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Abstract

In this paper, we present a new sampling-based bi-criteria hy-

brid harmony search metaheuristic for the resource-constrained

project-scheduling problem (RCPSP) with uncertain activity du-

rations (UAD) and uncertain cash flows (UCF), with the to-

tal project duration (TPD) and the net present value (NPV) as

objectives. The proposed problem-specific Sounds of Silence

(SoS) metaheuristic is an appropriate hybridization of the robust

SoS developed to minimize the project makespan with uncertain

activity durations, and the crisp SoS developed for several a

primary-secondary (PS) and bi-criteria (BC) project schedul-

ing problems. In the presented hybrid approach, we applied a

sampling-based approximation to cope with the uncertain cash

flows. In order to illustrate the efficiency and stability of the pro-

posed problem-specific SoS, which is a new member of the SoS

family, we present detailed computational results for a larger

and challenging project instance. The computational results re-

veal the fact that the modified and extended SoS is fast, efficient

and robust algorithm, which is able to cope successfully with

the project-scheduling problems when we replace the traditional

crisp parameters with uncertain-but-bounded parameters.
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1 Introduction

Traditionally, project schedule uncertainty has been addressed

by considering the uncertainty related to activity duration. In

general, there are two approaches to dealing with uncertainty in

a scheduling environment (Davenport and Beck [1]; Herroelen

and Leus [2], and Van de Vonder et al. [3]): proactive and re-

active scheduling. Proactive scheduling constructs a predictive

schedule that accounts for statistical knowledge of uncertainty.

The consideration of uncertainty information is used to make

the predictive schedule more robust, i.e., insensitive to disrup-

tions. Reactive scheduling involves revising or re-optimizing a

schedule when an unexpected event occurs. At one extreme, re-

active scheduling may not be based on a predictive schedule at

all: allocation and scheduling decisions take place dynamically

in order to account for disruptions as they occur. A less extreme

approach would be to reschedule when schedule breakage oc-

curs, either by completely regenerating a new schedule or by

repairing an existing predictive schedule to take into account the

current state of the system.

According to the author’s opinion, from managerial point of

view the “rescheduling of rescheduling” like reactive process, as

a problem solving conception, is far from the reality. To avoid

the combinatorial explosion of scenario-oriented approaches,

we have to go back to the proactive schedule, and have to im-

munize it against the uncertainty in activity durations.

In this paper, we present a new sampling-based bi-criteria

(total project duration (TPD) and net present value (NPV)) hy-

brid harmony search metaheuristic for the resource-constrained

project-scheduling problem (RCPSP) with uncertain activity du-

rations (UAD) and uncertain cash flows (UCF). The proposed

problem-specific Sounds of Silence (SoS) metaheuristic is an

appropriate hybridization of the robust SoS developed to mini-

mize the project makespan with uncertain activity durations, and

the crisp SoS developed for several primary-secondary (PSC)

and bi-criteria (BIC) project scheduling problems in a wide

range [4], [5], [6]. The first members of the SoS family were

developed by [4] for standard single-mode and multiple-mod

RCPSP. In the proposed BIC-RCPSP-UAD-UCF approach, the

robust (immunized) schedule-searching phase is combined with
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a sampling-based duration-and-cost-oriented solution approxi-

mation phase.

The results are the approximated pareto-optimal schedules,

which are immune against the uncertainties in the activity du-

rations and which are the bests for TPD as primary and NPV

as secondary (NPV as primary and TPD as secondary) crite-

rion on the set of the uncertain activity duration and cash flow

parameters using a sampling-based solution approximation hy-

bridized with linear programming (LP). A problem specific fast

and efficient harmony search algorithm for large uncertain prob-

lems, namely the RCPSP-UAD-UCF version of Sounds of Si-

lence (SoS), which was previously developed for a wide range

of the RCPSP family, will be presented in a forthcoming paper.

2 Problem formulation

The theoretical description of the investigated problem, ac-

cording to the applied bi-criteria (BIC) approach may be the

following: The project consists of N activities i ∈ { 1, 2, . . . , N}

with nonpreemptable integer duration of Di periods. In the tra-

ditional approach, it is assumed that each activity duration is

a crisp value. Naturally, in the project-planning phase this as-

sumption may be far from the reality. Imagine, for example, a

new R&D project with several more or less new activities and

an extremely long planning horizon.

Furthermore, activity i = 0 ( i = N + 1) is defined to be the

unique dummy source (sink) with zero duration. The activities

are interrelated by precedence and resource constraints: Prece-

dence constraints force an activity not to be started before all its

predecessors are finished. Let

NR = {i→ j|i , j, i ∈ {q, 1, 2, ...,N} , j ∈ {1, 2, ...,N + 1}}

denote the set of immediate predecessor-successor network re-

lations (NR).

