
Ŕ periodica polytechnica

Civil Engineering

58/1 (2014) 23–31

doi: 10.3311/PPci.7032

http://periodicapolytechnica.org/ci

Creative Commons Attribution

RESEARCH ARTICLE

Parallel scanning of implicit surfaces

with the simplex algorithm

Róbert K. Németh

Received 2013-08-08, revised 2013-11-10, accepted 2013-12-23

Abstract

Solution of mechanical problems often requires the analyti-

cal or numerical calculation of equilibrium paths, while mul-

tidimensional solution sets are rare. From this requirement

emerged numerous methods for the calculation of bifurcation

diagrams. Two large groups of solution methods are the con-

tinuation methods and the scanning methods (however hybrid

algorithm exists as well). The Simplex Algorithm is a robust

approximative technique based on the Piecewise Linearization

(PL)–algorithm, which has its application as a continuation and

as a scanning algorithm as well. In this paper we will show the

extension of the method for finding a 2-dimensional manifold

(i.e. surface) with the scanning of the parameter space. We an-

alyze the performance of the algorithm and its parallelization

through two simple examples.
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1 Introduction

In many engineering problems the equilibrium paths must be

found in order to analyze the system’s behavior. There are ana-

lytical methods to find the equilibrium path for many problems,

but increasing complexity (geometrical and material nonlinear-

ities, imperfections etc.) leads to necessity of numerical meth-

ods. There are two main types of numerical methods. Path-

following techniques require a known solution point to start

from. Most existing algorithms belong to this group, such as the

Newton-Raphson iteration, the collocation method used in the

program AUTO ([7] and [8]), and the approximate PL-algorithm

([1], [10]). Depending on the method of choice these techniques

are able to find the bifurcation points along the path and decide

which path to follow after that. The second type of numeri-

cal methods are the scanning methods. Scanning methods find

all solutions inside a given region of the parameter-space, do

not need any starting point, and without any further effort they

give the bifurcations along the branches as well ([13] and [11]).

Hence scanning methods do not need a starting point, and they

are able to find disconnected branches as well.

For a few problems the solution set forms a two-dimensional

manifold. This can happen when the loading of a structure de-

pends on two independent parameters, or when we are looking

for the equilibrium paths as a function of an additional struc-

tural parameter. An example is the clamped-clamped rod with a

compression force and a twist moment at the end. In the space

of parameters, that defines physical configurations uniquely, the

points that correspond to equilibrium configurations are forming

surfaces. Beyond analytical methods for finding these kinds of

surfaces numerical algorithms can also be used. There are var-

ious methods for the surface following of these types of prob-

lems, differing in the shape of the surface elements of the con-

tinuation (see e.g. [4] and [15]). It is possible to find a whole

surface inside a given part of the parameter space as long as we

are able to define a starting point for the continuation. It is also

possible to find the bifurcation points or lines on the surfaces.

But, as usual with the continuation algorithms, it cannot find

non-connected equilibrium points. If there are such paths with

unknown starting points, one has to scan the parameter space
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for solutions. Scanning plane sections of the parameter space

can be a solution for this problem, but it gives no direct infor-

mation about the connectedness of the lines between two plane

section. In this paper we will introduce a robust, iteration free

algorithm for the direct computation of such surfaces.

Outline of the paper is as follows. In Section 2 we will present

the key idea of the Simplex Algorithm for finding 2-dimensional

solution manifolds based on the 1-dimensional algorithm. At the

end of the section we analyze the aspects of the parallelization

of the computation. In Section 3 we present simple applica-

tions with numerical results. First, with a slight modification of

the compressed-twisted rod problem we will analyze the equi-

librium surfaces of the hemitropic rod. Second, the effect of

bending springs on the elastic web of links will be analyzed. In

Section 4 we analyze the speed-up of the parallelization, and at

the end we draw the conclusions.

2 Parallel scanning for solutions of a 2D manifold

2.1 Error-functions in the Global Representation Space

and division of the GRS

In some of the engineering problems the solution is not char-

acterized by a line, but a surface. The solution surface can be

a result of the continuous symmetry of the problem, but this

should be avoided by a proper choice of variables and equilib-

rium conditions (see [12], and [20]). Other possibilities of a

solution surface are the loading with a two-parameter load (see

[19]) and the loading a structure with a one-parameter load while

the system properties vary with respect to another parameter.

