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Abstract

The ray optimization algorithm is a recently developed meta-

heuristic algorithm which was conceptualized using the rela-

tionship between the angles of incidence and fraction based

on Snell’s law. In ray optimization, each agent is modeled as

a ray of light that moves in the search space in order to find

the global or near-global optimum solution. This paper devel-

ops an Improved Ray Optimization (IRO) algorithm for solv-

ing optimization problems. IRO employs a new approach for

generating new solution vectors which has no limitation on the

number of variables, so in the process of algorithm there is no

need to divide the variables into groups like RO. The procedure

which returns the violated agents into feasible search space is

also modified. These improvements enhance the accuracy and

convergence rate of the RO. The Simulation results of the IRO

for benchmark mathematical optimization problems and truss

structures are compared to those of the standard RO and some

well-known meta-heuristic algorithms, respectively. Numerical

results indicate the effectiveness and robustness of the proposed

IRO.
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1 Introduction

One class of optimization is based on traditional mathemat-

ical methods which use the gradient information to search the

optimal solutions with drawbacks such as complex derivatives,

sensitivity to initial values, and the large amount of enumeration

memory required [1]. In recent years, the other class of opti-

mization techniques, namely stochastic optimization algorithms

inspired by natural mechanisms, are developed for overcoming

these disadvantages.

In recent years, the investigation of various kinds of meta-

heuristic algorithms for discrete and continuous structural opti-

mization problems such as Genetic Algorithms (GA) [2], Sim-

ulated Annealing (SA) [3], Ant Colony Optimization (ACO)

[4], Particle Swarm Optimizer (PSO) [5], Harmony Search (HS)

algorithm [1], Big Bang-Big Crunch (BB-BC) algorithm [6],

Charged System Search (CSS) method [7], Imperialist Competi-

tive Algorithm (ICA) [8], and Magnetic Charged System Search

(MCSS) method [9] has attracted much attention and many pos-

sible applications. A comprehensive review on structural de-

sign optimization based on stochastic optimization algorithms

has been presented recently by Lambert and Pappalettere [10].

Optimum design of the truss structures is known as benchmark

in the field of optimization problems due to the presence of many

design variables, large size of the search space, and many con-

straints. Therefore this can be considered as a suitable means to

investigate the efficiency of the new algorithms.

Recently, a new optimization method is developed that is

based on the transition of ray from one medium to another from

physics, Kaveh and Khayatazd [11]. The transition of the ray

is utilized for finding the global or near-global solutions. This

algorithm is called Ray Optimization (RO) and uses the Snell’s

refraction law of the light. RO is good at identifying the high

performance regions of the solution space at a reasonable time

in relatively complicated problems, but it is not good in perform-

ing local search for complex problems. In order to create a so-

lution vector, a new technique is added to the IRO that provides

a better balance between exploration and exploitation. Further-

more it applies an increasing function that helps the algorithm

in constraint handling.
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In order to show the efficiency and robustness of proposed

method, IRO is applied to three standard truss structures in ad-

dition to some mathematical functions. Numerical results reveal

that the proposed algorithm is a suitable stochastic search tech-

nique for various optimization problems and performs well in

terms of accuracy and the number of objective function evalua-

tions compared to the standard RO.

The remaining sections of this paper are organized as follows:

The improved version of the RO algorithm together with a brief

overview of the standard RO are provided in Section 2. Some

benchmark mathematical functions and three benchmark truss

structures are optimized in Section 3 for both discrete and con-

tinuous search spaces. Finally the paper is concluded in Sec-

tion 4.

2 Improved ray optimization algorithm

This section describes the proposed improved ray optimiza-

tion (IRO) algorithm. First, a brief overview of the standard RO

is provided, and then the modifications are described forming

the proposed IRO algorithm.

2.1 The basic principles of the ray optimization algorithm

The Ray Optimization (RO) algorithm proposed by Kaveh

and Khayatazad [11] like other multi-agent methods has a num-

ber of particles consisting of the variables of the problem. These

agents are considered as rays of light. Based on the Snell’s light

refraction law when light travels from a lighter medium to a

darker one, it refracts and its direction changes. This behav-

ior helps the agents to explore the search space in early stages of

the optimization process and to make them converge in the final

stages. This law is the main tool of the RO [11].

Considering nd and nt as the refraction indexes of the lighter

material and darker one respectively, the Snell’s law can be ex-

pressed as:

nd · sin(θ) = nt · sin(φ) (1)

where θ and φ are the angles between the normal of two surfaces

(n) with incoming ray vector (d), and the refracted ray vector (t)

respectively, as shown in Figure 1.

Fig. 1. Incident and refracted rays and their specifications

Having the direction of the incoming ray vector and the index

of the refraction of the light and darker mediums, the direction

of the refracted ray vector can be found.

For finding t in a 2-dimensional space, we have

t = −n ·

√
1 −

n2
d

n2
t

· sin2(θ) +
nd

nt

· (d − (d · n) · n) (2)

where t, d and n are unit vectors.

In a 3-dimensional space, d and n are stated in a new coordi-

nate system as:

n∗ = (1, 0), d∗ = (d · i∗, d · j∗) (3)

where i∗ and j∗ are two normalized vectors from Table 1, which

norm is a function provides the length of a vector. Then t∗ =

(t∗
1
, t∗

2
) is calculated in 2-dimensional space, now t can be ob-

tained in a 3-dimensional space:

t = t∗1 · i
∗ + t∗2 · j∗ (4)

If the number of variables is more than 3, first the variables

must be divided in 2-variables and 3-variables groups (for exam-

ple a solution vector containing seven design variables divided

into two 2-variables groups and one 3-variables group), there-

after prior formulas are applied to each group.