Resource constraints arise as follows: In order to be pro-

cessed, activity i requires Rir units of resource type r ∈

{ 1, . . . , R} during every period of its duration. Since resource

r, r ∈ { 1, . . . ,R} is only available with the constant period avail-

ability of Rr units for each period, activities might not be sched-

uled at their earliest (network-feasible) start time but later. Let

Tdenote the resource-constrained project’s makespan and fix the

position of the dummy sink in T + 1.

Without loss of generality, let α define the crisp discount rate

in the planning horizon. Naturally, for a long-time project this

assumption may be far from the reality, but from a methodolog-

ical point of view, it can be replaced by a not necessarily contin-

uous time function: α = α(t), t ∈
{

0, . . . ,T
}

without difficulty.

Let Ci, i ∈ { 1, 2, ..., N} denote the cash flow connected to activ-

ity i. By definition, the cash flow Ci, i ∈ { 1, 2 , ...,N} may be

negative, zero or positive and it is evaluated at the completion

time of activity i. This assumption would be replaced by a more

realistic one by introducing dummy activities with zero duration

and without resource requirements as cash flow events, which

connected to the real activities with predecessor-successor re-

lations. Naturally, the essence of our model is not affected by

this event-oriented modification, which methodological point of

view similar to the hammock activity handling [7], [8].

The traditional crisp RCPSP-NPV maximization can be de-

fined as a mixed integer linear programming problem (MILP) as

follows:

max

NPV =

N∑
i=1

∑
T∈Ti

Cit ∗ Xit

 = NPV∗ (1)

Xi + Di ≤ X j , i→ j ∈ NR (2)

XN+1 = T + 1 (3)

Xi =
∑
t∈Ti

Xit ∗ t

Ti =
{
Xi, Xi + 1, ..., Xi

}
i ∈ {1, 2, ...,N}

(4)

∑
t∈Ti

Xit = 1

Xit ∈ {0, 1}

i ∈ {1, 2, ...,N}

(5)

At = { i |Xi ≤ t < Xi + Di, i ∈ {1, 2, ...,N}}

t ∈ {1, 2, ...,T }
(6)

Utr =
∑
i∈At

Rir

t ∈ {1, 2, ...,T }

r ∈ {1, 2, ...,R}

(7)

Utr ≤ Rr

t ∈ {1, 2, ...,T }

r ∈ {1, 2, ...,R}

(8)

Cit = Ci ∗ e−α(t+Di−1)

i ∈ {1, 2, ...,N}

t ∈ Ti

(9)

Xit ∈ {0, 1}

t ∈ Ti

i ∈ {1, 2, ...,N}

(10)

The binary decision variable set Eq. 10 specifies the possible

starting times for each activity. By definition, the cash flow
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Ciconnected to activity i, i ∈ { 1, 2 , ...,N} may be negative,

zero or positive and it is evaluated at its completion time. The

discount rate is denoted by α. Objective Eq. 1 maximizes the

discounted value of all cash flows that occur during the life

of the project. Note that the early schedules do not necessar-

ily maximize the NPV of cash flows. Constraints Eq. 2 repre-

sent the precedence relations. In constraint Eq. 3 the resource-

constrained project’s makespan T can be replaced by its esti-

mated upper bound. Constraints Eq. 4, Eq. 5 ensure that each

activity i, i ∈ { 1, 2, ...,N} has exactly one starting time within

its time window Ti =
{

X
i
, X

i
+ 1 , . . . , Xi

}
where Xi (Xi) is the

early (late) starting time for activity i according to the prece-

dence constraints and the latest project completion time T . Con-

straints (6 - 8) ensure that resources allocated to activities at any

time during the project do not exceed resource availabilities.

Constraint set Eq. 9 for each activity describes the change of

the cash flow in the function of the completion time.

In the case of the RCPSP-UAD-UCF model, we have to as-

sume, that

• Each activity duration Di, i ∈ { 1, 2,...,N} is a discrete (posi-

tive) uncertain-but-bounded parameter:

Di ∈ {Ai, Ai + 1, ..., Bi} (11)

where Ai and Bi are the optimistic and pessimistic estimations

of Di, respectively.

Each activity cash flow Ci, i ∈ { 1, 2,...,N} is a continuous

(positive or negative) uncertain-but-bounded parameter:

Ci ∈
[
C

i
,Ci

]
. (12)

After that, we have to generate a schedule with an appropriate

resource-conflict repairing relation set RR∗ ⊂ RR, which repairs

all visible or hidden resource usage conflicts on the feasible

Di ∈ {Ai, Ai + 1, ..., Bi}

i ∈ {1, 2, ...,N}

D = {D1, ...,DN}

(13)

scenario set such a way that on the feasible

Ci ∈
[
C

i
,Ci

]
i ∈ {1, 2, ...,N}

C = {C1, ...,CN}

(14)

cash flow set it is "somehow" the best, according to managers

values observing completion times and NPV’s.

Naturally it is an open and very hard question, that how can

we evaluate the quality of the schedules in an uncertain schedul-

ing environment from managerial point of view. In this paper,

we introduce a very simple, easy-to-understand measure to char-

acterize such schedule (see Figure 1).

