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Abstract

A new analytical procedure is presented for the determination

of the maximum deflection of asymmetric multi-storey buildings

braced by frameworks, shear walls and cores. The complex re-

sponse of the building is separated into two phenomena: lat-

eral deflection and rotation. A closed-form solution is given for

the torsional problem leading to a relatively simple calculation.

The solution is obtained using an analogy between the bending

and torsion of structural systems. The accuracy of the proposed

method is demonstrated using the results of over one hundred

test structures of different bracing system arrangements, differ-

ent stiffness characteristics and different heights ranging from

four storeys to eighty storeys. Step-by-step instructions and a

practical example worked out to the smallest detail are pre-

sented to aid practical application.

Keywords

deflection · torsion · continuum method · asymmetric · three-

dimensional behaviour

Karoly A. Zalka

Visiting Professor, Budapest University of Technology and Economics, Műe-
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1 Introduction

The maximum deflection of a multi-storey building is a vi-

tal piece of information as its magnitude should always be re-

stricted in one way or another. Unfortunately, its determination

represents a formidable task as the three-dimensional behaviour

of the building leads to a complex problem where a great number

of stiffness and geometrical characteristics are involved. Inter-

action among the bracing units occurs and, mainly due to their

different type of deformation, they have an effect on one another.

In addition, in the general case when the bracing system is not

doubly symmetric, lateral movements are combined with rota-

tion.

The area of the lateral problem is very well researched and

documented and a great number of methods – too many to list

here – have been made available for the handling of the pure

sway problem. However, the situation is markedly different

when lateral deflection is accompanied by rotation, i.e., when

the building has an asymmetric bracing system arrangement.

The saying “There is no such thing as a twist-free building”

is well known in the structural engineering community, both

in practice and among researchers; still, due to the complexity

of the three-dimensional behaviour, the torsional problem has

not been thoroughly investigated, let alone solved in a compre-

hensive manner. Considerable efforts have been made regarding

the torsional behaviour of individual structural elements [3, 10]

but the global torsional behaviour of whole structural systems

is a less cultivated area. Even the widely used treasure house

of structural engineering research [12] only deals with symmet-

ric wall-frame buildings that do not twist. There are some ex-

cellent publications that offer relatively simple solution for the

global torsional problem [2, 3, 5–7, 9, 11] but they are either still

too complicated or of limited applicability and none of them

is backed up with a comprehensive accuracy analysis. All the

above shortcomings were addressed in a recent paper [15] which

offered a closed-form solution for the maximum rotation of reg-

ular multi-storey buildings. However, that solution is still fairly

complicated and, as it will be shown in this paper, its accuracy

can significantly be improved.

To handle this three-dimensional problem in a simple way
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seems to be a hopeless task using conventional tools. However,

by relying on an analogy between bending and torsion, a rela-

tively simple solution can be produced. The aim of this paper is

threefold: (a) to establish a new model for the analysis using this

analogy, (b) to produce a simple closed-form solution for the ro-

tation of a building, that clearly shows the contribution of the

different stiffness characteristics to the torsional resistance and

(c) to show how the proposed method can be used for the deter-

mination of the maximum deflection of multi-storey asymmetric

building structures.

Although large frameworks and even whole buildings are

now routinely analysed using computer packages, the proposed

method may be useful from several aspects. It helps the struc-

tural engineer to understand the complex three-dimensional be-

haviour and thus enables him/her to manipulate the stiffnesses

and the location of the bracing units in such a way that opti-

mum structural arrangement is achieved. The proposed method

may also prove to be useful at the preliminary design stage when

quick checks are needed with different structural arrangements.

Its usefulness cannot be overemphasized for checking the results

of a finite element (computer-based) analysis when the input

procedure may involve tens of thousands of data and mishan-

dling one datum may have catastrophic consequences.

