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Abstract

This paper analyzes the dynamic stability of a thin walled

beam subjected to non-uniform bending moment. It provides

the detail of study the influence of bending moment gradient on

instability regions. The second order rotation effect is consid-

ered for performing a correct flexural-torsional analysis. The

analysis is based on the potential energy principle and adopting

the Ritz method. Matrix form of Mathieu-Hill type equation is

governed to analyze the stability problem. The paper presents

Bolotin’s approximations on periodic excitation leads to the sta-

bility regions of the structure. Relevant graphs are presented for

different loading parameters. Ritz method’s terms number and

bending moment gradient’s coefficient are discussed in detail as

well.
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1 Introduction

Thin walled beams are used commonly in vehicle industry

as a part of chassis or frame structures. Different methods

have been suggested for analyzing these structures’ behavior and

their stability analysis by researchers.For instance following pa-

pers can be mentioned among lots of publications in this field.

Dokumaci expressed an exact analytical expression for solving

the bending-torsion problems in 1987 [1]. This Result was ex-

panded by Bishop et al. after two years to cover up the torsion-

warping effect which is an important point for thin walled beams

[2]. Pi and Bradford showed the approximations effects on an

open thin-walled cross-section in 2001 [3]. Vörös investigated

coupling of bending and torsional vibrations due to initial load

[5]. Vibrational response of a beam, affected by an initial bend-

ing moment load was searched by Vörös and Talimian [6].

Considering a dynamic instability problem induced by peri-

odic excitation leads to the well known Mathieu-Hill equation

[15]. Faraday was one of the pioneers in discovering parametric

resonance [7]. N.M. Beliaev worked on the Stability of pris-

matic rods in 1924 [8]. The stability of dynamic systems was

explained by V.V. Bolotin in 1962 [9]. Brown et al. brought

finite element technique for inspecting the dynamic stability be-

havior into play [10]. S.P. Timoshenko and J.M Gere published

a literature on theory of elastic stability. In 1975, Thomas and

Abbas worked on shear deformation and rotary inertia effects

on stability [11]. Snehasis Ganguly and Datta looked over the

second regions of a uniform beam dynamic stability [12]. C.E.

Majorana et al. in 1998 expand a finite approach for stability of

frames and beams [13].

Uniform initial moment loading effect on a thin walled beam

was shown in [5]. However, the question which was left open

to our best knowledge is the stability of a thin walled-beam

subjected to periodic initial moment loading. The present re-

search’s goal is to find the instability domains for a thin-walled

beam which has fork like supports that prevent torsional rota-

tion and allow free warping at each end, and is loaded by time-

dependent bending moment initially. For this propose motion’s

equation were derived by help of potential energy [6]. Using

Ritz-Galerkin as a common finite element technique guides to
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matrix form of Mathieu-Hill equation such as given in [11]. By

solving the latter system of equations, the stable and unstable

areas will be involved.

2 Formulations

2.1 Virtual work principal

Basic assumptions used for deriving present study’s equations

are: beam is straight and prismatic, Euler−Bernoulli bending

and Vlasov’s torsion theory, rotations are large, strains are small,

and material is homogenous, isotropic and linearly elastic. The

axis x is the beam’s axis and y, z axes are in the section plane

and coincide with principal axes’ of the cross section. The cen-

troid and shear centre are signed by C and S respectively and the

external loads are applied at point P. The geometrical eccentric-

ity (distance between centroid and shear center) is represented

by e, which will be zero for symmetric cross section. External

loads are applied along points P located h from the shear center

S. (Fig. 1a).

A beam supported by fork like supports with unequal end mo-

ments M and ψM is given in Fig. 1a. The bending moment and

shear force distribution in the beam are 0My and 0Vz respectively,

can be expressed as follows [6]:

0My = −M

(
1 − x

1 + ψ

L

)
, 0Vz = 0M′y = M

1 + ψ

L
(1)

Coupled equations with variable coefficients were derived by ap-

plying virtual work principle, while strains are supposed to be

small and rotations are large [4, 5] and [6]. The virtual work

principle is [6]:

δ
1

2

L∫
0

[
EIz(v

′′)2 + EIω(α′′)2 + (GJ + 0Myβy)(α′)2 + 20Myv′′α
]

dx

+

L∫
0

ρ
[
A(v̈ + eα̈)δv + (Aev̈ + Ipsα̈)δα

]
dx − Mδ

[
v′α

]
0

− Mψδ
[
v′α

]
L + Rtδ

[
α2

2

]L

0

= 0

(2)

In equation (2), ν(x, t) is the rigid body translation of the sec-

tion in the y direction. Rotation about the shear centre is given

by α(x, t). E and G are elastic and shear module, respectively.