Tab. 1. The components of the new coordinate system

−0.05 ≤ n · d ≤ 0.05 0.05 ≤ n · d ≤ 1 −1 ≤ n · d ≤ −0.05

i∗ n n n

j∗ d j∗ =
(n− d

n·d
)

norm(n− d
n·d

)
j∗ =

(n+ d
−n·d

)

norm(n+ d
−n·d

)

In the RO, the agents move to their new positions by the aid of

the movement vectors. These movement vectors similarly must

be divided into appropriate groups. In the first iteration of the

optimization process, the positions and movement vectors are

generated randomly. By adding the positions of each agent with

their movement vectors, the agents move to the new positions.

In this transition some agents violate the boundary conditions

so their movement vector should be changed by a new one. The

new movement vector is a vector with the same direction and

a length equal to 0.9 times of the length between the current

agent position and the boundary intersection caused by the prior

movement vector.

Each agent must be moved to its new position, and first the

point to which each particle moves must be determined. This

point is named origin and it is specified by

OK
i =

(ite + k) · GB + (ite − k) · LBi

2 · ite
(5)

Where Ok
i

is the origin of the ith agent for the kth iteration, ite is

the total number of iterations for the optimization process, and

GB and LBi are the global best and local best of the ith agent,

respectively.

The normal is selected as a vector whose origin is O and its

end is the current position of agent. Now, the direction of the

new movement vector can be calculated based on Eq. (2), and
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after that the final form of the movement vector after finding the

new direction is given by:

Vi,l = V′i,l · norm(Xi,l − Oi,l) (6)

where V′
i,l, Xi,l, Oi,l, and Vi,l are the normalized movement vec-

tor, current position of the agent, the origin, and refined move-

ment vector of the ith agent, respectively for the lth group.

If the origin and its current position become identical, so the

direction of the normal cannot be obtained. For solving this

problem, the direction can be obtained utilizing the following

equation:

Vk+1
i,l =

Vk
i,l

norm(Vk
i,l

)
· rand · 0.001 (7)

In this equation, Vk
i,l is the movement vector of the kth iteration

that belongs to the lth group of the ith agent, and Vk+1
i,l is the

movement vector of the (k + 1)th iteration. Finally, rand is a

random number between 0 and 1.

With probability like stoch a movement vectors must be

changed and considered as

V
(k+1)′

i jl
= −1 + 2 · rand (8)

where V
(k+1)′

i jl
is jth component of lth group that belongs to ith

agent in (k + 1)th iteration. But the magnitude of this vector

should be refined. Therefore

VK+1
il =

V
(k+1)′

il

norm(V
(k+1)′

il
)
·

a

d
· rand (9)

a is also calculated by the following relationship:

a =

√√
n∑

i=1

(Xi,max − Xi,min)2 n =

 2 for two variable groups

3 for three variable groups

(10)

Where Xi,max and Xi,min are the maximum and minimum limits

of variables that belong to the ith component of the movement

vector, respectively. d is a number that divides a into smaller

length for effective search. For further details, the reader may

refer to Kaveh and Khayatazad [11].

2.2 Proposed improved ray optimization algorithm

In the following steps some definitions and contents are ex-

actly the same as the standard RO and others which has im-

proved the algorithm, are modified.

Step 1. The initial positions of the agents are determined

randomly in the search space and after that the goal function is

evaluated for each agent as

Xi j = X j,min + rand · (X j,max − X j,min) j = 1, 2, . . . , n (11)

Where Xi j is the jth variable of the ith agent. X j,min and X j,max

are the minimum and maximum limits of the jth variable, and n

is the number of variables.

Step 2. A memory which saves some or all the best positions

as local best memory (LBM) is considered, and the position of

the best agent is saved as the global best (GB). If the positions

of all agents (especially when the number of agents is large) are

saved, the computational cost grows. In this paper, if the number

of agents are more than or equal to 25, the size of the local best

memory is considered as 25, otherwise the size of the LBM is

taken as half number of agents.

Step 3. The initial movement vectors of agents are stated as:

Vi j = −1 + 2 · rand j = 1, 2, . . . , n (12)

Where Vi j is the initial value of the jth variable for the ith agent.

Now, by adding the positions of each agent with their movement

vectors, new positions are resulted.

Step 4. There is a possibility of boundary violation when an

agent moves to its new position, so if any component of each

agent violates a boundary, it must be regenerated by the follow-

ing formula

Xk+1
i j = Xk

i j + 0.9(Inti j − Xk
i j) (13)

where Xk+1
i j

and Xk
i j

are the refined component and component

of the jth variable for the ith agent in (k + 1)th and kth iteration,

respectively. Inti j is the intersection point (If an agent violates

a boundary, it intersects the boundary at a specified point, be-

cause of having definite movement vector) of the jth variable

for the ith agent. Instead of changing all the components of vi-

olating agents, only the components that violate the boundary is

refunded This improvement is more effective when the number

of variables is large. At the end of this step, the goal function

is evaluated for each agent and thereafter the LBM and GB are

updated.