The continuum method will be used and it will be assumed

for the analysis that the structures under uniformly distributed

horizontal load are

• regular in the sense that their characteristics do not vary over

the height

• at least four storeys high with identical storey heights

• sway structures with built-in lower end at ground floor level

and free upper end

and that

• the floor slabs have great in-plane and small out-of-plane stiff-

ness

• the deformations are small and the material of the structures

is linearly elastic

• the torsional stiffnesses of the individual bracing cores are

negligible (compared to the global torsional stiffnesses of the

bracing system).

2 Three-dimensional behaviour. The solution of the

planar problem

When a multi-storey wall-frame building of asymmetric brac-

ing system arrangement is subjected to horizontal load, the

structure responds in a complex manner and develops both lat-

eral displacements and rotation over the height of the building.

The two phenomena can be separated, making it possible to deal

with the deflection and rotation problems independently of each

other. The procedure is demonstrated in Fig. 1 where the re-

sultant of the horizontal load (per unit height) is represented

by w = w*L. Force w passing through centroid C is transferred

to shear centre O where it is accompanied by torque m = wxc.

Force w in the shear centre only causes uniform lateral displace-

ments while torque m only develops rotations around the shear

centre axis enabling the separate treatment of the two phenom-

ena. Accordingly, the deflection at any location is expressed by

v = vo + vϕ (1)

where vo is the uniform part of the deflection caused by force w

in the shear centre and vϕ is the other part of the deflection cased

by torque m = wxc.

The maximum deflection of the building develops at the top

at one of the corner points of the plan of the building:

vmax = v (H) = vo (H)+xmaxϕ (H) = vo (H)+(L − x̄o)ϕ (H) (2)

where H is the height of the building, xmax is the distance of the

corner point (where the maximum deflection occurs) from the

shear centre and ϕ(H) is the angle of rotation.

Let’s deal with the planar problem first. The case when the

resultant of the external load passes through the shear centre –

the planar problem – is discussed in detail in [16]. The max-

imum deflection of such a system of frameworks, shear walls

and cores can be obtained using the ith unit of the system:

vo (H) =
qiwH4

8EI f ,i
+

qiwH2

2Kis
2
i

−
qiwEIi

K2
i

s3
i

(
1 + κiH sinh κiH

cosh κiH
− 1

)
(3)

The three terms in Eq. (3) clearly identify three phenomena:

the deflection is characterized by the bending and shear modes

(as defined by the first and second terms) and their interaction

(third term). The interaction is always beneficial as it always

reduces the deflection.

Two possibilities are differentiated in using Eq. (3): (a) the

system of f frameworks and m shear walls/cores is considered

as it is (the “simple” method) or (b) the system is first reduced

to f frameworks by incorporating the m stiffnesses of the shear

walls/cores into the original frameworks creating f new frame-

works (the “more accurate” method).

In both cases the calculation is based on the three characteris-

tic stiffnesses of the ith framework. Term Ki represents the shear

stiffness:

Ki =

(
1

Kc,i
+

1

Kb,i

)−1

= Kb,i
Kc,i

Kb,i + Kc,i
= Kb,iri (4)

with ri being a modifier:

ri =
Kc,i

Kb,i + Kc,i
(5)

The shear stiffness has two “components”; Kb,i is related to

the beams while Kc,i is linked to the columns of the framework.
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Fig. 1. Asymmetric building under horizontal load.

They are defined as

Kb,i =
12EIb,i

lh

and

Kc,i =
12EIc,i

h2

(6)

where E is the modulus of elasticity, h is the storey height and l

is the bay. Second moments of area Ib,i and Ic,i are the sums of

the second moments of area of the beams and columns, respec-

tively, of the ith framework.

The local bending stiffness of the ith framework is defined as

EIi = EIc,iri (7)

where modifier ri is used to avoid the overrepresentation of the

bending stiffness of the columns [4, 14].

The global bending stiffness of the ith framework is given by

EIg,i = E

n∑
j=1

Ac, jt
2
j (8)

where Ac, j is the cross-sectional area of the jth column of the

ith framework, t j is its distance from the centroid of the cross-

sections and n is the number of columns.