We restrict our analysis to the following problems. The equi-

librium configuration of the structure can be described uniquely

by n parameters. We refer to the<n space spanned by those pa-

rameters as the Global Representation Space (GRS). Any point

in this space defines a configuration. We call a configuration an

equilibrium configuration when it fulfills all equilibrium equa-

tions and boundary conditions.

For the equilibrium of a configuration we define the error-

function

f∗(X) : <n →<n−2, (1)

which has its fix-points in the equilibrium configurations. The

equilibrium surface is defined by the set of all points X ∈ <n,

where f∗(X) = 0. In the Piecewise Linearization Algorithm the

GRS is divided into simplices, and the f∗ function is linearly

approximated inside each simplex [1]. The approximation is

based on the values of the function calculated in the vertices of

the simplex.

A simplex is the simplest linear object occupying a measur-

able part of an n-dimensional space. It has n + 1 vertices and

facets. Each facet is a simplex on an n − 1-dimensional hyper-

plane, containing n vertices of the simplex, i.e. only one vertex

of the simplex is out of the facet, so we can identify each facet

of the simplex by the non-contained vertex. Let us denote the

coordinates of the n + 1 vertices of the simplex in the GRS by

Xk, (k = 0, . . . , n). We refer to the facet of the simplex opposite

to the kth vertex as the kth facet.

The GRS is divided into simplices in two steps. First we di-

vide the space into orthotopes ([6]) to which we will refer to

as hyperrectangles with the edges as vectors bi, (i = 1, 2, . . . , n)

pointing parallel with the coordinate-axes of the GRS. (These

hyperrectangles are often referred to as hypercubes or n-cubes,

as it is done in [3], but the edges do not necessarly have the same

length or even unit, so we use the term hyperrectangle here.)

Next we divide each hyperrectangle into n! simplex as fol-

lows. We choose one node of the hyperrectangle as an origin, its

global coordinates will be collected in the vector X0. A permu-

tation (without repetition) of the numbers 1, 2, . . . , n is denoted

by p1, p2, . . . , pn. Each of these permutations defines one sim-

plex inside the hyperrectangle. We refer the vectors pointing

from the X0 vertex to the other vertices of the simplex as the di

directors of the simplex. The directors with a given permutation

can be calculated as:

di =

i∑
k=1

bpk
(2)

To scan the GRS we have to linearize the error-functions in

each simplex of each hyperrectangle. The linearization is based

on the calculated values of the error-function in the vertices of

the simplex. Then we have to check whether the solution has

a segment inside the simplex or not. Due to the linarization it

is a simple task, but the increase in the dimension of the prob-

lem results in an exponential increase in the number of simplices

and hyperrectangles, leading in the end to an enormous compu-

tational need.

Before showing each above step in detail, we have to note in

advance the following:

• As some vertices of every simplex inside a hyperrectangle co-

incide, it is recommended to compute the error-functions in

all vertices of the hyperrectangle first, and then just take the

necessary values to each simplex from the stored set.

• The computation of the hyperrectangles are independent of

one another, which suggests the possibility of parallelization

of the problem. In the parallel method different regions of

the GRS are computed by different program threads, or even

computers.

• While computing a neighboring hyperrectangle of an earlier

computed hyperrectangle the error-functions are known in the

common vertices. Using these stored values instead of calcu-

lating them again is definitely a further possibility to decrease

the computation time.