Figure 1 is a good visualization of a dilemma, whether which

schedule would be the better from managerial point of view.

Fig. 1. A simple measure for BC-RCPSP-UAD-UCF

Naturally, the answer depends on the habit of the project man-

ager and the T PD optimal schedule (which visualized by a light

gray bar) not necessary will be selected by the project manager

as the best, because in this case the reality of the statement of

"time is money" proverb is not necessarily true.

In the primary-secondary criteria approach the "best" sched-

ule means a T PD-minimal resource-constrained schedule for

which NPV is maximal [Eq. 9, Eq. 10, Eq. 11]. In the inves-

tigated bi-criteria approach a project has to be characterized by

its pareto-optimal schedules. We have to note, that there is a

"natural" conflict between these performance measures because

the longer the "playfield" the higher the chance for the NPV

minimization and vice-versa.

Theoretically, in the crisp case, the optimal schedule search-

ing process consists of two time-oriented steps: In the crisp

primary-secondary criteria approach, in the first step, we solve

the traditional time-oriented RCPSP problem to minimize T PD.

In the second step we maximize NPVon the set of the feasible

activity movements according to the optimal T PD given from

the first step.

In the crisp bi-criteria approach to generate the pareto-

optimum solutions we have to repeat these steps in reversed or-

der. Naturally, in the first step of reverse case, when we maxi-

mize NPV , we have to introduce an additional constraint to de-

fine a T PD ≤ T PD upper bound for safety reason. Without it, in

the case of an unprofitable project with negative NPV , namely

when the discounted total out-flow is greater than the discounted

total inflow, than the problem solving process, to minimize the

loss (to solve the problem), move T PD to the positive infinity.

Naturally, the crisp bi-criteria approach for T PD and NPVas

objectives, a standard multi-objective mixed integer linear pro-

gramming problem (MOMILP) which can be managed by sev-

eral different ways.

In the case of the BIC-RCPSP-UAD-UCF we have to intro-

duce a sample-based approximation step, to handle the uncertain

activity durations and cash flows. According to our opinion, it

is very hard to imagine, that somebody would be able to de-

velop a problem solving process, which consists only of exact

methodological approach without sampling-based elements or

additional assumptions to simplify the problem.

The core element of the sampling-based solution approxima-

tion is a MILP problem, in which we try to maximize the NPV
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fixing the activity durations and the cash-flow values according

to the generated random numbers. Generally, the solution of a

MILP problem is a costly operation. When the MILP problem

is a core element of a simulation process, the total time require-

ment of the MILP problem solutions may be a limiting factor of

the sample size of the simulation, therefore the smaller sample

size may degrade the quality of the sample-based approximated

solutions.

Fortunatelly, the implicit resource-constraint handling, which

is based on the forbidden set concept, as a good idea, can help

to manage this problem. The implicit resource-constraint han-

dling is the core element of our problem-specific SoS algorithm,

which will be presented in the next section. The introduced SoS

for BIC-RCPSP-UAD-UCF exploits the fact that the heuristic

frame around the optimization problem, resolves the resource

usage conflicts in an implicit way, therefore eliminates the ex-

plicit resource-constraints from the MIP formulation by adding

appropriate conflict-repairing relations to the network-relations

before we call the MILP solver.

The essence of the implicit resource-conflict management is

very simple: Replacing the standard precedence constraint de-

scription:

S i + Di ≤ S j

i→ j ∈ NR ∪ RR∗ ⊂ RR,
(15)

with a totally unimodular (TU) formulation, the resource-

constrain-free net present value model can be solved in poly-

nomial time as a LP problem (see Pritsker et al., [12]):

max

NPV =

N∑
i=1

∑
t∈Ti

Cit ∗ Xit

 = NPV∗ (16)

Xi∑
p=Ti

Xip +

Ti+Di−1∑
q=X

p

X jq ≤ 1

Ti ∈
{
X

i
, X

i
+ 1, ..., Xi

}
i→ j ∈ PS ∪ RR∗

(17)

XN+1 = T + 1, . (18)

∑
t∈Ti

Xit = 1

i ∈ {1, 2, ...,N}

(19)

Cit = Ci ∗ e−α(t+Di−1)

i ∈ {1, 2, ...,N}

t ∈ Ti

(20)

Xit ∈ {0, 1}

t ∈ Ti

i ∈ {1, 2, ...,N}

(21)

Objective Eq. 16 maximizes the discounted value of all cash

flows that occur during the life of the project. Note that early

schedules do not necessarily maximize the NPV of cash flows.

Constraints Eq. 17 represent the "strong" precedence relations.