The sum of the local and global bending stiffnesses represents

the total bending stiffness of the framework:

EI f ,i = EIi + EIg,i (9)

Eq. (3) also contains some auxiliary quantities:

κi =
√

ai + bi ,

ai =
Ki

EIg,i
,

bi =
Ki

EIi

,

si = 1 +
ai

bi

= 1 +
Ii

Ig,i

(10)

Finally, apportioner qi defines the load share on the ith bracing

unit. Its value is determined using the “governing” stiffnesses of

the bracing units. The “governing” stiffness of the ith bracing

unit is defined as the reciprocal of the maximum (in-plane) de-

flection of the unit in question:

S i =
1

vi (H)
(11)

When the “governing” stiffnesses are available, the appor-

tioner is calculated as

qi =
S i∑ f

i=1
S i

(12)

Eq. (3) can be used for the determination of the maximum

deflections vi (H). For this purpose, an arbitrary value of appor-

tioner qi, say qi = 1, can be used, as its value eventually drops

out of the calculations.

To ensure best accuracy, when the apportioners – and load

shares – are determined, the co-called “more accurate” method

should be used – see [16] for detailed explanation. It is only

mentioned here that according to the “more accurate” method,

the problem of f + m frameworks and shear walls/cores is re-

duced to the problem f frameworks. This is done by incorporat-

ing the stiffnesses of the m shear walls and cores into the orig-

inal f frameworks, according to the “governing” stiffnesses of

the original frameworks. This procedure results in f new frame-

works as reflected by Eq. (12) where summation goes from 1 to

f .

The torsional problem – whose solution ϕ is also needed in

Eq. (2) – will be discussed in detail in the next section.

3 The torsional problem

Two totally different approaches can be considered for han-

dling the torsional problem. A complete procedure can be fol-

lowed from scratch by examining the equilibrium of the bracing

system. This leads to a very lengthy procedure – as is demon-

strated by the derivation related to a bracing system consisting

of shear walls and cores only [14]. The other possibility is the

application of the well-known analogy in the stress analysis of
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thin-walled structures in bending and torsion [8, 13]. This av-

enue is followed here. According to the analogy, translations,

bending moments and shear forces correspond to rotation, warp-

ing moments and torsional moments, respectively.

The first step in applying the bending-torsion analogy is the

establishment of the corresponding stiffnesses. The character-

istic stiffnesses with the bending analysis are the local bend-

ing stiffness, the global bending stiffness and the shear stiffness

given by Eqs. (7), (8) and (4), respectively. The corresponding

stiffnesses for the torsional analysis are as follows.

Stiffness EI is the local bending stiffness with the deflection

analysis. The corresponding stiffness with the torsional analysis

is the local warping torsional stiffness:

EIω = EIt2 (13)

where t is the perpendicular distance of the bracing unit in ques-

tion from the shear centre Fig. 2.

Stiffness EIg is the global bending stiffness with the deflection

analysis. The corresponding stiffness with the torsional analysis

is the global warping torsional stiffness:

EIgω = EIgt2 (14)

The total warping torsional stiffness is the sum of the local

and global torsional stiffnesses:

EI fω = EIω + EIgω = E
(
I + Ig

)
t2 = EI f t

2 (15)

Stiffness K is the shear stiffness with the deflection analy-

sis. The corresponding stiffness with the torsional analysis is

the Saint-Venant torsional stiffness:

(GJ) = Kt2 (16)

In addition to stiffnesses Eqs. (13), (14) and (16), the individ-

ual bracing units – especially the cores – may have their “own”

warping and Saint-Venant torsional stiffnesses but they are nor-

mally small and, in accordance with the basic assumption made

in the Introduction, they are neglected here.

Before the analogy is fully utilised, the location of the shear

centre has to be established as it is needed for the determina-

tion of the above torsional stiffnesses. The shear centre is de-

fined as the centre of the “governing” stiffnesses of the bracing

units. The “governing” stiffness of each bracing unit is given

by Eq. (11) where the maximum deflection is needed. It is ob-

tained using Eq. (3). In the case of a shear wall or a core, Eq. (3)

reduces to its first term.

