The
normal force (N ) and shear force (S) were applied through one of these L-shaped
steel pieces. The other L-shaped steel piece provided the reactions, which were the
lower loading plates of the servo-controlled press. This was achieved by resting the
L-shaped steel piece against the front side of the frame as well as on a cylindrical
bearing box with rests on the lower loading plate.

Fig. 3. A typical stress–strain and dilatation–displacement curve

The shear apparatus is designed in such a way that both parts of the test
specimen can be displaced and rotated with respect to each other without constraints.
This is made possible by load transfer through the cross roll and the spherical joint
arrangement. The center of the sphere is aligned with the center of the joint surface
at the start of the test.
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A fairly long hydraulic jack was chosen in order to minimize the component
of the jack force due to its rotation under the action of the shear deformations.
The hinged load cell placed between the sack and the specimen was selected on
account of its high accuracy, simple calibration and its direct electrical signal. The
measuring system consists of load cells (S andN ) and 6 displacement transducers.
The measurement of the relative displacement of the joint surfaces in the directions
of N andS is carried out directly at the joint itself, on both sides of test specimen.
The maximum normal stress and shear stress which can be applied to a joint surface
of the size of 24×12 cm are 20 N/mm2 and 100 N/mm2, respectively.

4. Material Description

The interpretation of the results of shear tests on real rocks is usually complicated
by sample variability. To overcome this difficulty the laboratory specimens were
made from an artificial material so that the shape, size and internal strength of
the irregularities or ‘teeth’ on the surface of the test specimen could be evaluated
separately.

Cement mortar was selected as test material as it has rock-like properties.
Table 1 presents the physical properties of the cement mortar. Basic shearing
constants were determined in the previous researches of TISA – KOVARI [3].

Table 1. Physico-mechanical properties of the cement mortar

Physico-mechanical propertiesIndex Unit Value
Modulus of elasticity E GPa 17.5
Poisson’s ratio ν – 0.1
Maximum stress σ MPa 60
Tensile stress σt MPa 6.5
Basic friction angle φµ degree 33.64
Asperity sliding angle α degree 59
Cohesion c j N/mm2 2.13
Transition stress σT N/mm2 2.1
Density γ g/cm3 2.2

All specimens were 150 mm wide and 140 mm long with four regular teeth where
the distance between the teeth was kept constant at 20 mm. The teeth were 5 mm
high, 15 mm thick at the bottom and the inclination angle of the teeth was 26.57◦.
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5. Results and Discussion

Using cement mortar joints, 12 tests were carried out with 3 different normal stress
values: 1.05; 2.10 and 3.15 N/mm2. These values were chosen because the aim
of this research was to investigate the influence of the normal load in three points:
in the first linear part, in the transition stress and in the second part of the bilinear
failure envelope. The measured maximum and residual stresses were in the known
lines. The measured results with the variances are summarized inTable 2.

Table 2. Measured results with variances in parentheses

Normal Peak shear Res. shear
forceσn stressτp stressτr tan−1

(
τp/σn

)
tan−1 (τr/σn)

N/mm2 N/mm2 N/mm2

1.05 1.71 (0.19) 0.72 (0.10) 58.45 (2.88) 34.43 (3.14)
2.1 2.99 (0.28) 1.29 (0.07) 54.91 (2.55) 31.71 (1.46)
3.15 3.19 (0.27) 2.03 (0.09) 45.36 (2.31) 32.74 (1.19)

Table 3 compares the effective friction angles calculated by different methods
according toEq. (4) [1], Eq. (3) [2] (the variance in the bracket). The effective
friction angle was 60.21◦ according to Patton’sEq. (1).

Table 3. The measured and calculated results with the different theories

Normal forceσn Measured Eq. (5) Eq. (3)
N/mm2 dilatation anglėν φdegrade φµ + ν̇

1.05 24.76 (1.19) 59.07 (0.82) 58.40 (1.19)
2.10 22.42 (1.18) 58.11 (0.57) 56.06 (1.18)
3.15 12.48 (2.44) 53.83 (0.95) 46.12 (2.44)

Comparing the results of the CNS tests, in the case ofEq. (3) all three points
are closer to the original than the others. ThisEq. (3) is correct where the other
equations fail. This means that this is a more general equation for the measured
dilatation–displacement curve and it should be valid until the ‘teeth’ or irregularities
are shorn off or till the deformation of the teeth can be measured. This is possibly
the point where the Jaeger’s joint failure envelope curve (Eq. (5)) ‘touches’ the
Patton’s linear curve.

HABERFIELD – JOHNSTONE[6] idealized the shear behaviour of concrete–
rock joints under CNS conditions. The other aim was to study the character of
the dilatation–displacement curve under CNL conditions. The rate of dilatation is
not the maximum at peak shear response (because of the sliding) and continues to
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increase at a decreased rate until the minimum shear strength is reached.Fig. 4
shows a typical shear stress vs. displacement and dilatation vs. displacement
relationof a typical specimen. All the dilatation–displacement curves can be divided
into three parts: in the first part (I) during the increasing strain-stress the angle of
the teeth is constant. This angle is not changing in the second part (II) where the
stress is decreasing. In the third part (III) during the decreasing shear-stress the
changing of the angle is successive and it becomes linear in the residual part of the
shear-stress. The maximum dilatation is, of course, decreasing with the increased
normal load. In this case the average maximum dilatation was 1.10 mm at the
1.05 N/mm2 normal load, 0.67 mm at 2.1 N/mm2 and 0.37 mm at the 3.15 N/mm2

applied normal load.

Fig. 4.

6. Conclusion

The results show that the measured dilatation angle (ν̇) decreases with the increased
normal force and it is always present. However,Eq. (3) is also correct for the cases
when the Patton’s and the Seidel and Haberfield equations fail. This means that this



186 B. VÁSÁRHELYI

is a more general equation and it should be valid until the ‘teeth’ (or irregularities)
are not shorn off. This point is not at the transition stress, but in the meeting point
of the Jaeger’s curve and the bilinear curve. The measured dilatation–displacement
curves show that after the peak stress the rate of dilatation does not change for a
long time.
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