In constraint Eq. 18 the resource-constrained project’s makespan

T can be replaced by its estimated upper bound. Constraints

Eq. 19 ensure that each activity i, i ∈ { 1, 2, ...,N} has exactly one

starting time within its time window Ti =
{

X
i
, X

i
+ 1, . . . , Xi

}
,

where Xi (Xi) is the early (late) starting time for activityi accord-

ing to the precedence constraints and the latest project comple-

tion time T . Constraint set Eq. 20 describes for each activity the

change of the cash flow in the function of its completion time.

The binary decision variable set Eq. 21 specifies the possible

starting times for each activity. Using a fast interior-point-solver

(for example: BPMPD developed by Mészáros, 1966) than the

modified MILP as an LP problem can be solved nearly 100 times

faster than with a traditional simplex solver.

3 Algorithm

Harmony search (HS) algorithm was recently developed by

Lee and Geem [13], in an analogy with music improvisation

process, where music players in a jazz band improvise to obtain

better harmony. In HS, the optimization problem is specified as

follows:

max
{

f (X) | X =
{
Xi | Xi

≤ Xi ≤ Xi, i ∈ {1, 2, ...,N}
} }

(22)

In the language of music, X is a melody, which aesthetic value

is represented by f (X). Namely, the higher the value f (X), the

higher the quality of the melody is. In the jazz band, the number

of musicians is N, and musician i, i = { 1, 2, . . . ,N } is respon-

sible for sound Xi. The improvisation process is driven by two

parameters:

• According to the repertoire consideration rate (RCR), each

musician is choosing a sound from his/here repertoire with

probability RCR, or a totally random value with probability

(1 − RCR);

• According to the sound adjusting rate (S AR), the sound, se-

lected from his/here repertoire, will be modified with proba-

bility S AR. The algorithm starts with a random “repertoire

uploading” phase, after that, the jazz band begins to impro-

vise. During the improvisations, when a new melody is better

than the worst in the repertoire, the worst will be replaced by

the better one. Naturally, the two most important parameters

of HS algorithm are the repertoire size and the number of im-

provisations. The HS algorithm is an “explicit” one, because

it operates directly on the sounds.

In the case of RCPSP, we can only define an “implicit” algo-

rithm, and without introducing a “conductor”, we cannot man-

age the problem efficiently. Naturally, when we introduce a

conductor, then, according to the real-life, we have to replace
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the jazz band with an orchestra. In the world of music, the

resource profiles form a “polyphonic melody”. Therefore, as-

suming that in every phrase only the “high sounds” are audible,

the transformed problem will be the following: find the shortest

“Sounds of Silence” melody by improvisation! Naturally, the

“high sound” in music is analogous to the resource-overload in

scheduling.

In the language of music, the RCPSP can be summarized as

follows:

• The orchestra consists of N musicians;

• The polyphonic melody consists of R phrases and N poly-

phonic sounds;

• Each i ∈ { 1, 2, ...,N} musician is responsible for exactly one

polyphonic sound;

• Each i ∈ { 1, 2, ...,N} polyphonic sound is char-

acterized by the set of the following elements:{
Xi,Di, {Rir | r ∈ { 1, 2, ...,R} }

}
;

• The polyphonic sounds (musicians) form a partially ordered

set according to the precedence (predecessor-successor) rela-

tions;

• each r ∈ { 1, 2, ...,R} phrase is additive for the simultaneous

sounds;

• In each phrase only the high sounds are audible:

{Utr |Utr > Rr, t = 1, 2, ...,T };

• In each repertoire uploading (improvisation) step, each i ∈

{ 1, 2, ...,N} musician has the right to present (modify) an

idea IPi ∈ [−1,+1] about Xi where a large positive (negative)

value means that the musician want to enter into the melody

as early (late) as possible;

• In the repertoire uploading phase the musicians improvise

absolutely freely, IPi ← RandomGauss (0, 1), where, η ←

RandomGauss (µ, σ) generates random normal random num-

bers from a truncated (−1 ≤ η ≤ 1) normal distribution with

mean µ and standard deviation σ;

• In the improvisation phase, the “freedom of imaginations” is

decreasing step by step, IPi ← RandomGauss (IPi, σ), where

standard deviation σ is an exponentially decreasing function

σ = σ(g) of the progress from generation to generation (see

Figure 2, 3;

• Each of the possible decisions of the harmony searching pro-

cess (melody selection and idea-driven melody construction)

is the conductor’s responsibility;

• The band tries to find the shortest “Sounds of Silence” melody

by improvisation.

The conductor solves a linear programming (LP) problem to

balance the effect of the "more or less opposite ideas" about a

shorter “Sounds of Silence” melody. The LP problem, which

Fig. 2. An ideaIPiabout the "best" position

Fig. 3. Perturbation of IPi

maximizes the satisfaction of the musicians with the sound po-

sitions, is the following.

min

 N∑
i=1

IPi ∗ Xi

 , (23)

Xi + Di ≤ X j, i→ j ∈ NR, (24)

X
i
≤ Xi ≤ Xi, i ∈ { 1, 2, . . . ,N} . (25)

The result of the optimization is a schedule (melody) which is

used by the conductor to define the final starting (entering) order

of the sounds (musicians). The conductor generate a soundless

melody by taking the selected sounds one by one in the given

order and scheduling them at the earliest (latest) feasible start

time. After that, using the well-known forward-backward im-

provement (FBI) methods (see, for example, Tormos and Lova,

[14]) the conductor tries to improve the quality of the generated

melody. Naturally, the conductor memorizes the shortest feasi-

ble melody found so far.