Step 5 . Consider the origin as a point which each agent wants

to move toward it and specified this point by

OK
i =

(ite + k) · GB + (ite − k) · LB

2 · ite
(14)

Where Ok
i

is the origin of the ith agent for the kth iteration, ite is

the total number of iterations for the optimization process, GB

is the global best and LB is considered randomly from local best

memory. Now for each agent target a vector (Tv) is defined as:

Tvi = Oi − Xi (15)

Where Tvi and Xi is target vector and current position of the ith

agent, respectively.

Step 6. The main idea of RO is approximating the new

movement vector with a normal vector. To achieve this aim, if

the number of variables was more than 3, the proposed formula

cannot be applied directly and first the main problem must be di-

vided into some sub-problems and after the calculation, merge

the results of the sub-problems to evaluate the goal function.

When the number of variables is large the computational cost

grows considerably. Instead of this approach the following for-

mula (which has no limit on the number of variables) is applied
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to calculate the direction of the new movement vector that is de-

fined according to prior movement vector and target vector as

illustrated in Figure 2. Thus we have:

Vk+1
i = α · Tvk

i + β · Vk
i (16)

Where Vk+1
i

and Vk
i

are movement vectors for the ith agent in

(k + 1)th and kth iteration, respectively. α and β are the fac-

tors that control the exploitation and exploration respectively as

shown in Figure 3. An efficient optimization algorithm should

perform good exploration in early iterations and good exploita-

tion in final iterations. Thus, α and β are increasing and decreas-

ing functions respectively, and are defined as:

α = 1 + (
k

ite
) (17)

β = 1 − 0.5(
k

ite
) (18)

Finally all the Vk+1
i

vectors should be normalized.

Step 7 The magnitude of movement vectors must be calcu-

lated because in the previous steps only the direction of the

movement vector is defined.

One of the important features of each meta-heuristic algo-

rithm is its ability to escape from the trap when agents fall into a

local minimum, so in the RO there is a possibility like stoch that

specifies whether a movement vector must be changed or not,

therefore we have

a. with probability like stoch,

Vk+1
i j = −1 + 2 · rand (19)

VK+1
i =

Vk+1
i

norm(Vk+1
i

)
·

a

d
· rand (20)

b. with probability like (1-stoch),

If norm(Ok
i − Xk

i
) = 0,

Vk+1
i =

Vk
i

norm(Vk
i
)
· rand · 0.001 (21)

Otherwise,

Vk+1
i = Vk+1

i · norm(Xk
i − Ok

i ) (22)

In the case of problems that have function constraints (behav-

ior constraints), the following formulas are utilized instead of

Eq. (22)

VK+1
i = Vk+1

i ·
a

d
(23)

d = d + r · d · (
k

ite
) (24)

Where r is a constant factor

When the number of iterations rises the value of d increase

and it help the algorithm to handle the constraint well.

If one of the subsequent steps is not fulfilled, by adding each

movement vector with their current position they move to their

new positions and the process of optimization will continue from

Step 4.

Step 8 The terminating criterion is one of the following:

1. Maximum number of iterations: the optimization process

is terminated when number of iterations is equal to predefined

one.

2. Number of iterations without improvement: the optimiza-

tion process is terminated if after number of specific iterations

the objective function did not change.

3. Minimum goal function error: when the algorithm has

found the global minimum with a predefined accuracy, the opti-

mization process is terminated.

The flowchart of the IRO algorithm is illustrated in Figure 4.

3 Mathematical and Structural Design Examples

3.1 Standard mathematical functions

To test the ability of the proposed algorithm and to compare

its results with those of the standard RO, some benchmark math-

ematical functions are considered which are tabulated in Table 2.

Each of these functions tests the optimization algorithm in spe-

cial conditions, identifying the weak points of the optimization

algorithm. These functions are selected by Tsoulos [12] for

evaluating modifications of Genetic Algorithm and utilized by

Kaveh and Khayatazad [11] for investigating the standard RO.

The IRO method with different number of agents has been

tested for each of the above functions. Assigning the number of

agents as 50 in the CM, Griewank and Rastring functions and as

10 for other ones shows a better performance. We also have tried

to tune other parameters of algorithm. From our simulations it is

recommended to set parameters as 0.35 and 700 for Stoch and d,

respectively. After implementing IRO algorithm using Matlab,

it has been run independently 50 times to carry out meaningful

statistical analysis. The algorithm stops when the variations of

function values are less than a given tolerance as 10−4. Table 3

reports the performance of GEN_S_M_LS as the best modifica-

tionof GA [12], the standard RO [11] and proposed IRO respec-

tively, where the numbers are in the format: average number of

evaluations ± one standard deviation (success rate). Consider-

ing this table, the standard RO and the improved RO show better

performances in terms of the required number of analyses and

success rate.

3.2 Continuous and discrete trusses

Optimum design of the truss structures is known as bench-

mark in the field of optimization problems. In this section, com-

mon truss optimization examples as benchmark problems are

optimized with the IRO algorithm. The final results are com-

pared to the solutions of other methods to demonstrate the effi-

ciency of the IRO. We have tried to vary the number of agents

and other parameters. From our simulations, setting the number

of agents and Stoch 25 and 0.35 are efficient for design exam-

ples, respectively. Table 4 tabulates other parameters for each
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Fig. 2. Generation of the new movement vector

Fig. 3. Influence of the α and β parameters

Fig. 4. The flowchart of the IRO
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Tab. 2. Specifications of the benchmark problems