M and R are static moment and force reaction of the structure,

Fig. 1a. The cross sectional area is nominated by A. Iz is mo-

ment of inertia respect to vertical axes. Iω is warping constant

respect to shear center [5].

The prime and dot denotes differentiation with respect to x

and t as longitudinal and time variable. It has to be mentioned

that energy functional (2) was consistently obtained correspond-

ing to semi tangential internal moments. The detailed deriva-

tion may be found in Kim et al. [14] and Vörös [4]. Hav-

ing the boundary conditions, Fig. 1b, and simplifies assumption

(0Myβy = 0), (2) will be rearranged as:

δ
1

2

L∫
0

(
EIz(v

′′)2 + EIω(α′′)2 + GJ(α′)2 + 20Myv′′α
)

dx

+

L∫
0

ρ
(
Av̈δv + Ipsα̈δα

)
dx +

L∫
0

ρAe (α̈δv + v̈δα) dx

(3)

2.2 Finite degrees model

For having an approximate solution of (3) and latterly eval-

uating stability regions of the structure, the well-known Ritz-

Galerkin method shall be expanded as a finite degrees of free-

dom model. In this sense an approximated functions are needed

for the lateral displacement and torsional rotation, which can be

such:

v (x, t) =

n∑
i=1

Fi (t) fi (x) , α (x, t) =

m∑
i=1

Vi (t) gi (x) (4)

Due to Ritz-Galerkin approximation solution the geometri-

cal boundary condition, where mentioned in Fig. 1(b) has to be

satisfied completely by selecting apt functions in (4). A usual

possible assumption for a beam with fork like supports which

prevent torsional rotation and allow free warping as shown in

Fig. 1(b) can be:

fi (x) = sin

(
iπx

L

)
, gi (x) = sin

(
iπx

L

)
(5)

Here it has worth to be mentioned for uniform bending, ψ =

-1, the beam buckles with the half-sine wave length, while the

lateral deflected shape is an anti-symmetrical full sine for asym-

metric bending, ψ = 1. Torsinal shape α(x, t) is a symmetrical

half-sine form. The minimum number of terms should be n = 1,

m = 2 [6] to cover up the solution while ψ is varying from minus

one (uniform bending) to one (asymmetric bending). Substitut-

ing (5) and (4) into (3), and applying the increment yields:

n∑
i=1

n∑
j=1

(
EIzFi (t) Ai jδF j (t) + ρAF̈i (t) Ei jδF j (t)

)
+

m∑
i=1

m∑
j=1

(
EIωVi (t) Bi jδV j (t) + GJVi (t) Ci jδV j (t)

+ρIpsV̈i (t) Hi jδV j (t)
)

+

n∑
i=1

m∑
j=1

(
δFi (t) Di jV j (t) + Fi (t) Di jδV j (t)

+ρAeF̈i (t) H∗i jδV j (t)
)

+

m∑
i=1

n∑
j=1

ρAeV̈i (t) E∗i jδF j (t) = 0.

(6)

Here in (6) A − H are numerical matrices, which are given in

details in the appendix. Defining two vectors that their elements

are unknown time dependent functions of (4) such as:

F (t) = [F1 (t) · · · Fn (t)]T , V (t) = [V1 (t) · · ·Vm (t)]T (7)
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v(0, t) = α(0, t) = 0

v(L, t) = α(L, t) = 0

v′′(0, t) = α′′(0, t) = 0

v′′(L, t) = α′′(L, t) = 0

(a) (b)

Fig. 1. Cross section reaction forces (a) , fork like support’s boundary conditions(b)

Help to reformulate (6) in the following compressed form,

EIzF
T AδF + EIωVT BδV + GJVT CδV + δFT DV + FT DδV

+ρAF̈T EδF + ρAeV̈T E∗δF + ρIpsV̈
T HδV + ρAeF̈T H∗δV = 0

(8)

For having a matrix form, it is necessary to define a new vector

X,

X = [F1 (t) · · · Fn (t) V1 (t) · · ·Vm (t)]T = [x1 · · · xn+m]T (9)

Matrix form of (8) is as following equation, which M,Ke and

S are mass, elastic stiffness and stability matrices respectively

such as given in the appendix.

MẌ + (Ke + M(t)S) X = 0 (10)

3 Periodic excitation

There exist no analytical solution for second order differen-

tial equation with periodic coefficient, although different solu-

tions’ methods have been explored in this type. A beam which

is analyzed in this paper subjected to a concentrated periodical

moment at its ends by the following given function.

