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Abstract

The development of a steel material model in order to follow

the cyclic plastic behaviour is essential in seismic design. The

authors present an improved Chaboche model for the cyclic me-

chanical behaviour of structural steel. The model is based on the

combination of nonlinear kinematic and multi-linear isotropic

hardening with a parameter refreshing method. This model can

consider the different physical phenomena of steel bahviour un-

der cyclic loading. The developed model is verified by experi-

mental results; the calculation of model parameters, the effect

of the applied constants and the calibration are discussed.
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Notation

Operator

dX increment of X variable

I2
second invariant of deviatoric stress tensor

I2(X) = (3X′
II

)1/2

X : Y double contracted product of X with Y

X · Y, X · Y
single contracted product of X with Y, or simple

multiply operator

Xi ith element of a vector

Xi
ith type of X variable

∆X peak to peak amplitude, or peak point of X

Coefficient

A elongation after fracture

C
initial hardening variable of Frederick-Armstrong

formula

Jk impact energy

E Young’s modulus

ET tangential stiffness of bilinear model

ETk
slope of the kth segment of stress-strain curve in

Besseling model

fy,num, fy,real
numerical and real yielding point in MISO, NLISO and

PRESCOM model

H hardening modulus

mi, τi,Mi
material parameters of Chaboche model with hardening

recovery

Q, b material parameters of isotropic hardening

QM ,Q0, µ
material parameters of Chaboche model with hardening

memory

R0,R∞, b material parameters of Voce hardening

α, αL, β material parameters of PRESCOM model

β
saturation parameter of Frederick-Armstrong formula (in

PRESCOM model)

εEQW2
relevant strain of PRESCOM model where the cyclic set

is activated

γ recovery parameter of Frederick-Armstrong formula

ν Poisson’s ratio

ω material constant of modified Chaboche model
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Symbol

f plasticity criterion function

fy, k yielding stress, yielding point

D elastic material stiffness matrix

Nσ stress ratio

p accumulated plastic strain

q maximum value of plastic strain range

R isotropic hardening variable

X tensor variable of kinematic hardening

X′ deviatoric tensor of kinematic hardening

εRPL relevant plastic strain, state variable in PRESCOM model

εk, σk
kth point of uniaxial stress strain curve, or actual yielding

stress of isotropic hardening

εPL plastic strain tensor

εpl equivalent plastic strain

εpl,MAX maximum value of equivalent plastic strain

εs
necessary plastic strain for saturation of hardening in

Frederick-Armstrong formula

ψk weight factor of subvolumes

µk isotropic hardening rate factor of subvolumes

σ stress tensor

σ′ deviatoric stress tensor

σyk yielding stress of kth subvolumes

σxa
amplitude of peak stress under non-proportional stress

controlled loading

σxm
mean value of stress under non-proportional stress controlled

loading

σ∆
difference between the numerical and real yielding stress (in

PRESCOM model)

1 Introduction

The global ductility of dissipative steel framed structures is

a key issue in seismic design. The global behaviour highly de-

pends on the local ductility of structural members and joints un-

der cyclic loading, what can be studied mainly by experiments.

Due to the improvement of computational techniques and hard-

ware background the experiments can be performed by cyclic

simulations. In the computational analyses the cyclic plastic-

ity behavior of the steel material has significant role on the lo-

cal ductility of structural members and joints. Despite signifi-

cant research completed on the cyclic steel material models in

the last decades, the behaviour of yielding plateau under cyclic

loading is hard to describe. The developed complex cyclic plas-

ticity mild steel models are still only partially adapted in finite

element programs. The main purpose of the current research is

to develop an efficient material model taking into account the

main characteristics of cyclic behaviour of the steel material,

and implement it in a finite element program. In the research a

model, on the bases of combination of nonlinear kinematic and

multi-linear isotropic hardening and dynamic parameter evalu-

ation is developed, in ANSYS finite element environment [1].