The conflict-repairing version of SoS is based on the forbid-

den set concept. In the conflict- repairing version, the primary

variables are conflict-repairing relations, and a solution will be

a makespan minimal resource-feasible solution set, in which

every movable activity can be shifted without affecting the re-

source feasibility. In the traditional time-oriented model the pri-

mary variables are starting times, therefore an activity shift may

be able to destroy the resource feasibility.

The makespan minimal solutions of the conflict-repairing

model are immune against the activity movements, so we can

introduce a not necessarily regular secondary performance mea-

sure to select the “best” makespan minimal resource feasible so-

lution from the generated solution sets. In SoS, according to the

applied replacement strategy (whenever the algorithm obtains a

solution superior to the worst solution of the current population,

the worst solution will be replaced by the better one) the qual-

ity of the population is increasing step by step. According to
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the progress of the searching process, the size of the makespan

minimal subset of the population is increasing. The larger the

makespan minimal subset size, the higher the chance to get a

good solution for the secondary criterion.

It is well-known, that the crucial point of the conflict repair-

ing model is the forbidden set computation. In the SoS the con-

ductor using a simple (but fast and effective) “thumb rule” to

decrease the time requirement of the forbidden set computation.

In the forward-backward list scheduling process, the conduc-

tor (without explicit forbidden set computation) inserts a prece-

dence relation i → j between an already scheduled activity i

and the currently scheduled activity j whenever they are con-

nected without lag (S j + D j = S j). The result will be schedule

without “visible” conflicts. After that, the conductor (in exactly

one step) repairs all of the hidden (invisible) conflicts, inserting

always the “best” conflict repairing relation for each forbidden

set. In this context “best” means a relation i → j between two

forbidden set members for which the lag (S j − S i −Di) is maxi-

mal.

In the language of music, the result of the conflict repairing

process will be a robust (flexible) “Sounds of Silence” melody,

in which the musicians have some freedom to enter to the perfor-

mance without affecting the aesthetic value of the composition.

Naturally, when we introduce a secondary criterion (in our case,

for example, the NPV measure), for which the aesthetic value

is a function of the starting times, the freedom of the musicians

totally disappears.

In the presented bi-criteria approach:

• The modified selection mechanism alternatively select a

"more or less" TPD-minimal and NPV-maximal or a "more

or less" NPV-maximal and TPD-minimal melody, where, in

this context, "more-or-less" means that the better the current

measure value pair of a melody , the higher the chance that

it will be selected by the conductor in the improvisation pro-

cess;

• According to the modified selection mechanism, the con-

ductor memorizes the best pareto-solutions found so far,

which consists of the currently best TPD-minimal and NPV-

maximal and the currently best NPV-maximal and TPD-

minimal schedules;

• According to the uncertain activity durations and cash flows,

the TPD-minimal and NPV-maximal (NPV-maximal and

TPD-minimal) means a schedule for which, according to the

sampling-based approximation, A + B minimal and NPV +

NPV maximal (NPV + NPV maximal and A + B minimal).

Naturally, it is very interesting and challenging question that

what would be the best measure to characterize a schedule in

an uncertain activity duration and cash flow environment. For

example, the presented average-like approach could be replaced

by an average-and-range-like approach. The investigation of this

question will be presented in a forthcoming paper.

4 Implementation details

The algorithm of the proposed model has been programmed

in Compaq Visual Fortran® Version 6.5. The algorithm, as a

DLL, was built into the ProMan system (Visual Basic® Ver-

sion 6.0) developed by Ghobadian and Csébfalvi [15]. To solve

the MILP problem a state-of-the-art solver, namely the CPLEX

12.0 in AIMMS 3.10 for Windows environment was used. The

solver, as an AIMMS COM object, was integrated into ProMan.

The computational results were obtained by running ProMan on

a 1.8 GHz Pentium IV IBM PC with 256 MB of memory un-

der Microsoft Windows XP® operation system. At the running

of the resource-constrained project borrowed from Golenko-

Ginzburg and Gonik [17] we changed the default optimality tol-

erance parameters (Relative Gap = 0.01 % and Absolute Gap =

5 period) and the Time Limit parameter (10 hours). In the pre-

sented example, the {WA, WB} = { 1, 1} weight set was used.

To solve the LP problems a fast primal-dual interior point

solver, namely the DLL version of BPMPD developed by

Mészáros [16], was used. The computational results were ob-

tained by running ProMan on a 1.8 GHz Pentium IV IBM PC

with 256 MB of memory under Microsoft Windows XP® oper-

ation system.