With the “governing” stiffnesses of the bracing units, the cal-

culation of the location of the shear centre is best carried out in

the co-ordinate system x̄ − ȳ, whose origin lies in the upper left

corner of the plan of the building and whose axes are aligned

with the sides of the building Fig. 2:

x̄o =

∑ f +m

1
S y,i x̄i∑ f +m

1
S y,i

and

ȳo =

∑ f +m

1
S x,iȳi∑ f +m

1
S x,i

(17)

In the above formulae

x̄i, ȳi are the perpendicular distances of the ith bracing unit

from ȳ and x̄

f is the number of frameworks

m is the number of shear walls / cores

S x,i

S y,i are the “governing” stiffnesses by Eq. (11) in direction x

and y

4 The solution of the torsional problem

All the stiffnesses and other geometrical characteristics are

now available for the application of the analogy. Looking at the

derivations of the lateral (sway) problem [16], two possibilities

may be considered. With the sway problem, two procedures

were developed: the “simple” method and the “more accurate”

method. As the term suggests, the “simple” method offers a sim-

ple solution while the “more accurate” method results in a more

accurate albeit more complicated solution. Careful investiga-

tion of the two procedures automatically answers the question

“Which procedure to adopt?”. The more accurate method was

developed by incorporating the stiffnesses of the shear walls and

cores into the frameworks. This approach makes it possible to

take into consideration the effect of interaction more accurately

than the other method, leading to a more accurate solution. With

the torsional problem, however, another phenomenon enters the

picture. The location of the shear centre plays a very impor-

tant role and becomes part of the geometrical characteristics.

When the stiffnesses of the shear walls and cores are incorpo-

rated into the frameworks, the procedure indeed leads to a more

accurate handling of the effect of interaction between the shear

and bending modes but, at the same time, somewhat distorts the

behaviour, as far as the location of the shear centre of the brac-

ing system is concerned. This follows from the fact that by re-

moving some of the bracing units from their original places and

creating new, “virtual” frameworks (by incorporating the shear

walls and cores into the frameworks), the location of the shear

centre of the bracing system is altered. This would be unaccept-

able with the torsional problem. (As the location of the shear

centre was irrelevant with the planar problem, it was possible

to make use of the advantage of the “more accurate” method

without its detrimental effect.)

It follows that the “simple” method should be applied and the

analysis must centre on the original system of f frameworks and

m shear walls/cores when the analogy is used for the solution
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Fig. 2. Bracing system for the torsional analysis.

of the torsional problem. In doing so, and using the torsional

stiffnesses introduced by Eqs. (13), (14), (15) and (16), the gov-

erning differential equation of the torsional problem is obtained

as

ϕ′′′′ − κ2
i ϕ
′′ =

qω,im

EIω,i

(
aiz

2

2
− 1

)
(18)

where subscript i refers to the ith bracing unit. Auxiliary quan-

tities κi and ai are identical to those used in the planar problem,

i.e., they are given by Eq. (10). This follows from the fact that

when the step-by-step requirements of the analogy are met and

the corresponding stiffnesses are matched, moment arms ti drop

out of the formulae. Eq. (18) also contains the total torsional

moment (per unit height) on the bracing system:

m = wxc = w

(
L

2
− x̄o

)
(19)

Torsional apportioner qω,i in Eq. (18) plays the same role as

qi in the planar case. Its value is obtained using the “govern-

ing” torsional stiffnesses of the bracing units. The “governing”

torsional stiffness of the ith bracing unit is defined as

S ω,i = S it
2
i =

t2
i

vi (H)
(20)

where vi (H) is the maximum deflection of the ith bracing unit.

The torsional apportioner can now be determined:

qω,i =
S ω,i∑ f +m

1
S ω,i

(21)

Note that summation goes from 1 to f + m.