2.2 Finding the solution inside a simplex

Any point in the n-dimensional GRS can be represented as:

X = X0 +

n∑
i=1

xidi, (3)

Per. Pol. Civil Eng.24 Róbert K. Németh



where X0 is the initial point of the hyperrectangle, the set of di

directors identify the simplex inside the hyperrectangle and the

n components of the vector x identify the point. The point x is

inside the simplex or on its one or more facets, if:

n∑
i=1

xi =< 1, and (4)

xi >= 0, i = 1, . . . , n. (5)

The equal sign of Eq. (4) means that the point x is in the hyper-

plane of the 0th facet of the simplex. The equal sign of Eq. (5)

with i = j means that the point x is in the hyperplane of the jth

facet of the simplex. If every inequality of Eqs. (4)-(5) holds and

the point lies in the plane of one facet (i.e. exactly one equality

holds), then we say that point x is on the corresponding facet. If

every inequality of Eqs. (4)-(5) holds and exactly two equality

holds, then we say that point x is on a hyperedge of the simplex.

The linearization of the error-functions f∗(X) inside the sim-

plex is based on the error-function values in the vertices of the

simplex. The linearized error-function is denoted by f(x). For

brevity we will denote the f∗(Xi) values in the ith vertex by fi.

Based on the n + 1 vertices of the simplex the linear approxima-

tion of the error-functions is:

f(x) = f0 +

n∑
i=1

xi(f
i − f0). (6)

The f(x) = 0 condition represents n−2 linear equations for the

n unknown of x. The solution set of these equations is typically

a single 2-dimensional plane. In a general case the plane crosses

each hyperedge, or its extension in one point. If this point is on

the hyperedge, then the linearized solution plane goes through

the simplex and has solution points on further hyperedges as

well. These solution points form a convex polygon. The number

of the vertices of the polygon depends on the state of the plane

with respect to the simplex.

It was shown earlier that the hyperedge of every pair of facets

can be characterized by a system of two linear equations. Every

node of the solution polygon fulfills Eq. (6) and the equations

of two facets. This gives a total of n equations of n unknowns,

which can be solved using standard methods, like the Gaussian

elimination with partial pivoting. The resulting xi values rep-

resent one point of the linearized solution plane on two facets

analyzed. If this point is not outside the simplex (i.e. Eq. (4)-(5)

holds), then xi is on both facets of the simplex so we can store

the solution point X = X0 +
∑n

i=1 xidi. (From numerical point

of view, the constraints should be handled as
∑n

i= j x j ≤ 1 + ε,

and xi ≥ −ε, (i = 1, . . . , n) with a numerically small ε.) The

Gaussian elimination must be produced for each combination of

facet pairs of the simplex with the check of the solution at the

end.

The n + 1 facets of the simplex can be paired in (n + 1)n/2

different ways. These (n+1)n/2 systems of linear equations dif-

fer only in their last two equations. If the first n − 2 pivots of

the Gaussian elimination are chosen only from the first (n − 2)

equations, then the same manipulation is applied in those first

(n − 2) steps of the operation. This equivalence can be applied

for a numerically more efficient technique, where we make these

(n − 2) steps on all equations of Eq. (6) and on all facets’ equa-

tions. In order to do that we form the following system of linear

equations:  F0

B0

 [x] =

 g0

e0

 (7)

with

F0 =



f 1
1
− f 0

1
f 2
1
− f 0

1
. . f n

1
− f 0

1

f 1
2
− f 0

2
f 2
2
− f 0

2
. . f n

2
− f 0

2

. . . .

. . . .

f 1
n−2
− f 0

n−2
f 2
n−2
− f 0

n−2
. . f n

n−2
− f 0

n−2


, (8)

and

B0 =



1 1 . . 1

1 0 . . 0

0 1 . . 0

. . . .

0 . 1 0

0 . . . 1


, x =



x1

x2

.

.

xn−1

xn


,

g0 =



− f 0
1

− f 0
2

.

.

− f 0
n−2


, e0 =



1

0

0

.

0

0


,

(9)

or in a complex form:
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− f 0

1
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− f 0

1
. . f n

1
− f 0

1

f 1
2
− f 0

2
f 2
2
− f 0

2
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− f 0

2

. . . .

. . . .

f 1
n−2
− f 0

n−2
f 2
n−2
− f 0

n−2
. . f n

n−2
− f 0

n−2

1 1 . . 1
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0 1 . . 0

. . . .

0 . 1 0

0 . . . 1





x1

x2

.

.

xn−1

xn


=



− f 0
1

− f 0
2

.

.

− f 0
n−2

1

0

0

.