Function name Interval Function Global minimum

Aluffi-Pentiny X ∈ [−10, 10]2 f (X) = 1
4

x4
1
− 1

2
x2

1
+ 1

10
x1 + 1

4
x2

2
-0.352386

Bohachevsky 1 X ∈ [−100, 100]2 f (X) = x2
1

+ 2x2
2
− 3

10
cos(3πx1) − 4

10
cos(4πx2) + 7

10
0.0

Bohachevsky 2 X ∈ [−50, 50]2 f (X) = x2
1

+ 2x2
2
− 3

10
cos(3πx1) cos(4πx2) + 3

10
0.0

Becker and Lago X ∈ [−10, 10]2 f (X) = (|x1 | − 5)2 + (|x2 | − 5)2 0.0

Branin 0 ≤ x2 ≤ 15 −5 ≤ x1 ≤ 10 f (X) = (x2 −
5.1
4π2 x2

1
+ 5

π x1)2 + 10(1 − 1
8π ) cos(x1) + 10 0.397887

Camel X ∈ [−5, 5]2 f (X) = 4x2
1
− 2.1x4

1
+ 1

3
x6

1
+ x1 x2 − 4x2

2
+ 4x4

2
-1.0316

Cb3 X ∈ [−5, 5]2 f (X) = 2x2
1
− 1.05x4

1
+ 1

6
x6

1
+ x1 x2 + x2

2
0.0

Cosine mixture n = 4, X ∈ [−1, 1]n f (X) =
n∑

i=1

x2
i
− 1

10

n∑
i=1

cos(5πxi) -0.4

De Joung X ∈ [−5.12, 5.12]3 f (X) = x2
1

+ x2
2

+ x2
3

0.0

Exponential n = 2, 4, 8, 16 X ∈ [−1, 1]n f (X) = − exp(−0.5
n∑

i=1

x2
i
) -1.0

Goldstein
X ∈ [−2, 2]2

f (X) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1
− 14x2 + 6x1 x2 + 3x2

2
]

3.0
and Price ·[30 + (2x1 − 3x2)2(18 − 32x1 − 12x2

1
+ 48x2 − 36x1 x2 + 27x2

2
)]

Griewank X ∈ [−100, 100]2 f (X) = 1 + 1
200

n∑
i=1

x2
i
−

2∏
i=1

cos(
xi√

i
) 0.0

Rastrigin X ∈ [−1, 1]2 f (X) =
n∑

i=1

(x2
i
− cos(18xi)) -2.0

Tab. 3. Performance comparison for the benchmark problems

FUNCTION GEN_S_M_LS Ray Optimization Present work (IRO)

AP 1,253 331 253± 38.7985(100)

Bf1 1,615 677 438± 48.4636(100)

Bf2 1,636 582 395± 45.9674(100)

BL 1,436 303 194± 31.2733(100)

Branin 1,257 463 312±81.0515(100)

Camel 1,300 332 184± 21.0855(100)

Cb3 1,118 262 247± 36.4549(100)

CM 1,539 802 1290± 65.3543(100)

Dejoung 1,281 452 213± 26.3344(100)

EXP2 807 136 90± 20.5115(100)

EXP4 1,496 382 220± 50.5624(100)

EXP8 1,496 1,287 512± 97.7743(100)

EXP16 1945 17,236(0.46) 1141± 142.76(100)

GRIEWANK 1,652(0.99) 1,091(0.98) 1383± 100.3458(100)

RASTRIGIN 1,381 1,013(0.98) 1662± 202.3105(100)

Goldstein and Price 1,325 451 361± 59.0105(100)

TOTAL 22537(99.94) 25800(96.38) 8895(100)
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case. In the sequel, formulation of optimum truss design prob-

lem is briefly overviewed at the first subsection then the exam-

ples are presented. The examples contain a 25-bar transmission

tower and a 72-bar spatial truss with both discrete and continu-

ous design variables and a dome shaped space truss with contin-

uous search space.

3.2.1 Optimum design of truss structures

The aim of optimizing a structure is to find a set of design

variables corresponding to the minimum weight satisfying cer-

tain constraints. This can be expressed as [8]:

Find {X} =
[
x1, x2, . . . , xng

]
, xi ∈ D

To minimize W ({X}) =
ng∑
i=1

xi

nm(i)∑
j=1

ρ j · L j

Subject to: g j ({X}) ≤ 0 j = 1, 2, . . . , n

(25)

Where {X} is the set of design variables; ng is the number of

member groups in structure (number of design variables), the

grouping of members is applied according to symmetry in topol-

ogy of truss; D is the cross-sectional areas available for members

in the truss which are restricted to a discrete or continuous range

of values, bounded by an upper and lower limit; W({X}) presents

weight of the structure; nm(i) is the number of members for the

ith group; ρi and L j denotes the material density and the length

of the jth member for ith group, respectively; g j({X}) denotes

design constraints; and n is the number of the constraints.

In order to handle the constraints, a penalty approach is uti-

lized. In this method, the aim of the optimization is redefined by

introducing the cost function as:

fcos t ({X}) = (1 + ε1 · υ)ε2 ×W ({X}) , υ=

n∑
j=1

max
[
0, g j({X})

]
(26)

Where n represents the number of evaluated constraints for each

individual design, and υ denotes the sum of the violations of the

design. The constants ε1 and ε2 are selected considering the ex-

ploration and the exploitation rate of the search space. Here, ε1

is set to unity, ε2 is selected in a way that it decreases the penal-

ties and reduces the cross-sectional areas. Thus, in the first steps

of the search process, ε2 is set to 1.5 and ultimately increased to

3.