The torsional moment share on the ith bracing unit is

mi = qω,im (22)

Finally, in completing the application of the analogy, the for-

mula for the rotation emerges as

ϕi(z) =
mi

EI fω,i

(
H3z

6
−

z4

24

)
+

miz
2

2(GJ)s2
i

−

−
miEIω,i

(GJ)2s3
i

(
cosh κi(H − z) + κiH sinh κiz

cosh κiH
− 1

) (23)

Bearing in mind that the above rotation calculated using the

characteristics of the ith bracing unit is identical to the rotation

of the building and that maximum rotation develops at z = H, the

formula for the maximum rotation emerges as

ϕmax = ϕi(H) =

miH
4

8EI fω,i
+

miH
2

2(GJ)s2
i

−
miEIω,i

(GJ)2s3
i

(
1 + κiH sinh κiH

cosh κiH
− 1

)
(24)

Auxiliary quantity si is given in Eq. (10).

Naturally, Eq. (24) is identical to Eq. (3) in structure. The tor-

sional mode is characterized by the warping and Saint-Venant

torsional modes and the resulting rotation is reduced by the ef-

fect of the interaction between the two modes. The interaction is

always beneficial. Eq. (24) (together with Eqs. (13), (14), (15)

and (16) also demonstrate that the rotations of the building can

be reduced by increasing the bending and shear stiffnesses of

the bracing units and, perhaps more importantly, by increasing

the effective (perpendicular) distances of the bracing units from

the shear centre. However, the most efficient way of reducing

rotations (to zero) is to minimise the external torque (to zero) by

eliminating the arm of the wind load, in other words, by creat-

ing a bracing system where the resultant of the wind load passes

through the shear centre.
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5 Practical application: worked example

When the formula for the maximum deflection was developed

above, the presentation followed an order that was most suitable

for, and in line with, the theoretical considerations. For practical

applications, however, it is advisable to follow a different order

to simplify and minimize the amount of calculation.

The procedure is best carried out in four steps.

1 The basic stiffness characteristics, the maximum deflection,

the “governing” stiffness (and, if needed, the apportioner) for

each bracing unit are calculated (EI, EIg, K, vmax, S , q).

2 The maximum deflection of the shear centre axis is deter-

mined after incorporating the stiffnesses of the shear walls and

cores into the frameworks in the relevant direction {Eq. (3)}.

3 Having determined the location of the shear centre and then

the torsional stiffnesses of the bracing units, the maximum

rotation of the system is determined {Eq. (24)}.

4 The maximum deflection of the building is obtained by

adding up its two components {Eq. (2)}.

This procedure is demonstrated below using a 28-storey

building whose layout is shown in Fig. 3. The building is sub-

jected to a uniformly distributed horizontal load of intensity

w∗= 1 kN/m2.

The bracing system consists of four frameworks, three shear

walls and a U-core. The storey-height is h = 3 m and the to-

tal height of the building is H = 28 x 3 = 84 m. The modulus of

elasticity is E = 25 x 106 kN/m2. The cross-sectional character-

istics of the bracing units are given in Table 1. The stiffness of

the shear walls perpendicular to their plane is ignored.

PART 1: The basic characteristics of the bracing units

Framework F7 (Bracing units 1, 2, 3 and 4)

With the part shear stiffnesses given by Eq. (6)

Kb,1 =
12EIb

lh
=

12 · 25 · 106 · 0.00426̇

6 · 3
= 71111 kN,

Kc,1 =
12EIc

h2
=

12 · 25 · 106 · 0.0064

32
= 213333 kN

the shear stiffness of the framework is calculated using Eq. (4)

K1 = Kb,1
Kc,1

Kb,1 + Kc,1
= Kb,1r1 =

= 71111
213333

71111 + 213333
= 71111 · 0.75 = 53333 kN

which also furnishes the value of modifier r1 = 0.75.