0

0



.

(10)

Here we draw the attention of the reader to the fact, that in order

to be on the hyperedge of the simplex one must fulfill only two

of the last n + 1 equations. We do a partial Gaussian elimina-

tion on Eq. (7) with a reduced line exchange, choosing the pivot

(n − 2) times always from the first n − 2 rows only (above the

horizontal line in Eq.(10)). At the end of the partial elimination

the structure of the system has the following, partial row echelon

form (the stars represent the non-zero elements):
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

1 ∗ . . ∗

0 1 . . ∗

. . . . ∗

. . . . ∗

0 0 . 1 ∗ ∗

0 0 . . ∗ ∗

0 0 . . ∗ ∗

0 0 . . . ∗

. . . . .

0 0 . . ∗ ∗





x1

x2

.

.

xn−1

xn


=



∗

∗

∗

∗

∗

∗

∗

∗

.

∗



, (11)

or in a short form:  F

B

 [x] =

 g

e

 . (12)

This idea was originally used in the simplex algorithm intro-

duced for the calculation of equilibrium paths in [13]. In the

case of one-dimensional solution sets it is possible to decrease

the number of non-zero columns below the horizontal line to

one.

The back-substitution is done independently n × (n + 1)/2

times. We choose two rows from the last n + 1 equations of

the system Bx = e and solve them for xn and xn−1. (It is possible

that there is no unique solution for these two variables, but it

would mean that the solution point is outside the simplex, so we

would discard those solution anyway.) Then the next n− 2 steps

of the back-substitution must be performed on Fx = g. If some

of the resulting n(n + 1)/2 solution for xi fulfill the inequality

conditions in Eqs. (4)-(5), then we transform those local coordi-

nates to the GRS with Eq. (3) and Eq. (2), and then store them.

2.3 Parallelization of the problem

The scanning algorithm explained in the previous subsection

is a so-called massively parallelizable algorithm. Each simplex

can be calculated independently from the others, and this holds

for every hyperrectangle as well. The parallelization can be ap-

plied for the calculation of the error-functions in the nodes of

hyperrectangles and for the building and solution of the sets of

linear equations. A former method by Gáspár et al. in [13] used

the PVM environment to divide the GRS between the collabo-

rating computers.

Current direction in the field of parallel computation is the ap-

plication of the computational power of graphical cards. For the

real time creation of 3D scenes in games and CAD applications,

similar calculations must be done on each pixel of the displayed

images. This led the development of the video cards in a direc-

tion where numerous graphical processing unit (GPGPU) can be

accessed from the main program. Depending on the manufac-

turer of the graphical processor, different extensions are avail-

able to access the GPGPUs for computational purposes, too.

When programming the GPGPU directly, a crucial point is the

careful planning of the data transfer between the system mem-

ory and the on-board memory of the graphical card.

In a preparation for this task, we developed a parallel version

of the algorithm with the OpenMP environment. OpenMP is

an API that supports shared memory multiprocessing program-

ming and enables the easy creation of numerous threads during

the running of the program [5]. From a programming point of

view it is simple to call the API, but creating the threads and

moving the data in the memory still requires precious compu-

tational time, so we implement the parallelization in a specific

way described below.

As we described the method in the previous subsection, hy-

perrectangles are calculated in a series one after one another.

The location of each hyperrectangle can be referred to with its

starting point in the GRS. Those starting points form a grid in

the GRS. In every hyperrectangle the error-functions are calcu-

lated in the vertices, and then the systems of linear equations of

the simplices inside the hyperrectangle are built and solved. The

white, wireframed cube in the center of Figure 1(a) shows one

actually calculated cube. For further application let us denote

the number of hyperrectangles in a row along the ith coordinate

axis of the GRS by Ci.

In order to decrease the time required for creating different

threads, for computing the error-functions and for solving the

systems of equations we create a larger block of hyperrectan-

gles, and calculate them in two parallel session. The series of

white, wireframed cubes in the center of Figure 1(b) shows one

of these blocks. One can see that only the last coordinate of the

starting points of the hyperrectangles varies in the block.