The constraint conditions for truss structures are briefly ex-

plained in the following. The stress limitations of the members

are imposed according to the provisions of ASD-AISC [13] as

follows:  σ+
i

= 0.6Fy for σi ≥ 0

σ−
i

for σi < 0
(27)

σ−i =


[(

1 −
λ2

i

2c2
c

)
Fy

]
/
(

5
3

+ 3λi

8cc
+

λ3
i

8c3
c

)
for λi ≥ cc

12π2E

23λ2
i

for λi < cc

(28)

Where E is the modulus of elasticity; Fy is the yield stress of

steel; Cc denotes the slenderness ratio(λi) dividing the elastic

and inelastic buckling regions (cc =
√

2π2E/Fy); λi = the slen-

derness ratio (λi = kli/ri); k = the effective length factor; Li =

the member length; and ri = the radius of gyration. The radius

of gyration (ri) can be expressed in terms of cross-sectional ar-

eas as ri = aAb
i
. Here, a and b are the constants depending on

the types of sections adopted for the members such as pipes,

angles, and tees. In this study, pipe sections (a = 0.4993 and

b = 0.6777) are adopted for bars [1].

The other constraint corresponds to the limitation of the nodal

displacements:

δi − δ
u
i ≤ 0 i = 1, 2, . . . , nn (29)

Where δi is the nodal deflection; δu
i

is the allowable deflection

of node i; and nn is the number of nodes.

3.2.2 The 25-bar space truss

The 25-bar transmission tower is used widely in struc-

tural optimization to verify various meta-heuristic algorithms.

The topology and nodal numbering of the truss is shown

in Figure 5, Ref. [7]. The material density is considered

as 0.1 lb/in3 (2767.990 kg/m3) and the modulus of elasticity is

taken as 107 psi (68,950 MPa). Twenty-five members are cate-

gorized into eight groups, as follows: (1) A1, (2) A2 –A5, (3)

A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17, (7) A18–A21,

and (8) A22–A25. In this example, designs for both a single and

multiple load cases using both discrete and continuous design

variables are performed.

3.2.3 Design of the 25-bar truss utilizing discrete variables

In the first design of the 25-bar truss, a single load case {(kips)

(kN)}is applied to the structure, at nodes 1, 2, 3 and 4 as fol-

lows: 1{(0, −10, −10) (0, −44.5, −44.5)}, 2{(1, −10, −10)

(4.45, −44.5, −44.5)}, 3{(0.6, 0, 0) (2.67, 0, 0)}and 4{(0.5, 0, 0)

(2.225, 0, 0)}. The allowable stresses and displacements are re-

spectively ± 40 ksi (275.80 MPa) for each member and ± 0.35 in

(± 8.89 mm) for each node in the x, y and z directions. The range

of discrete cross-sectional areas is from 0.1 to 3.4 in2 (0.6452 to

21.94 cm2) with 0.1 in2 (0.6452 cm2) increment (resulting in 34

discrete cross sections) for each of the eight element groups [6].

Table 5 presents the performance of the IRO and other algo-

rithms. The IRO algorithm achieves the best solution weighted

by 484.85 lb (219.92 kg), after 925 analyses. Although, this is

identical to the best design developed using BB-BC algorithm

[6] and a multiphase ACO procedure [4], it perform better than

others when the number of analyses and average weight for 50

runs are compared.

3.2.4 Design of the 25-bar truss utilizing continuous vari-

ables

In the second design of the 25-bar truss, the structure is sub-

jected to two load cases listed in Table 6. Maximum displace-

ment limitations of ± 0.35 in (± 8.89 mm) are imposed on every

node in every direction and the axial stress constraints vary for
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Tab. 4. Algorithm parameters for truss examples

Parameter 25-bar (discrete) 25-bar (continuous) 72-bar (discrete) 72-bar (continuous) 120-bar

d 15 5 15 10 10

r 7 4 7 20 20

Fig. 5. The 25-bar space truss

Tab. 5. Performance comparison for the 25-bar spatial truss under single load case

Element group Optimal cross-sectional areas (in2)

GA GA ACO BB-BC phases 1,2 Present work

[6] [6] [4] [6] in2 cm2

1 A1 0.10 0.10 0.10 0.10 0.10 0.645

2 A2–A5 1.80 0.50 0.30 0.30 0.30 1.935

3 A6–A9 2.30 3.40 3.40 3.40 3.40 21.935

4 A10–A11 0.20 0.10 0.10 0.10 0.10 0.645

5 A12–A13 0.10 1.90 2.10 2.10 2.10 13.548

6 A14–A17 0.80 0.90 1.00 1.00 1.00 6.452

7 A18–A21 1.80 0.50 0.50 0.50 0.50 3.226

8 A22–A25 3.00 3.40 3.40 3.40 3.40 21.935

Best weight (lb) 546.01 485.05 484.85 484.85 484.85 219.92 (kg)

Average weight (lb) N/A N/A 486.46 485.10 484.90 219.94 (kg)

Number of analyses 800 15,000 7700 9000 925
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each group as shown in Table 7. The range of cross-sectional

areas varies from 0.01 to 3.4 in2 (0.06452 to 21.94 cm2) [7].

Table 8 shows the best solution vectors, the corresponding

weights, average weights and the required number of analyses

for present algorithm and some other meta-heuristic algorithms.