The local bending stiffness is given by Eq. (7):

EI1 = EIc,1r1 =

25 · 106 · 0.0064 · 0.75 = 120000 kNm2

The global bending stiffness is calculated using Eq. (8):

EIg,1 = E

n∑
j=1

A jt
2
j =

25 · 106 · 0.4 · 0.4 · 62 · 2 = 288000000 kNm2

The sum of the local and global stiffnesses [Eq. (9)] is

EI f ,1 = EI1 + EIg,1 = 288120000 kNm2

With auxiliary quantities a1, b1, s1 and κ1 obtained from

Eq. (10) as

a1 =
K1

EIg,1
=

53333

288000000
= 0.000185,

b1 =
K1

EI1

=
53333

120000
= 0.44444

s1 = 1 +
a1

b1

= 1 +
0.000185

0.44444
= 1.000416,

κ1 =
√

0.000185 + 0.44444 = 0.6668,

κ1H = 56.0

the maximum deflection of the framework is calculated using

Eq. (3) (with q1 = 1):

v1 =
30 · 844

8 · 288120000
+

30 · 842

2 · 53333 · 1.0004162
−

−
30 · 120000

533332 · 1.0004163

(
1 + 56 sinh 56

cosh 56
− 1

)
=

=0.648 + 1.983 − 0.070 = 2.561 m

The governing stiffness of the framework is given by Eq. (11):

S 1 =
1

v1(H)
=

1

2.561
= 0.39 m−1

As v2 = v3 = v4 = v1 = 2.561 m holds,

S 2 = S 3 = S 4 = 0.39 m−1

Shear wall W5 (Bracing Unit 5)

The maximum (in-plane) deflection and the stiffness of shear

wall W5 are obtained using the first term in Eq. (3) (with q5 = 1)

and Eq. (11), respectively, as

v5 =
wH4

8EI5

=
30 · 844

8 · 25 · 106 · 43.2
= 0.1729 m,

S 5 =
1

v5(H)
=

1

0.1729
= 5.784 m−1

U-core (Bracing Unit 6) {Only Ix,6 and deflection in plane zy

are relevant}

The maximum deflection and the stiffness of the core are cal-

culated using the first term of Eq. (3) (with q6 = 1) and Eq. (11),

respectively:
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Tab. 1. Cross-sectional characteristics of the bracing units.

Bracing unit
cross-section of

columns

cross-section of

beams
Ic,i [m4] Ib,i [m4] Ig,i [m4]

F7 0.4 x 0.4 0.4 x 0.4 0.0064 0.00426̇ 11.52

W2 0.2 x 4.0 – 1.066̇ – –

W5 0.3 x 12.0 – 43.2 – –

U h = b = 4.0, t = 0.3, e = 1.714 Ix = 11.245 – –

Fig. 3. Layout for the worked example.

v6 =
wH4

8EIx,6
=

30 · 844

8 · 25 · 106 · 11.245
= 0.664 m,

S 6 =
1

v6(H)
=

1

0.664
= 1.506 m−1

Shear wall W2 (Bracing Units 7 and 8)

The maximum (in-plane) deflection and the stiffness of shear

wall W2 are obtained using the first term in Eq. (3) (with q7 = 1)

and Eq. (11), respectively, as

v7 = v8 =
wH4

8EI7

=
30 · 844

8 · 25 · 106 · 1.06̇
= 7.0 m

S 7 = S 8 =
1

v7(H)
=

1

7.0
= 0.143 m−1

PART 2: The maximum deflection of the shear centre axis

The participating bracing units are the four frameworks (1, 2,

3, 4), shear wall 5 (5) and the U-core (6). There is no need for

the calculation of load shares as the four frameworks are identi-

cal. It is sufficient to consider one framework only which takes

one fourth of the external load. It is also sufficient to consider

one framework (when the shear wall and core are incorporated

into the frameworks) which takes one fourth of the bending stiff-

nesses of the shear wall and the core. The local bending stiffness

of this new framework, say F7∗, is

EI∗1 = E

(
I1 +

1

4
(I5 + I6x)