In the first parallel session the error-functions are calculated

in the nodes of the hyperrectangles. This requires the calculation

of the error-functions in the T1 = 2n−1(Cn +1) nodes of the GRS.

In the second parallel session we solve the systems of linear

equations of every simplex in the current block. To build the

B0 matrix the error-functions are taken from the stored results

of the previous session. This session requires the solution of

T2 = n!Cn simplices. Both of the sessions are calculated in a

parallelized cycle, where the threads are created at the beginning

of the cycle, and the steps of the cycle are divided between the

threads by the OpenMP library.

In both of the above sessions we group the T1 and T2 calcu-

lation into a prescribed number of threads. These numbers of

threads may be different, of course. Generally, the total num-

ber of independent calculations, i.e. T1 and T2 are different,

so the division of the calculation for the above described two

sessions is highly recommended, to minimize time, when the

threads have to wait for the unfinished ones. Further acceler-

ation of the method by the application of more advanced load

balancing techniques is beyond the goal of this paper.

3 Examples

3.1 Clamped-clamped rod with compression and twist

An essential example for the two parameter loading is the

clamped-clamped rod problem, where a long, initially straight,

linear elastic rod of circular cross-section with clamped-
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Fig. 1. Solution strategy with (a) a serial and (b) a parallel scanning for n = 3. White wireframed cubes are the currently calculated ones.

clamped ends is loaded at one end with a compression force

and a twist moment as the two independent load-parameter. The

simplicity of the rod model allows its analytical and numerical

analysis, while it is still a complex enough model to approxi-

mate the behavior of long structures of the size in the range of

molecule chains to undersea cables. Henderson and Neukirch

presented a surface following method, which is capable of find-

ing the surface elements connected to any given solution point

[20]. (Moreover, it was shown in a related paper [16], that in

this problem all solutions are connected to a given set of triv-

ial solution points, so the method finds all of the solutions.) The

continuous symmetry of the isotropic rod causes that every equi-

librium configuration has an axis of flip-symmetry.

If the non-existence of disconnected surfaces is not proven,

we have to know a solution point on each of them to use a

surface following. (This is a drawback of every continuation

method, not only of this specific one, of course.) Scanning of

the parameter space avoids this need of starting points, as it finds

all solutions in the analyzed region independent of their connec-

tivity.

In this subsection we present the results of the scanning

for a hemitropic rod under the same end-conditions. For the

hemitropic rods no proof is known to the author, that all solution

surfaces are connected, but the scanning algorithm is capable to

find all solution with the same flip-symmetry, independent of the

connectedness of the surfaces.

The rod shape is governed by the following system of differ-

ential equations:

r′(s) = νi(s)di(s), (13)

d′i(s) = κ(s) × di(s), (14)

κ(s) = κi(s)di(s), (15)

where the vector r(s) describes the axis of the rod, di(s) are the

directors (basis of the local reference system) of the cross sec-

tion of the rod, νi(s) are the strain properties of the cross-section,

κ(s) is the vector of specific rotation of the cross-section and

κi(s) are the specific rotations of the cross-section. The prime

represents a differentiation with respect to the arc-length s. The

strains of the cross-section are the ν1(s) and ν2(s) shears and the

ν3(s) stretch. The specific rotations of the cross-section are the

κ1(s) and κ2(s) curvatures and the κ3(s) twist.

The internal forces and internal couples are:

n(s) = ni(s)di(s), m(s) = mi(s)di(s). (16)

The static equilibrium of an elementary rod segment are ex-

pressed by the equations:

n′(s) = 0, m′(s) = r′(s) × n(s). (17)

Constitutive equations reflect the assumptions on the material of

the rod. We neglect the shear deformations, thus ν1(s) = ν2(s) =

0. We assume circular cross-section and linear elastic material

behavior, so the bending stiffness A is the same in the first and

the second local direction:

m1(s) = Aκ1(s), m2(s) = Aκ2(s). (18)

Due to the hemitropy of the rod the twist and the stretch are

coupled:

n3(s) = D(ν3(s) − 1) + Eκ3(s),

m3(s) = E(ν3(s) − 1) + Cκ3(s).
(19)

The boundary conditions are the clamped constrains on the

beginning of the rod:

r(0) = 0, di(0) = ei, i = 1, 2, 3, (20)

and the clamped constraints on the final end, with the load pa-

rameters λ1, λ2 on the compression and the twist moment:

r(L) · e1 = r(L) · e2 = 0,

d1(L) · e3 = d2(L) · e3 = 0,

n3(L) = λ1, m3(0) = λ2.