The proposed technique, however, is applicable in most large fi-

nite element software environments, where nonlinear kinematic

hardening and the combination of different material models are

supported. The results show that the accuracy of the cyclic sim-

ulation can be improved by the proposed model.

2 Physical features of cyclic steel material behaviour

2.1 General

The initial behaviour of structural steel is considered as lin-

early elastic and isotropic. When the material point turns into

plastic state, it can be described by the von Mises criterion and

normality yield law. The basic requirement is that the plastic

deformation and gradient of the plastic potential function point

in the same direction. For metals this requirement means that

the potential function is equivalent to the yield criterion. Expe-

riences show that metals are able to resist additional loads after

the elastic limit is reached. This means in mathematical descrip-

tion, that the ellipsoid of principal stress state is changed during

the loading. If the loading is cyclic or arbitrary, the metals show

combined hardening, the yield surface dominantly moves with

some expansion.

The primary reason behind the observed difference between

monotonic and cyclic behaviour is the crystallite structure of the

metals. Dislocations and other crystal defects are able to modify

the behaviour of ideal metals. The velocity of these defects is in

the order of 100 ms−1, and it causes irregular elastic, and plas-

tic behaviour. Despite the origin of the behaviour is essential,

this paper focuses only on the visible effects, not dealing with

crystallite translations. The most important physical effects are

the elastic after-effect, the Bauschinger effect, the memory of

loading history, the ratcheting effect and the effect of strain rate

[2, 3], which are discussed in the following sections.

2.2 Bauschinger effect and the disappearance of the yield-

ing plateau

When the steel material subjected to tension beyond its yield

strength experiences unloading and then loading continues in

the opposite direction, the yield strength under compression is

reduced, while increased for tension. The phenomenon is re-

lated to the crystal sizes and defects of convenctional structural

metals. The Bauschinger effect is produced by two phenomena,

as follows:.

1 The stress in the opposite direction may appear at the inter-

sections of crystals which helps the creation of opposite di-

rection crystal defects. Plastic deformations grow from the

defects, so slips appear at lower stress levels in the opposite

direction, thus the yielding point is reduced.

2 Residual deformations are not caused in all crystallites if the

plastic strain is small; the crystallites, which are deformed

by the first loading, are oriented to the direction of the stress

state. These slipped crystals are directed back into their orig-

inal position by the non-slipped crystals when the load direc-

tion is reversed. These internal forces are added to the stress

from the external load, therefore crystal deformations appear
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at a lower external load level in the opposite direction, result-

ing in a lower yielding point. Under reloading in the original

direction, crystal translations are experienced only at stress

levels higher than those from initial loading [4].

The extent of the Bauschinger effect is significant and depends

on the material. The initial yield stress range is reduced to ap-

proximately 50-70% for structural steel (depending on strength

class), which is much higher than for other structural metals e.g.

aluminium or stainless steel. The saturation of Bauschinger ef-

fect (i.e. the decrease of the yield surface) depends on the max-

imum plastic strain. The reduction tends to an asymptotic value

and it hardly decreases after the maximum plastic strain reaches

approximately 1%, depending on the fabric and chemical com-

position.

Monotonic mild steel material behaviour differs from cyclic

behaviour, as observed by several experiments [5, 6]. As crys-

tal slipping increases, the Bauschinger effect saturates and the

yielding plateau gradually disappears.

2.3 Hardening-softening and non-fading memory

If the strain range (the difference between maximal and min-

imal strain levels in a uni-directional load path) under cyclic

loading is larger than approximately 0.4%, the maximum stress

response is greater than produced by virgin monotonic loading

and the normalized size of the yield surface is slightly changed at

larger strain levels. Before the Bauschinger effect saturates, the

size of the yield surface depends only on the maximum values

of plastic strain. After saturation of the Bauschinger effect, the

elastic range of total stress, however, depends only on the actual

strain level. The dependence of steel behaviour on the maximal

plastic strain level at small plastic strain ranges implies that the

material is of the non-fading memory type.