)
=

= 120000 + 25 · 106 1

4
(43.2 + 11.245) = 340.4 · 106 kNm2

The global bending stiffness and the shear stiffness are un-

changed at

EIg,1 =288000000 kNm2

and

K1 =53333 kN

and the total bending stiffness is

EI∗f ,1 = EI∗1 + EIg,1 = (340.6 + 288)106 = 628.4 · 106 kNm2

With the new auxiliary quantities (a1 is unchanged)

b∗1 =
K1

EI∗
1

=
53333

340.4 · 106
= 0.000157,

s∗1 = 1 +
a1

b∗
1

= 1 +
0.000185

0.000157
= 2.178

κ∗1 =

√
a1 + b∗

1
=
√

0.000185 + 0.000157 = 0.0185

and

κ∗1H = 1.553

the maximum deflection of the shear centre axis is obtained us-

ing Eq. (3) (with q1 = 1/4):

vo =
0.25 · 30 · 844

8 · 628.4 · 106
+

0.25 · 30 · 842

2 · 53333 · 2.1782
−

−
0.25 · 30 · 340.4 · 106

533332 · 2.1783

(
1 + 1.553 sinh 1.553

cosh 1.553
− 1

)
= 0.107 m
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PART 3: Maximum rotation around the shear centre

The participating bracing units are the four frameworks (F7),

the three shear walls (W5, W2 and W2) and the U-core. The

U-core is only “active” in plane yz (with Ix,6) as the length of its

other (perpendicular) moment arm is zero (t6 y = 0).

The location of the shear centre and then the torsional stiff-

nesses of the bracing units are needed first. Because of symme-

try, only one of the two co-ordinates needs calculation. Based

on Eq. (17), the shear centre co-ordinates are

x̄o =

∑ f +m

1
S y,i x̄i∑ f +m

1
S y,i

=
S 1(6 + 12 + 18 + 24) + S 6(L + e)

S 5 + 4S 1 + S 6

=

=
0.39 · 60 + 1.506 · 31.714

5.784 + 4 · 0.39 + 1.506
= 8.04 m,

ȳo = 6 m

The torsional moment causing rotation around the shear cen-

tre is given by Eq. (19):

m = w

(
L

2
− x̄o

)
= 30(15 − 8.04) = 208.8 kNm/m

The “governing” torsional stiffnesses of the bracing units are

obtained from Eq. (20) using their perpendicular distance from

the shear centre and their maximum deflection:

S ω,1 =
t2
1

v1

=
2.042

2.561
= 1.625 m,

S ω,2 =
t2
2

v2

=
3.962

2.561
= 6.123 m,

S ω,3 =
t2
3

v3

=
9.962

2.561
= 38.73 m,

S ω,4 =
t2
4

v4

=
15.962

2.561
= 99.46 m,

S ω,5 =
t2
5

v5

=
8.042

0.1729
= 373.87 m,

S ω,6 =
t2
6

v6

=
23.6742

0.6641
= 843.94 m,

S ω,7 = S ω,8 =
t2
7

v7

=
62

7.0
= 5.143 m

With the sum of the torsional stiffnesses

f +m∑
1

S ω,i = 1374.0 m

Eq. (21) can now be used to determine the torsional load share

on one of the bracing units. Choosing, say, Bracing Unit 5, the

torsional load share is

qω,5 =
S ω,5∑ f +m

1
S ω,i

=
373.87

1374.0
= 0.2721

The maximum rotation of the building can now be determined

using Eq. (22) and Eq. (24) which, because Bracing Unit 5 is a

shear wall, reduces to its first term (and I fω reduces to Iω):

ϕmax = ϕ5(H) =
qω,5mH4

8EIω,5
=

=
0.2721 · 208.8 · 844

8 · 25 · 106 · 43.2 · 8.042
= 0.005065 rad

PART 4: The maximum deflection of the building

Maximum deflection develops at the right-hand side of the

building where, according to Eq. (2), the two components of the

deflection add up:

vmax = vo(H) + (L − x̄o)ϕ(H) =

= 0.107 + 0.005065(30 − 8.04) = 0.218 m

The Finite Element based computer program Axis (2003)

gives vmax = 0.208 m as the maximum deflection of the building.