(21)

The boundary conditions of Eqs. (20)-(21) include a continu-

ous symmetry group, i.e. any equilibrium configuration rotated

around the z-axis will fulfill the same boundary conditions as

well. This symmetry increases the dimension of the solution

set by one, which would make impossible to use any classical

method for the calculation. The same continuous symmetry ex-

ists in the case of isotropic rods (where the normal- and the twist

stiffness are decoupled). For that problem Neukirch and Hen-

derson proved in [20] that this continuous symmetry causes at

least one axis of C2 symmetry. The axis of this flip-symmetry

goes through the mid-point of the rod and orthogonal to the line

connecting both ends of the rod.

Parallel scanning of implicit surfaces with the simplex algorithm 272014 58 1



In the case of a hemitropic rod, the continuous symmetry of

the initial state and the boundary conditions results the same

symmetry property, thus there are solutions with an axis of flip-

symmetry [14]. To avoid multiple solutions from the rotation of

a configuration around axis z, we only calculate those where the

axis of flip-symmetry lies in the yz-plane (and is parallel to the

y axis). Then, the global equilibrium of forces acting on the rod

decreases the number of unknown parameters, because n ·e2 = 0

must hold at any cross-section. The flip-symmetry leads to three

constraints in the mid-point of the rod:

rx(L/2) = 0, d3(L/2) · e2 = 0, m(L/2) · e2 = 0. (22)

By setting the origin of the coordinate system in the mid-point

of the rod with axis z parallel to the rod in that point while keep-

ing the axis of flip-symmetry parallel to axis y allows one to de-

crease the size of the problem. Describing a configuration that

way the initial conditions are

r(L/2) = 0, d1(L/2) = e1, d2(L/2) = e2, d3(L/2) = e3

(23)

with the force parameters

n(L/2) =
[
nx 0 nz

]T , m(L/2) =
[
mx 0 mz

]T . (24)

One can calculate the rod shape from its mid-point to its end. In

the end-point the flip-symmetry requires that the line of the tan-

gent must cross axis y orthogonally, leading to the constraints:

d3y(L) = 0, rx(L)d3z(L) − rz(L)d3x(L) = 0. (25)

Calculation of the rod shape with this method results in a GRS

with the dimension of 4. The results of the scanning in this space

makes the comparison of the results to those presented in [16]

easy.

We calculated the space of nz,mz,mx, nx with 70x50x50x50

hyperrectangles. The parameters of the rod were:

L = π, A = 1, C = 1, D = 500, E = 2. (26)

The rod shape was calculated with a second-order Runge-Kutta

method with a step size of ds = 0.001π. The results are shown in

the rendered image in Figure 2. In the figures three coordinates

are shown, and the fourth parameter serves as a color-code of

the surface elements.

We made the scanning of the same part of the GRS for an

isotropic rod and for a hemitropic rod with reversed handedness.

These calculations were done by substituting the E values of 0

and −2 into Eq. (26), respectively. Figure 3 shows the results

of these calculations. The viewpoint of each figure is the same,

so the effect of the handedness of the rod can be observed. To

make the difference between the three diagrams cleaner, Figure

4 shows three rod shapes from each diagram. The load param-

eters are for each solution: nz = −20 and mz = −1. The mx

bending moment varies between 6.940 and 6.650 while the nx

shear force varies between 0.501 and 0.912.

Fig. 2. Results of the scanning of the hemitropic rod. Blue and cyan lines

represent the crossings of the scanned surfaces with the mz = 0 and the nz = 0

planes, respectively.