The best result obtained by IACS algorithm [14] in the aspects

of low weight and number of analyses. The IRO-based algo-

rithm needs 12200 analyses to find the best solution while this

number is equal to 9596, 7000, 9875, 12,500 and 13880 anal-

yses for a PSO-based algorithm [7], the CSS algorithm [7], a

combination algorithm based on PSO, ACO and HS [15], an

improved BB–BC method using PSO properties [16] and RO al-

gorithm [11], respectively. The difference between the results

of the IRO and these algorithms are very small, but the average

weight obtained by the IRO algorithm for 50 runs is better than

others. The convergence history for the best result and average

penalized weight of 50 runs are shown in Figure 6. The impor-

tant point is that although the IRO requires 12200 analyses to

achieve the weight of 545.19 lb (247.29 kg), it can achieve the

547 lb (248.12 kg) after 6000 analyses. Convergence speed in

IRO is acceptable and step-like movements in diagram of IRO

performance exhibit how it escapes from local minimum points

in order to find a better optimum point.

Tab. 6. Loading conditions for the 25-bar spatial truss

Case Node Fx kips (kN) Fy kips (kN) Fz kips (kN)

1 1 1.0 (4.45) 10.0 (44.5) −5.0 (−22.25)

2 0.0 10.0 −5.0 (−22.25)

3 0.5 (2.225) 0.0 0.0

6 0.5 (2.225) 0.0 0.0

2 1 0.0 20.0 (89) −5.0 (−22.25)

2 0.0 −20.0 (−89) −5.0 (−22.25)

3.2.5 The 72-bar space truss

For the 72-bar spatial truss structure shown in Figure 7 [16],

the material density is 0.1 lb/in3 (2767.990 kg/m3) and the mod-

ulus of elasticity is 107 psi (68,950 MPa). The 72 structural

members of this spatial truss are categorized into 16 groups us-

ing symmetry: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–

A18, (5) A19– A22, (6) A23–A30, (7) A31–A34, (8) A35–A36, (9)

A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54, (13) A55–

Tab. 7. Member stress limitation for the 25-bar space truss

Element group Compression ksi (MPa) Tension ksi (MPa)

1 A1 35.092 (241.96) 40.0 (275.80)

2 A2–A5 11.590 (79.913) 40.0 (275.80)

3 A6–A9 17.305 (119.31) 40.0 (275.80)

4 A10–A11 35.092 (241.96) 40.0 (275.80)

5 A12–A13 35.092 (241.96) 40.0 (275.80)

6 A14–A17 6.759 (46.603) 40.0 (275.80)

7 A18–A21 6.959 (47.982) 40.0 (275.80)

8 A22–A25 11.082 (76.410) 40.0 (275.80)

A58, (14) A59–A66 (15), A67– A70, and (16) A71–A72. In this ex-

ample, designs for a multiple load cases using both discrete and

continuous design variables are performed. The values and di-

rections of the two load cases applied to the 72-bar spatial truss

for both discrete and continuous designs are listed in Table 9.

The members are subjected to the stress limits of ± 25 ksi (±

172.375 MPa) for both discrete and continuous designs. Max-

imum displacement limitations of ± 0.25 in (± 6.35 mm), are

imposed on every node in every direction and on the uppermost

nodes in both x and y directions respectively for discrete and

continuous cases.

3.2.6 Design of the 72-bar truss using discrete variables

In this case, the discrete variables are selected from 64 dis-

crete values from 0.111 to 33.5 in2 (71.613 to 21612.860 mm2).

For more information, the reader can refer to Table 2 in Kaveh

and Talatahari [7].

Table 10 shows the best solution vectors, the corresponding

weights and the required number of analyses for present algo-

rithm and some other meta-heuristic algorithms. The IRO algo-

rithm can find the best design among the other existing studies.

Although the number of required analyses by the IRO algorithm

is more than ICA algorithm, but the best weight of the IRO al-

gorithm is 389.33lb (176.60 kg) that is 3.51lb (1.59 kg) lighter

than the best result obtained by ICA algorithm [8].The conver-

gence history of the best result and the average penalized weight

of 50 runs are shown in Figure 8. Convergence speed in IRO is

acceptable and step-like movements in diagram of IRO perfor-

mance exhibit how it escapes from local minimum points, to

find a better optimum point. It is important to note that this

case has an expended search space than is requisite. The perfor-

mance of the IRO decreased from 389.87± 1.1643lb (176.84±

0.5281 kg) to 408.17± 71.2108 lb (185.14± 32.3007 kg) consid-

ering 47 and all 50 independent runs, respectively. In the other

words, IRO yields to unexpected designs in just three of 50 in-

dependent runs. Unfortunately comprehensive statistical study

of this case is not available in optimization literature.

3.2.7 Design of the 72-bar truss using continuous variables

In this case the minimum value for the cross-sectional ar-

eas is 0.1 in2 (0.6452 cm2) and the maximum value is limited

to 4.00 in2 (25.81 cm2).