At the running of the resource-constrained project borrowed

from Golenko-Ginzburg and Gonik instance, we used the SoS

for BC-RCPSP-UAD-UCF algorithm with the following global

parameters (see Table 1):{
RCR, RCR

}
= { 0.8, 0.9 }{

S AR, S AR
}

= { 0.1, 0.9 } ,{
σ, σ

}
= { 0.01, 1.0 } .

Our algorithm, according to its “robust” nature, is not so sensi-

tive to the “fine-tuning” of the parameters. Probably, the robust-

ness of the algorithm can be explained by the robustness of the

developed “unusual” activity list generator. In other words, each

of the global parameters can be kept “frozen” in the algorithm,

which results in a practically “tuning-free” algorithm.

5 Computational experiments

In this section, as a motivating example, we consider a larger

resource constrained project with 36 real activities borrowed

from Golenko-Ginzburg and Gonik [17]. In contrast to the in-

stances of the well-known and popular PSPLIB developed by

Kolisch and Sprecher [18], this instance already includes in-

formation of random activity durations that is, for each ac-

tivity i the optimistic and pessimistic duration time [Ai, Bi],

i ∈ { 1, 2, ... , 36} is given.

In this problem, there is only one renewable resource type and

it is assumed that 50 units are available for each period. In this

study, we assumed that each activity-duration is an uncertain-

but-bounded parameter without any possibilistic or probabilistic

interpretation.
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The instance contains F = 3730 forbidden sets and the cardi-

nality of the resource-conflict repairing relations (the total num-

ber of binary indicators) is |RR| = 938, which means that the

exact solution of the robust RCPSP-UAD is challenging prob-

lem from methodological point of view. The unfeasible early

start schedule of the project in activity-on-node representation

mode is presented in Figure 4, 5. In these figures, the activities

are bars, where the bar lenghts are proportional to the activity

duration. The random part of each activity-duration is repre-

sented by a lighter grey colour. The resource-usage histogram is

presented in theoretical correct form, according to the cumula-

tive resource constraints. The predecessor-successor relations

are represented by lines. The unconstrained optimistic (pes-

simistic) makespan is 173 (265) time units, respectively. The

initial data of the project are given in Table 1, 2.

Tab. 1. The initial data of the Golenko-Ginzburg and Gonik project

a Aa Ba Ria IPa

0 0 0 0

1 16 60 16 {0}

2 15 70 15 {0}

3 18 35 18 {0}

4 19 45 19 {0}

5 10 33 10 {0}

6 18 15 18 {1}

7 24 50 24 {1}

8 25 18 25 {6}

9 16 24 16 {6}

10 19 38 19 {2}

11 20 22 20 {2}

12 18 32 18 {3}

13 15 45 15 {4}

14 16 78 16 {5}

15 17 45 17 {14}

16 19 35 19 {14}

17 21 60 21 {10, 13}

18 24 50 24 {10, 13}

For each real activity, according to the usual managerial

assumptions, which define an unsymmetrical optimistic (pes-

simistic) range around the crisp nominal (most probable or most

likely) value, the randomly generated uncertain-but-bounded

cash flow values are presented in Table 3.

Using the CPLEX 12.0 solver with the mentioned setting

to solve RCPSP-UD, the solving process was terminated pre-

maturely, as a result of reaching the extremely large 10 hours

(36000 sec) time limit. Therefore, the given final solution

{ A∗, B∗} = { 340, 500} is only a good one. After insert-

ing the conflict-repairing relations, the possibilistic range of

the makespan
[

A , B
]

= [ 395 , 465] and the net present value[
NPV , NPV

]
= [ 1579 , 2111 ] were estimated by simula-

tion. The total number of the generated random schedules was

1000(S 1000) using a uniform random number generator to gen-

erate the integer durations and the cash flow values. We run

the BC-RCPSP-UAD-UCF specific robust SoS algorithm 30

Tab. 2. The initial data of the Golenko-Ginzburg and Gonik project

a Aa Ba R1a IPa

19 13 42 13 {17}

20 16 30 16 {15, 18}

21 12 21 12 {15, 18}

22 14 20 14 {15, 18}

23 16 42 16 {16}

24 15 40 15 {12}

25 13 28 13 {12}

26 14 35 14 {8, 11}

27 18 24 18 {7, 9}

28 22 22 22 {7, 9}

29 10 18 10 {26, 27}

30 18 38 18 {24, 28}

31 16 55 16 {24, 28}

32 17 30 17 {25}

33 19 37 19 {20, 23}

34 20 38 20 {21, 32}

35 15 55 15 {19, 22}

36 24 22 24 {29, 30, 34}

37 0 0 0 {31, 33, 35, 36}

times independently with the following setting and randomly

generated starting seeds and with frozen global parameters:

{G = 10, P = 500, S = 1000}, where G is the number of gen-

erations, P is the population size and S is the sample size in the

sampling based solution approximation phase (see Table 4, 5).