When the amplitude of cyclic loading is reduced from a large

strain range to a smaller one, the initial peak stress of the smaller

strain range will be higher than it would be without previously

introducing a large amplitude loading. Furthermore, if the load-

ing is continued at the same strain level, the peak stress grad-

ually decreases as if loading at the larger strain level has never

happened.

On the other hand, after stabilization of cyclic hardening at

a lower strain level, further significant cyclic hardening is still

possible when applying a larger deformation. This behaviour

cannot be modeled by pure isotropic hardening law with con-

stant hardening rate. For such materials the stress-strain rela-

tionship does not depend only on the accumulated plastic strain,

but the previous load history is also important [7].

2.4 Strain rate effect

The elastic deformation rate is not influenced only by load

levels, but also by the rate of loading. In case of poly crystallite

metals, if the load is increased slowly, a greater deformation is

created at the same stress level compared to rapid loading. Thus

rapid loading increases the Young’s modulus of the material.

The strain rate has a significant effect on the yielding point

under monotonic loading. This effect is less prominent under

cyclic loading, because the material is strained in the strain hard-

ening range, therefore in the current research the strain rate ef-

fect is not considered.

3 Chaboche model for cyclic plasticity

3.1 Cyclic plasticity models

Several material models have been developed in the last few

decades since the first anisotropic hardening model was pub-

lished by Mroz [8] in 1967. In the 1970’s the bounding sur-

face model was published by Popov and Krieg that can follow

the whole cyclic process, with the modification of the hardening

modulus [9]. Based on the above research two model families

were developed:

1 Multi-surface models (Popov – Petersson type models [10]):

the combined hardening phenomenon is controlled between

two extreme stages of material behaviour: virgin (or initial)

stage and saturated (or fully-developed) stage.

2 Two-surface models (Dafalias – Popov type models [11]): in

these models the actual and limit surfaces are defined and the

movement of the actual surface is controlled by a hardening

function.

The Chaboche model type is a two surface model for describ-

ing cyclic metal material behaviour [12]. This model is widely

used in engineering calculations and included in several finite el-

ement software, such as ANSYS. Motivated by his work, many

researchers proposed improved Chaboche models for cyclic

metal simulations. Different Chaboche-based material models

are collected in this section.

3.2 Frederick-Armstrong model

The basis of the Chaboche model is the Frederick-Armstrong

model [13]. The hardening equation in this model is described

by strain hardening variables. The principle of nonlinear kine-

matic hardening model is that the loading surface, the limit sur-

face and the current stress state depend on the plastic strain in-

troducing a recall term, called dynamic recovery. The von Mises

criterion and a linear function fy of the stress invariant I2 is used

in case of metals.

The model is described by Prager’s equations and the yield

criterion can be expressed in the following form:

f = I2(σ − X) − k (1)

where σ is the stress vector, k is the yielding point, and X is the

hardening variable. The increment of the hardening parameter

is the function of the accumulated plastic strain:

dX = 2/3 ·C · dεPL − γXdp and

dp = |dεPL| = (2/3dεPL : dεPL)1/2
(2)

where dX the increment of kinematic hardening tensor, and it

is expressed by two parameters, the initial hardening modulus
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(C) and the nonlinear recovery parameter (γ) which introduces

a fading memory effect of the strain path [14]. The hardening

modulus can be expressed as:

H = C −
3

2
γX :

σ′ − X′

k
(3)

The application of the Frederick-Armstrong model is difficult

because the parameter calibration requires a complex proce-

dure. There are three ways to calibrate a Frederick-Armstrong

model: (i) with monotonic stress-strain curve, (ii) one stabilized

hysteresis loop, and (iii) stabilized hysteresis loops of different

strain amplitudes. The latter leads to the most accurate proce-

dure, as shown in [14, 15]. The model is more accurate than a

simple bilinear model and in case of some metals (e.g. titanium

alloy, NIMONIC 90 alloy [14]) it is sufficiently accurate. How-

ever its disadvantage is that it only shows fading memory effects,

but cannot describe the cyclic hardening at the same strain level

and the decrease of the yielding plateau experienced in structural

steel.