Table 11 summarizes the obtained results of IRO and other

methods are available in optimization literature. The IRO al-

gorithm achieves the best result among other algorithms in the

aspect of average weight of 50 runs. Performance of the IRO

for 50 independent runs is observed as an average weight of

380.55 lb (172.61 kg) with a standard deviation of 1.5234. The

difference between the optimum design obtained by IRO and

variants of BB-BC is very small.
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Tab. 8. Performance comparison for the 25-bar spatial truss under multiple load cases

Element group Optimal cross-sectional areas (in2)

PSO CSS IACS HPSACO HBB–BC RO Present work

[7] [7] [14] [15] [16] [11] in2 cm2

1 A1 0.010 0.010 0.010 0.010 0.010 0.016 0.0112 0.0722

2 A2–A5 2.121 2.003 2.042 2.054 1.993 2.022 1.9766 12.7522

3 A6–A9 2.893 3.007 3.001 3.008 3.056 2.932 3.0099 19.4187

4 A10–A11 0.010 0.010 0.010 0.010 0.010 0.010 0.0100 0.0645

5 A12–A13 0.010 0.010 0.010 0.010 0.010 0.011 0.0100 0.0645

6 A14–A17 0.671 0.687 0.684 0.679 0.665 0.656 0.6842 4.4142

7 A18–A21 1.611 1.655 1.625 1.611 1.642 1.679 1.6783 10.8277

6 A22–A25 2.717 2.660 2.672 2.678 2.679 2.716 2.6571 17.1425

Best weight (lb) 545.21 545.10 545.03 544.99 545.16 544.66 545.19 247.29(kg)

Average weight (lb) 546.84 545.58 545.74 545.52 545.66 546.69 545.35 247.37(kg)

Number of analyses 9596 7000 3254 9875 12500 13880 12200

Fig. 6. Convergence history of the 25-bar space truss under multiple load cases

Tab. 9. Multiple loading conditions for the 72-bar truss

Case Node Fx kips (kN) Fy kips (kN) Fz kips (kN)

1 17 0.0 0.0 −5.0 (−22.25)

18 0.0 0.0 −5.0 (−22.25)

19 0.0 0.0 −5.0 (−22.25)

20 0.0 0.0 −5.0 (−22.25)

2 17 5.0 (22.25) 5.0 (22.25) −5.0 (−22.25)
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Fig. 7. A 72-bar space truss

Tab. 10. Performance comparison for the 72-bar spatial truss with discrete variables

Element group Optimal cross-sectional areas (in2)

GA PSOPC HPSO HPSACO ICA Present work

[8] [8] [8] [5] [8] in2 cm2

1 A1–A4 0.196 4.490 4.970 1.800 1.99 1.99 12.839

2 A5–A12 0.602 1.457 1.228 0.442 0.442 0.563 3.632

3 A13–A16 0.307 0.111 0.111 0.141 0.111 0.111 0.716

4 A17–A18 0.766 0.111 0.111 0.111 0.141 0.111 0.716

5 A19–A22 0.391 2.620 2.880 1.228 1.228 1.228 7.923

6 A23–A30 0.391 1.130 1.457 0.563 0.602 0.563 3.632

7 A31–A34 0.141 0.196 0.141 0.111 0.111 0.111 0.716

8 A35–A36 0.111 0.111 0.111 0.111 0.141 0.111 0.716

9 A37–A40 1.800 1.266 1.563 0.563 0.563 0.563 3.632

10 A41–A48 0.602 1.457 1.228 0.563 0.563 0.442 2.852

11 A49–A52 0.141 0.111 0.111 0.111 0.111 0.111 0.716

12 A53–A54 0.307 0.111 0.196 0.250 0.111 0.111 0.716

13 A55–A58 1.563 0.442 0.391 0.196 0.196 0.196 1.265

14 A59–A66 0.766 1.457 1.457 0.563 0.563 0.563 3.632

15 A67–A70 0.141 1.228 0.766 0.442 0.307 0.391 2.523

16 A71–A72 0.111 1.457 1.563 0.563 0.602 0.563 3.632

Weight (lb) 427.203 941.82 933.09 393.380 392.84 389.33 176.60 (kg)

Number of analyses N/A 150,000 50,000 5330 4500 17925
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Fig. 8. Convergence history of the 72-bar space truss under multiple load cases

Tab. 11. Performance comparison for the 72-bar spatial truss with continuous variables

Element group Optimal cross-sectional areas (in2)

GA ACO PSO BB–BC HBB–BC Present work

[16] [4] [16] [6] [16] in2 cm2

1 A1–A4 1.755 1.948 1.7427 1.8577 1.9042 1.8378 11.8568

2 A5–A12 0.505 0.508 0.5185 0.5059 0.5162 0.5261 3.3942

3 A13–A16 0.105 0.101 0.1000 0.1000 0.1000 0.1000 0.6452

4 A17–A18 0.155 0.102 0.1000 0.1000 0.1000 0.1000 0.6452

5 A19–A22 1.155 1.303 1.3079 1.2476 1.2582 1.2668 8.1729

6 A23–A30 0.585 0.511 0.5193 0.5269 0.5035 0.5249 3.3864

7 A31–A34 0.100 0.101 0.1000 0.1000 0.1000 0.1000 0.6452

8 A35–A36 0.100 0.100 0.1000 0.1012 0.1000 0.1006 0.6490

9 A37–A40 0.460 0.561 0.5142 0.5209 0.5178 0.5164 3.3316

10 A41–A48 0.530 0.492 0.5464 0.5172 0.5214 0.5090 3.2839

11 A49–A52 0.120 0.100 0.1000 0.1004 0.1000 0.1012 0.6529

12 A53–A54 0.165 0.107 0.1095 0.1005 0.1007 0.1000 0.6452

13 A55–A58 0.155 0.156 0.1615 0.1565 0.1566 0.1568 1.0116

14 A59–A66 0.535 0.550 0.5092 0.5507 0.5421 0.5445 3.5129

15 A67–A70 0.480 0.390 0.4967 0.3922 0.4132 0.3918 2.5277

16 A71–A72 0.520 0.592 0.5619 0.5922 0.5756 0.5850 3.7742

Weight (lb) 385.76 380.24 381.91 379.85 379.66 379.86 172.30 (kg)