We have to note again, that in our case the simulation is not a

costly operation, because using a fast interior point solver and a

totally unimodular predecessor-successor formulation for activ-

ities, the NPV optimization problem in this size can be solved

within a fraction of a second.

The computational results reveal the fact that the robust SoS

for BC-RCPSP-UAD-UCF is a fast, effective and robust algo-

rithm, which is able to produce good quality results with ex-

tremely small spreading within a quarter hour.

Naturally, in the sample-based solution approximation phase,

the uniform random number generator can be replaced by a more

sophisticated tool to figure the future, but, without a crystal ball,

such a modification not necessarily would be able to produce

better forecasting result.

In Table 6, we show the estimated sample-based approxi-

mations of pareto-optimal solutions for S = 1000. In the

presented bi-criteria approach for{T PD, NPV }, the "currently-

best" pareto-optimal schedules were defined by the set of the

first (last) element of the following two ordered sets:{
>

TPD,
<

NPV

}
and

{
<

TPD,
>

NPV

}
which were selected from the current repertoire, where in

the presented formalism, symbol < (>) means an ascending

(descending) primary (secondary) sorting key in the order of

columns. In Table 6, the best estimations for S = 1000 are

presented with bold characters.
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Fig. 4. Cash flow oriented early start project visualization with the nominal cash flow values

Fig. 5. Resource usage oriented theoretically correct early start project visualization
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Tab. 3. The generated uncertain-but-bounded cash flow values

a CF_Aa CF_Ma CF_Ba a CF_Aa CF_Ma CF_Ba

1 482 567 595 19 343 403 423

2 335 394 414 20 -563 -490 -465

3 93 109 114 21 468 550 578

4 416 489 513 22 -148 -129 -123

5 268 315 331 23 166 195 205

6 275 323 339 24 -189 -164 -156

7 -363 -316 -300 25 -532 -463 -440

8 258 304 319 26 230 271 285

9 299 352 370 27 805 947 994

10 354 416 437 28 226 266 279

11 150 176 185 29 819 964 1012

12 92 108 113 30 694 816 857

13 734 863 906 31 116 137 144

14 -378 -329 -313 32 698 821 862

15 -499 -434 -412 33 -378 -329 -313

16 694 816 857 34 -546 -475 -451

17 802 943 990 35 202 238 250

18 -125 -109 -104 36 -316 -275 -261

6 Conclusions

In this paper, we presented a new hybrid harmony search

metaheuristic combined with sampling-based solution approxi-

mation for a bi-criteria resource-constrained project-scheduling

problem (RCPSP) with uncertain-but-bounded activity dura-

tions and cash flows (BIC-RCPSP-UAD-UCF).

The presented Sound of Silence (SoS) algorithm, which is an

appropriate combination of mathematical programming, meta-

heuristic and sampling-based elements, is a straightforward

modification of the originally time oriented SoS harmony search

metaheuristic developed by [6], [7], [8] and extended for a wide

range of different resource-constrained project scheduling mod-

els [9], [10], [11] and [19], [20], [21], [22]. The presented al-

gorithm, as a new member of the SoS family produces optimal

“robust” proactive schedules, which are immune against the un-

certainties in the activity durations. The presented robust sched-

ule searching heuristic is based on a “forbidden set” oriented

reformulation of the originally time oriented algorithm. In the

presented algorithm, it is assumed that each activity duration

and each cash flow value is an uncertain-but-bounded parame-

ter, which characterized by their optimistic and pessimistic esti-

mations. The searching process is driven by the sampling-based

approximation of the pareto-optimal solutions. The evaluation

of a given robust schedule is based on the investigation of vari-

ability of the makespan and the net present value criterion on

the set of randomly generated scenarios given by a sampling-

on-sampling-like process.

We have to note, that in the simulation phase, the presented

uncertain-but-bounded approach can be replaced by a possibilis-

tic (membership function oriented fuzzy) or a probabilistic (den-

sity function oriented stochastic) approach, because the best so-

lution searching process is invariant to the “real meaning” of the

optimistic and pessimistic estimations. In this paper, in the sim-

ulation phase a uniform random number generator was used to

generate the uncertain parameters of the scenarios. Naturally,

this simple approach can be replaced by more sophisticated pa-

rameter estimation process, but according to our experiences and

the robust nature of the Central Limit Theorem, the simulation

is process not so sensitive to the applied parameter generation

method. In highly uncertain and usually very long range, a more

sophisticated forecasting method (a possibilistic or probabilistic

approach with several estimated parameters and special opera-

tors) is not necessarily a crystal ball in the imagination of the fu-

ture. In order to illustrate the efficiency and stability of the pro-

posed SoS metaheuristic we presented detailed computational

results for a larger and challenging project instance borrowed

from Golenko-Ginzburg and Gonik [17] and discussed by sev-

eral authors in the literature.