6 Accuracy analysis

The result of the worked example offers some indication re-

garding the accuracy of the proposed method but, clearly, more

information is needed if the proposed procedure is to be used

for practical application. In order to carry out a comprehen-

sive accuracy analysis, in addition to the worked example above,

twelve more bracing system arrangements were created (Fig. 4)

using frameworks, shear walls and cores.

These individual bracing units (frameworks F1, F2, F3, F4,

F5, F6 and F7, shear walls W2, W3, W4 and W5 and the U-

core) were all used for the accuracy analysis of the planar so-

lution [16]. The cross-sections of the columns and beams of

the frameworks were 0.4 / 0.4 (metre) unless otherwise indicated

in Fig. 4. The storey height and the bays were 3 metres and

6 metres, respectively, in each case. The height of the structures

varied from 4 storeys to 80 storeys in nine steps. This resulted

in 117 test structures. The bracing units and systems as well as

the layouts were chosen in such a way as to cover a wide range

of structures. Among the bracing systems, there are bending

dominated systems, shear dominated systems, mixed systems,

systems dominated by frameworks, systems dominated by shear

wall, systems developing dominant lateral deflection, systems

very vulnerable to rotations, etc. The modulus of elasticity for

the concrete structures was 25 kN/mm2.

The Finite Element based computer program Axis (2003) was

used for the determination of the maximum deflection of the

bracing systems and these results were considered “exact”.

The error of the proposed method was defined as the differ-

ence between the “exact” and approximate results, related to the

“exact” solution. Positive error meant conservative estimates.

Table 2 offers a summary regarding the performance of the pro-

posed method giving the range of error, the average absolute

error and the maximum error. The maximum deflections were

also determined using the “old” method [15]. The comparison

shows that the proposed method is much superior concerning the

average absolute error and the maximum error. What the table
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Fig. 4. Structures for the accuracy analysis.

Tab. 2. Accuracy of the “old” and proposed methods.

Method Range of error (%)
Average absolute error

(%)
Maximum error (%)

“Old” method [15] 1 to 23 9 23

Proposed method -7 to 15 5 15

Maximum deflection of asymmetric wall-frame buildings under horizontal load 3952014 58 4



does not show is the ease of use and in this respect the proposed

procedure also outperforms the old one by a large margin.

The performance of the proposed method over the height of

the building is demonstrated in Fig. 5.

Fig. 5. Accuracy of the proposed method over the height.

The results of the 117 test cases also demonstrated that the

beneficial effect of the interaction between the bending and

shear (warping and Saint-Venant torsional) modes may be sig-

nificant in the case of low-rise buildings but as the height of the

structures increases this effect becomes rapidly negligible.

7 Conclusions

The application of the continuum method and the analogy be-

tween the bending and torsion of bars make it possible to carry

out the torsional analysis of regular multi-storey buildings in a

simple manner. The resulting closed-form solution for the maxi-

mum rotation of the building offers a clear picture. The torsional

behaviour is defined by three distinctive phenomenon: warp-

ing torsion, Saint-Venant torsion and the interaction between

the two modes. In identifying the key contributors to the tor-

sional resistance, the efficiency of the bracing system can easily

be maximised. The interaction between the two modes is al-

ways beneficial. However, this interaction – that may be signif-

icant for low-rise buildings – rapidly becomes negligible as the

height of the structure increases. The formula for the maximum

rotation is identical in structure to the formula of the maximum

deflection of the shear centre axis and they together lead to the

determination of the maximum deflection of asymmetric multi-

storey buildings in a single and simple step.

As for the accuracy of the proposed method, a comprehen-

sive accuracy analysis of 117 test structures resulted in an error

range of 7% to +15%, with a less than 5% absolute average

error. Knowing the uncertainties in building materials and in-

accuracies in the construction industry, the proposed method is

considered accurate enough for either preliminary design or for

checking purposes.
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