M (t) = Ms + Md cos (Ωt) (11)

Here Ms and Md are static and dynamic amplitude of time de-

pendent moment respectively. The excitation frequency is des-

ignated by Ω. Introducing λ and µ as a static and dynamic buck-

ling moment respectively (12) the initial moment distribution

(11) will be (13):

λ =
Ms

Mcr0

, µ =
Md

Mcr0

(12)

M = Mcr0 (λ + µ cos (Ωt)) (13)

Mcr0 is The fundamental static buckling moment when moment

distribution factor, ψ, set to minus one [6]. Replacing (13) into

(10) returns the final matrix form of motion’s equation:

MẌ + (Ke + Mcr0 (λ + µ cos (Ωt)) S) X = 0 (14)

which is named Mathieu-Hill. A few methods have been sug-

gested for solving Mathieu-Hill equation, as experimental

solutions; Bolotin monograph, Galerkin , Lyapunov’s second

method, asymptotic techniques and perturbation and iteration

have been introduced as well. In the current research, a solu-

tion based on Brown [10] with 2T period (first approximation of

first region of stability) was applied for (14). An approximated

periodic solution, which is advised for (14), is [12, 15]:

X =

∞∑
k=1,3,5

ak sin

(
kΩt

2

)
+ bk cos

(
kΩt

2

)
(15)

By substituting (15) in(14):(
Ke + Mcr0 (λ + µ cos (Ωt)) S −

Ω2

4
M

)
X = 0 (16)

Linear independence of trigonometric functions were intro-

duced in (15), sin
(

Ωt
2

)
, sin

(
3Ωt

2

)
, · · · and cos

(
Ωt
2

)
, cos

(
3Ωt

2

)
, · · ·

yields (16) can be separated regarding to sine and cosine terms.

Homogeneous linear algebraic system of equations respect to

trigonometric functions,ak and bk are derived, hence for having

non-trivial solution the coefficient matrices determinant for each

matrix equation has to be set to zero. As far as (15) contains

infinite terms, in this survey the first component of each ma-

trix were selected only as the first approximation. The stability

curves (borders) are derived from latter matrices’ determinant,

had to be equal to zero:

det

− (
Ω

2

)2

M + Ke + Mcr0

(
λ +

µ

2

)
S

 = 0 (17)

det

− (
Ω

2

)2

M + Ke + Mcr0

(
λ −

µ

2

)
S

 = 0 (18)

4 Numerical example

There are two necessary terms, should be evaluated before

drawing the first approximated stability borders of first region

of stability; fundamental natural bending frequency and static

buckling moment as a fraction of the first approximation of the

fundamental buckling moment. By substituting λ = 0 and µ =

0 in (16), the Eigen-values problem will represent the natural

frequencies (free vibration). Two lateral bending and a torsional

frequency were nominated as fundamental natural frequencies

[6]. Furthermore finding critical static buckling moment can be

done similarly with assuming λ = 1 and µ = 0. Incidentally,

these values will be as follows for the given data in Fig. 2 [6].

ω = 275.46 [1/s], Mcr0 = 91 kNm (19)
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It is worth to mention that the frequency in (19) is the first lateral

bending i.e. the minimum frequency of the beam as well.

h [mm]=200 r [mm]=12 Iz [mm4]=1423683

b [mm]=100 L [mm]=2000 J [mm4]=68464

t1 [mm]=8.5 A [mm2]=2848 Iω [mm6]=12746157814

t2 [mm]=5.6 Iy [mm4]=19431689 IpS [mm4]=20855372

Fig. 2. Section properties of IPE200

Taking equations (17), (18) and (19) into account, and plot-

ting the characteristic equations implicitly for a given cross sec-

tion in Fig. 2, illustrates a graph as Fig. 3. It shows two different

areas. Zones where are outside curves, are nominated stable be-

cause of a bounded response of structure to the periodic load.

Inside curves’ area illustrates the region which was loading pa-

rameters value causes instability. Fig. 3 shows only the first sta-

bility region of first stability approximation analysis, which is

the most important one, among infinite number of graphs de-

pending on the number of selected terms in (15). First the op-

timum number of terms should be defined in the Ritz method.

Fig. 3 shows the effect of increasing terms on the border curves

for the selected parameter of n,m = {1, 2, 3} for two types of

loading; while ψ = −1 for the uniform bending and ψ = 1 for

the asymmetric one. Increasing terms number has no obvious

effect on the accuracy of the first approximation. Setting n = 1

and m = 2 in (4) is enough for achieving proper results. The

non-dimensional ratio of excitation frequency over first bending

fundamental natural frequency was used to simplify the plots.