Average weight (lb) N/A 383.16 N/A 382.08 381.85 380.55 172.61 (kg)

Number of analyses N/A 18,500 N/A 19,621 13,200 15350

Tab. 12. Performance comparison for the 120-bar dome shaped truss with continuous variables

Element group Optimal cross-sectional areas (in2)

PSOPC PSACO HPSACO HBB–BC CSS ICA Present work

[15] [15] [15] [16] [7] [8] in2 cm2

1 A1 3.040 3.026 3.095 3.037 3.027 3.0275 3.0252 19.5174

2 A2 13.149 15.222 14.405 14.431 14.606 14.4596 14.8354 95.7121

3 A3 5.646 4.904 5.020 5.130 5.044 5.2446 5.1139 32.9928

4 A4 3.143 3.123 3.352 3.134 3.139 3.1413 3.1305 20.1967

5 A5 8.759 8.341 8.631 8.591 8.543 8.4541 8.4037 54.2173

6 A6 3.758 3.418 3.432 3.377 3.367 3.3567 3.3315 21.4935

7 A7 2.502 2.498 2.499 2.500 2.497 2.4947 2.4968 16.1084

Best weight (lb) 33481.2 33263.9 33248.9 33287.9 33251.9 33256.2 33256.48 15084.89(kg)

Average weight(lb) N/A N/A N/A N/A N/A N/A 33280.85 15095.94(kg)

Number of analyses 150,000 32,600 10,000 10,000 7000 6000 18300
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Fig. 9. A 120-bar dome shaped truss
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Fig. 10. Comparison of the allowable and existing constraints for the

120-bar dome shaped truss using the IRO (a) Displacement in the x direction,

(b) Displacement in the y direction, (c) Displacement in the z direction, (d)

Stresses
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3.2.8 Design of the 120-bar dome shaped truss

The topology, nodal numbering and element grouping of the

120-bar dome truss are shown in Figure 9. For clarity, not all

the element groups are numbered in this figure. The 120 mem-

bers are categorized into seven groups, because of symmetry.

Other conditions of problem are as follows [8], the modulus of

elasticity is 30,450 ksi (210,000 MPa) and the material density is

0.288 lb/in3 (7971.810 kg/m3). The yield stress of steel is taken

as 58.0 ksi (400 MPa). The dome is considered to be subjected

to vertical loading at all the unsupported joints. These loads are

taken as −13.49 kips (−60 kN) at node 1, −6.744 kips (−30 kN)

at nodes 2 through 14, and −2.248 kips (−10 kN) at the rest of

the nodes. The minimum cross-sectional area of all members is

0.775 in2 (5 cm2) and the maximum cross-sectional area is taken

as 20.0 in2 (129.032 cm2). The constraints are stress constraints

(as defined by Eqs. (27) and (28)) and displacement limitations

of ± 0.1969 in (± 5 mm),imposed on all nodes in x, y and z di-

rections.

Table 12 shows the best solution vectors, the corresponding

weights and the required number of analyses for convergence of

the present algorithm and some other meta-heuristic algorithms.

The IRO-based algorithm needs 18300analyses to find the best

solution while this number is equal to 150,000, 32,600, 10,000,

10,000, 7000 and 6000 analyses for a PSO-based algorithm [15],

a PSO and ACO hybrid algorithm [15], a combination algorithm

based on PSO, ACO and HS [15], an improved BB–BC method

using PSO properties [16], the CSS algorithm [7] and the ICA

algorithm [9], respectively. As a result, the IRO optimization

algorithm only has better convergence rates than PSOPC and

PSACO algorithms. Comparing the final results of the IRO and

those of the other meta-heuristics shows that IRO finds the so

nearly optimum design to the best results of other efficient meth-

ods while the difference between the result of the IRO and that

obtained by the HPSACO [10], as the first best result, is 9 lbs. A

comparison of the allowable and existing stresses and displace-

ments of the 120-bar dome truss structure using IRO is shown

in Figure 10. The maximum value for displacement is equal

to 0.1969 in (5 mm) and the maximum stress ratio is equal to

99.99%.

4 Concluding remarks

A new meta-heuristic algorithm called IRO is developed to

improve the performance of the RO algorithm. The basic idea of

the RO is the refraction of light described by Snell’s law. Upon

this phenomenon, when a light ray passes from a lighter medium

to a darker or denser one, its direction movement vector refracts.

Due to the nature of the RO, by dividing the solution vector into

two or three-variable groups, one can join relevant variable to

each other and solve any large variable problems. In order to

generate new solution vectors in the IRO, dynamic parameters

are utilized which do not need categorization, furthermore these

make a better balance between exploration and exploitation. By

considering a memory, modifying violating agent rule and defin-

ing increasing function, the stochastic and handling constraints

abilities of the algorithm are improved.

Sixteen mathematical functions with three standard engineer-

ing optimization trusses are considered to show the efficiency

and robustness of the proposed method. Numerical results in-

dicate that the IRO is an acceptable stochastic search technique

for various optimization problems and performs better in terms

of accuracy and the number of objective function evaluations

than the standard RO and some other well-known meta-heuristic

algorithms.
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