3.2 Perturbation of the bifurcation diagram of the elastic

web of links

Kocsis et al. presented a discrete model for the analysis of

static equilibrium of rods with shear stiffness in [19]. The model

consists of stiff elements of the same length ` (so-called links)

arranged in a squared mesh. The initially horizontal and vertical

links are connected via internal joints and internal spiral springs

of stiffness c. If we combine this model with spiral springs of

stiffness k, connecting the consecutive columns as shown in Fig-

ure 5, we get a discrete model with bending and shear stiffness

[21]. The k-springs themselves have the same role as the springs

of the elastic linkage, which is a discrete model of the Euler-

problem. The elastic linkage is a widely analyzed model, be-

cause its simple nonlinearity allows the occurrence of spatial

chaotic behavior. This chaotic behavior of the elastic linkage

was first analyzed by [9], and recently by [17, 18] under the ef-

fect of non-conservative loading. The equilibrium equations of

the mixed model can be derived from the potential energy. Sim-

ilarly to the problem without bending stiffness, the tilt angle of

the initially horizontal bars will be the same for each floor. This

lets us simplify the non-empty sides of the equilibrium equations

into the form:

f1 = −λ sin(β1) + β1 − (1 − r)β −
r

2
β2

fi = −λ sin(βi) + βi − (1 − r)β −
r

2
(βi−1 − βi + βi+1),

i = 2, . . . ,N − 1

fN = −λ sin(βN) + βN − (1 − r)β −
r

2
βN−1

(27)

where λ = (M + 1)F/(2k + 4Mc) is the non-dimensional load

parameter, βi is the angle of the columns on the ith floor to

the vertical, β is the average of the angles of the columns,

r = 2k/(2k + 4Mc) is the ratio of the bending stiffness of one

floor to the total stiffness of the same floor. In the equilibrium

state the f j( j = 1, . . . ,N) functions have fix-points, so they can

be treated as the error-functions for the calculation of bifurcation

diagrams in the N+2-dimensional space of λ, r, β j( j = 1, . . . ,N).

Thus, with the notation of Section 2 the GRS is n = N + 2 di-

mensional.
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(a)

(b)

Fig. 3. Equilibrium surfaces of (a) the isotropic rod and (b) the hemitropic

rod with reversed handedness. The viewpoint and the form of the figures are the

same as in Fig.2

We calculated the bifurcation diagram of a three-level web

(i.e. N = 3) unraveling the double cusp catastrophe of the

model. The load parameter varied between 0.4 and 2.0, the stiff-

ness ratio varied between 0 and 1, and the column angles varied

between -2 and 2. The GRS was divided into 25×40×40×40×40

hyperrectangles.

The results are shown in Figure 6. We present here load pa-

rameter λ as a function of the angle of the first and the top col-

umn. The graph is colored depending on the stiffness ratio r, so

isocolor lines are the equilibrium paths of a web with fixed stiff-

ness ratio. Black lines on the boundaries of surfaces are the equi-

librium paths of the elastic web of links (starting from λ = 1) or

of the elastic linkage (starting from λ = 0.5 and λ = 1.5). Near

the λ = 1 bifurcation the parasitic solutions as a direct result

of the higher order catastrophe can be observed. The coloring

methods allows one to see the fast changing behavior of some

paths depending on the r parameter, while the linkage-like bifur-

cated paths undergo a simple translation along the λ axis. The

blue frames are the typical deformed shapes of an elastic web

with no bending springs (i.e. r = 0), their secondary branches

on the surface are indicated by the green lines.

4 Speed-up of the parallel computation

For every parallel algorithm an important question is the

speed-up of the computation. Using J threads can accelerate

Fig. 4. Three equilibrium configurations of the same load level nz = −20,

mz = −1. The isotropic rod is in the middle, the hemitropic rods with E = −2

and E = 2 are shifted parallel by 0.4 along the axis x in negative and positive

direction, respectively.

Fig. 5. Elastic web of links

the computation by a factor of J only if the whole algorithm can

be parallelized. Otherwise, the serial parts of the program run

with the serial mode. So, there is a theoretical maximum for the

acceleration of the code referred to as Amdahl’s law [2]. This

upper limit of the acceleration is still a theoretical value, because

creating the independently running threads, using the same I/O-

devices results in further overheads. We analyzed the speed-up

of our algorithm on a desktop computer with the 4 cores of an

Intel(R) Core(TM) i7-3770 CPU, allowing 8 threads as a max-

imum. We have done the calculation on both of our previously

presented problem with the following results.