3.3 Superposition of several kinematic and isotropic mod-

els

A single nonlinear kinematic hardening model cannot de-

scribe the cyclic behaviour of structural steel appropriately. The

combination of isotropic and kinematic hardening models is

necessary to increase the model accuracy. The characteristics

of a Frederick-Armstrong model are determined by the C and

γ values; different value pairs result in different characteristics.

Chaboche and Rousselier [16] observed that, the hardening be-

haviour of the steel material can be better approximated by the

sum of different Frederick–Armstrong formulas. They devel-

oped the Chaboche model in which several formulas detailed

in Eq. (2) are added. The combined criterion is expressed in

Eq. (1), where the translation vector of hardening can be ex-

pressed as:

X =

n∑
i=1

Xi and dXi = 2/3 ·Ci · dεPL − γiXidp (4)

The superposition of isotropic hardening on nonlinear kinematic

hardening results in a modification of the yield surface by both

uniform expansion and translation. Isotropic hardening is con-

trolled by the accumulated plastic strain (p) and the associated

thermodynamic force (R) which represents the change in the size

of the elastic domain. Eq. (1) can be written in this case is as fol-

lows:

f = I2(σ − X) − R − k (5)

The value of R can be positive (cyclic hardening) or negative

(cyclic softening), but the result of isotropic and kinematic ef-

fect must be hardening during the whole load path. The isotropic

part of the hardening can be linear, multi-linear or nonlinear.

If the hardening is nonlinear, it is advantageous to express

isotropic and kinematic hardening in the same form:

dR = b(Q − R)dp (6)

where Q is the asymptotic value in the stabilized hysteresis

loops, and b determines the velocity of stabilizing. This model

describes the behaviour of cyclic loaded metals more accurately,

the isotropic part of the hardening shows non-fading memory ef-

fect, but cannot model the yielding plateau and the decrease of

initial yielding surface. Therefore it shows significant inaccu-

racy in case of mild steel, especially in the range of small plastic

strains.

3.4 Modifications of Chaboche model

The Chaboche model has some general inaccuracy. Over-

estimates the ratchetting effect, cannot describe the yielding

plateau, and cannot describe properly the hardening memory ef-

fect. Therefore several modified nonlinear kinematic harden-

ing models have been developed to improve the accuracy. The

cyclic hardening phenomenon at the same strain amplitude is

relatively slow; it typically takes between ten and one thousand

cycles for the loops to stabilize. Therefore, the value of b in

Eq. (6) will be in between 50 and 0.5. It is possible to couple

isotropic and kinematic hardening by the function ϕ(p) defined

in Eq. (7) [17, 18]. A possible choice of ϕ(p) as a function of R

is also shown, where ω is material constant:

dXi = 2/3 ·Ci · dεPL − γi · ϕ(p)Xidp where

ϕ(p) = 1/ (1 + ωR(p))
(7)

By this modification the modulus of kinematic hardening be-

comes the function of isotropic hardening, which results in a

more accurate stress-strain relationship, but the decrease of the

yielding surface and plateau is still not described.

Another important modification is the hardening memory.

Simple nonlinear models describe the hardening with fading

memory type. The elimination of the effect of the previous load

history can cause inaccuracy in the cyclic stress-strain relation-

ship. Chaboche [19] introduced an additional state variable to

account for this problem. Observation of cycles under sequen-

tial loading shows that this memory effect can be stored with

the maximum plastic strain range (q), so the asymptotic values

Q in the isotropic variable R in Eq. (6) are no longer constants,

they depend on the maximum strain amplitude. A relationship

to consider this effect is shown in Eq. (8):

Q = QM − (QM − Q0) exp(−2µq) (8)

where QM ,Q0 and µ are three constants. By this modification

only the isotropic part of the hardening can show non-fading

memory type, which is highly efficient for metals without yield-

ing plateau; such as stainless steel.