This factor is given by ϕ = Ω/ωb1 .

Subsequent graphs (Figs. 4 and 5) show the critical static

buckling moment percentage (λ) effect on the stability regions.

Graphs are given for ψ = −1 (uniform bending) and ψ = 1

(asymmetric bending) as two boundary of loading values. As it

can be seen on the plots enlarging the share of static buckling

moment percentage, causes the instability border line being fur-

ther from each other which is deduced as an increasing in the

structure’s instability.

The stability borders plotted in Fig. 3 by employing (17), (18)

are approaching toward each other by changing the moment dis-

tribution factor, ψ, between minus one and one (Table 1 and

Fig. 6). It means that for asymmetric loading, in the range of

first approximation stability the beam is always stable.

Fig. 3. Comparison of solutions for different Ritz terms (4) , λ = 0.5 and

e = 0

Fig. 4. Instability regions for different values of λ while ψ = −1 and e = 0

Fig. 5. Instability regions for different values of λ while ψ = 1 and e = 0
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Tab. 1. Changing ϕ versus ψ = [−1, 1], while e = 0 and λ = 0.5

µ = 0.2 µ = 0.5 µ = 0.9

ψ Eq. (17) Eq. (18) Eq. (17) Eq. (18) Eq. (17) Eq. (18)

-1.00 1.46 1.75 1.17 1.90 0.53 2.00

-0.87 1.52 1.78 1.27 1.91 0.79 2.00

-0.73 1.59 1.81 1.37 1.92 0.98 2.00

-0.60 1.64 1.83 1.46 1.93 1.14 2.00

-0.47 1.69 1.86 1.54 1.94 1.27 2.00

-0.33 1.74 1.88 1.61 1.95 1.39 2.00

-0.20 1.79 1.90 1.68 1.96 1.50 2.00

-0.07 1.83 1.92 1.74 1.97 1.59 2.00

0.07 1.87 1.94 1.80 1.98 1.68 2.00

0.20 1.90 1.96 1.85 1.98 1.75 2.00

0.33 1.93 1.97 1.89 1.99 1.82 2.00

0.47 1.95 1.98 1.93 1.99 1.88 2.00

0.60 1.97 1.99 1.96 2.00 1.93 2.00

0.73 1.99 2.00 1.98 2.00 1.97 2.00

0.87 2.00 2.00 2.00 2.00 1.99 2.00

1.00 2.00 2.00 2.00 2.00 2.00 2.00

Fig. 6. Instability regions for different values for ψ = [−1, 1], while e = 0 and λ = 0.5
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5 Conclusions

Present research focused on the analysis of the non-uniform

time dependent initial moment for a thin-walled beam element

with fork like supports. Applying Valsov theory in warping dis-

placement yielded, a coupling in motion equation derived from

virtual work principle. Mathieu-Hill equation and first approx-

imated stability borders of first region of stability were adopted

as well. Main results of the survey can be stressed as:

• As it can be seen in Fig. 3 having higher terms in Ritz ap-

proximation will have no magnificent effect on the regions of

stability in first approximated stability analysis.

• Enlarging static buckling moment percentage, λ, causes insta-

bility regions are going to be wider than the smaller amounts

of λ s, which means the beam is going to lose its stabil-

ity under external loading. The most instability region be-

longs to the λ = 1 and uniform bending moment (ψ = −1)

load.(Figs. 4 and 5).

• According to Table 1 and Fig. 6 when the moment distribu-

tion factor, ψ, raises the instable region will be going to be

narrower until being a line at limit case while asymmetric

bending moment is applied. In other words the beam is fully

stable if it is loaded asymmetrically.

• In general, decreasing the share of static buckling moment

percentage, λ and using higher values for moment distribution

factor, ψ, in the [-1,1] interval help to improve the dynamic

stability of the beam.

Appendix

Ai j =

L∫
0

f ′′i (x) f ′′j (x) dx, Bi j =

L∫
0

g′′i (x) g′′j (x) dx

Ci j =

L∫
0

g′i (x) g′j (x) dx, Di j = −

L∫
0

0My (x) f ′′i (x) g j (x) dx

Ei j =

L∫
0

fi (x) f j (x) dx, E∗i j =

L∫
0

gi (x) f j (x) dx

Hi j =

L∫
0

gi (x) g j (x) dx, H∗i j =

L∫
0

fi (x) g j (x) dx

M =

 ρAE ρAeH∗

ρAeE∗ ρIpH


Ke =

 EIzA 0

0 EIωB + GJC


S =

 0 D

DT 0


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