The scanning of the five-dimensional GRS of the problem an-

alyzed with the elastic web was done using 1 to 10, 12 and 16

threads. Table 1 shows the measured time for the calculations,

and their ratio to the measured time with one thread multiplied

by the number of actual treads. Figure 7 shows the measured

time for the calculations as a function of the threads on a log-

log scale. The ratio in Table 1 has the lower limit of 1 (and,

depending on the part of the serial code an even higher one), but

the smaller it is, the better the efficiency of the parallelization is.

From the results we can conclude that the speed-up is almost lin-

ear to the number of threads as long as there is a core for every

thread. For the thread numbers 5 to 8 the efficiency decreases,
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Fig. 6. Bifurcation diagram of the bielastic web of links with N = 3. Color

represents the ratio r of the shear stiffness to one floor’s total stiffness. The six

blue webs are typical deformed shapes of the elastic web of links.

Tab. 1. Measured times of calculations with various numbers of threads

Threads (J) 1 2 3 4 5 6 7 8 9

Time [min] (TJ) 78.5 39.6 27.2 21.0 26.0 21.9 18.9 16.8 24.8

Proc. time (JTJ) 78.5 79.2 81.6 84.0 130.0 131.4 132.3 134.4 223.2

Ratio (JTJ/T1) 1 1.01 1.04 1.07 1.65 1.67 1.68 1.71 2.85
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Fig. 7. Log-log scale diagram of the running time (t) as a function of applied

threads. Almost linear segments for J = 1, 2, 3, 4 and for J = 5, 6, 7, 8 represents

linear scalability of the problem as long the maximum usage of cores is similar.

but the acceleration is still close to linear. More threads per core

will results inevitably in a performance drop. The reason is that

some of the threads must move from the cache of the processor

to a slower memory and back. These conflicting threads result

in a breakdown of the overall performance, especially, when the

number of threads exceeds the total number of available paral-

lel threads. This can be seen as an extreme increase in the time

for the cases J = 9, J = 10, J = 12, J = 16. The optimal case

is J = 8, where the number of threads equals to the number of

available threads. But this optimum requires the system to op-

erate on that program only. Any system call of the operational
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Fig. 8. Log-log scale diagram of the running time (t) as a function of applied

threads in the calculation of the error-function and the solution of the system of

linear equations.

system may break down the performance in this case.

For the hemitropic rod we analyzed the effect of dividing the

number of threads between the calculation of the error-functions

and the solution of the system of linear equations. Figure 8

shows the results of the 4 × 4 runs in a triple-log scale. One

can see that multithreading results in a much larger speed-up,

when used for the calculation of the error-functions, hence the

numerical solution of the IVP has a much larger computational

need. Faster calculation of the error-functions (with respect to

the solution of the system of linear equations) leeds to a smaller

gap between the change of the accelerations, of course.

Per. Pol. Civil Eng.30 Róbert K. Németh



5 Conclusions and outlooks

Scanning version of the simplex algorithm is a powerful and

robust numerical method for approximate solution of nonlin-

ear problems with a one-dimensional solution set (e.g. finding

the equilibrium paths of a mechanical problem formulated as a

boundary value problem). We have shown, that a slight modifi-

cation of the method makes it capable for finding 2-dimensional

solution sets of nonlinear problems. These solution sets are sur-

faces in the parameter space. For the implementation we derived

a parallel code with the OpenMP environment, which is capa-

ble of using multiple cores of the CPU. We applied our method

for the calculation of the equilibrium surfaces of the clamped-

clamped hemitropic rod to see the effect of the handedness of

the rod, and calculated equilibrium paths for the perturbed elas-

tic web of links.

We analyzed the speed-up of the method with various num-

bers of separated threads, with differentiated thread numbers for

the various sessions of a calculation block. The current results

can be a good base for the parallel code making use of the GPG-

PUs of the graphical cards.
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