The presented reproducible results can be used for testing the

quality of exact and heuristic solution procedures to be devel-

oped in the future in this area. The computational results reveal

the fact that the modified and extended SoS is fast, effective and

robust algorithm, which is able to cope successfully with bi-

criteria project-scheduling problems when we replace the tradi-

tional crisp duration and cash flow parameters with uncertain-

but-bounded ones. It is an open and very challenging question

that what would be the best bi-criteria measure to evaluate a

schedule in an uncertain environment. Our primary results about

this problem will be presented in a forthcoming paper.
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Tab. 4. The Cplex solution and the results of 30 independent SoS runs (G10P500)

Run A + B A B E(A + B) E(A) E(B) Time

% % % sec

Cplex 840 340 500 36000

1 842 343 499 0.24 0.88 -0.20 14.837

2 842 344 498 0.24 1.18 -0.40 14.052

3 849 336 513 1.07 -1.18 2.60 10.619

4 849 339 510 1.07 -0.29 2.00 11.370

5 849 345 504 1.07 1.47 0.80 11.074

6 849 346 503 1.07 1.76 0.60 10.183

7 849 349 500 1.07 2.65 0.00 12.011

8 850 341 509 1.19 0.29 1.80 14.221

9 850 343 507 1.19 0.88 1.40 15.079

10 850 343 507 1.19 0.88 1.40 12.035

11 850 343 507 1.19 0.88 1.40 12.778

12 850 344 506 1.19 1.18 1.20 14.927

13 850 345 505 1.19 1.47 1.00 14.964

14 850 345 505 1.19 1.47 1.00 14.067

15 850 345 505 1.19 1.47 1.00 12.428

16 850 348 502 1.19 2.35 0.40 11.311

17 851 344 507 1.31 1.18 1.40 15.839

18 852 340 512 1.43 0.00 2.40 10.258

19 852 341 511 1.43 0.29 2.20 11.416

20 852 345 507 1.43 1.47 1.40 12.505

21 852 345 507 1.43 1.47 1.40 13.296

22 853 338 515 1.55 -0.59 3.00 13.455

23 853 345 508 1.55 1.47 1.60 13.138

24 853 347 506 1.55 2.06 1.20 10.358

25 853 347 506 1.55 2.06 1.20 10.288

26 853 351 502 1.55 3.24 0.40 15.189

27 854 346 508 1.67 1.76 1.60 12.607

28 854 346 508 1.67 1.76 1.60 10.841

29 855 351 504 1.79 3.24 0.80 11.694

30 856 341 515 1.90 0.29 3.00 13.606

Mean 851 344 507 1.28 1.24 1.31 12.681

Range 14 15 17 1.67 4.41 3.40 5.656

Tab. 5. The best Cplex solution and ordered result of the approximated solutions for 30 independent SoS runs: (G10P500 + S1000)

T PD NPV T PD NPV

i A B NPV NPV i A B NPV NPV

Cplex 395 465 1579 2111 395 465 1579 2111

1 393 475 1624 2222 16 402 481 1473 1958

2 395 471 1425 1932 17 403 472 1489 1972

3 395 477 1547 2145 18 403 475 1419 1865

4 397 472 1374 1828 19 403 482 1451 1973

5 398 468 1423 1923 20 404 472 1488 1964

6 398 476 1586 2166 21 404 472 1585 2088

7 398 478 1501 2002 22 404 473 1571 2072

8 398 486 1796 2438 23 404 475 1200 1591

9 399 471 1576 2095 24 404 481 1497 1963

10 399 476 1370 1884 25 405 469 1574 2079

11 399 476 1411 1895 26 405 489 1385 1829

12 400 475 1612 2147 27 406 475 1319 1777

13 401 474 1494 1983 28 408 476 1384 1861

14 402 469 1357 1760 29 408 485 1448 1958

15 402 472 1730 2267 30 409 470 1489 1979
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Tab. 6. The estimated pareto-optimal solutions

i
<

TPD
>

NPV
>

NPV
<

TPD

1 401 1900 1982 437

2 408 2126 2156 432

3 401 1812 1901 439

4 404 1831 1964 448

5 401 1906 1983 430

6 405 1816 1960 439

7 404 1827 1903 448

8 409 2110 2153 445

9 397 2046 2053 447

10 403 1973 1973 434

11 405 1741 1777 461

12 405 2101 2222 452

13 405 1943 1943 428

14 403 1759 1829 434

15 405 2374 2438 458

16 397 1933 1946 447

17 412 2051 2104 438

18 414 2069 2084 453

19 406 1871 1979 420

20 407 1828 1900 455

21 404 2004 2045 426

22 400 1896 1923 432

23 410 2034 2034 426

24 403 1799 1865 433

25 402 1715 1771 425

26 403 2202 2255 422

27 402 1902 1958 451

28 402 1518 1564 459

29 404 2048 2163 445

30 414 1778 1850 448
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