Hardening recovery in the function of time generally occurs

at high temperature. Chaboche [14, 19] used a power function

in the recall term acting as a function of time to take this phe-

nomenon into consideration:

dXi =
2

3
·Ci · dεPL − γiXidp −

γ

τi(T )

(
‖Xi‖

Mi

)m−1

Xi (9)
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where mi, τi, Mi depend on material type and temperature. Since

the change in temperature is negligible during the seismic effect,

this modification does not affect the practical accuracy.

3.5 Summary of Chaboche models

In this chapter material models based on the Chaboche equa-

tions are presented. These models can follow several important

characteristics of the cyclic behaviour of steel materials. The

models, however, cannot consider the change in the yielding sur-

face and plateau.

To increasing model complexity in general is disadvantageous

from the practical applicability point of view, therefore it is im-

portant to consider only those physical phenomena that influ-

ence global response significantly. The purpose of the current

research is to develop a material model which is able to describe

all the relevant phenomena, on the basis of the Chaboche model,

what can be adopted in numerical applications. The following

physical phenomena are found to be significant during model

development (in the order of importance): kinematic hardening,

Bauschinger effect, decrease of the yielding surface, disappear-

ance of the yielding plateau, plastic creep, and strain memory.

4 Modelling cyclic steel behaviour in ANSYS finite ele-

ment program

The previously described material models are only partially

adopted in finite element programs. The modelling of cyclic

steel behaviour in ANSYS software can be done by the mod-

els as follows: (i) bilinear model, (ii) multi-linear model, (iii)

basic Chaboche model, (iv) NLISO model, (v) MISO model,

(vi) PRESCOM model. The models (iv-vi) are developed by

the authors. In this chapter these models are introduced and

the obtained numerical results are compared for each model by

experimental stress-strain plots on the basis of the studies of

Meng et al. [5]. Two series of experiments with a total of 50

tests on Q235B and Q345B steel specimens were studied by the

authors using several different load protocols. The experimen-

tal monotonic and hysteresis behaviour, ductility characteristics

and cumulative damage degradation are discussed in the paper

in detail. In this paper the calibrations of the different material

models were performed using the Q345B experimental results.

The most important mechanical properties of the material are

shown in Fig. 1 and Table 1.

Fig. 1. Monotonic and cyclic behaviour of Q345B [5]

Tab. 1. Mechanical properties of Q34B

E (MPa) fy (MPa) fu (MPa) A (%) Jk (J)

205000 423 589 24 182 198 207

4.1 Modelling cyclic steel behaviour by bilinear model

As previously discussed, the isotropic hardening can be used

to model the steel material behaviour only under monotonic

loading and the bilinear kinematic hardening is the simplest way

to model cyclic behaviour. The model is described by Prager’s

equations and the yield criterion is the same as in the Frederick-

Armstrong model in Eq. (1). This model is a bilinear kinematic

hardening model, in which the kinematic hardening variable (X)

is collinear with the plastic strain Eq. (10).

f = I2(σ − X) − k where dX = 2/3 ·C · dεPL (10)

The used yielding law is the von Mises yield criterion. It is

independent from the strain rate and temperature. The hardening

rate is constant, and it is calibrated by the experimental results

using the method of least squares (Table 2). Fig. 2 compares the

numerical and experimental results.

Fig. 2. Cyclic behaviour of bilinear material model

The model takes the Bauschinger effect into account in the

simplest possible way. It cannot show the decrease of the yield-

ing surface and does not represent any kind of memory proper-

ties. It is inaccurate in case of cycling loading: the hysteresis

loops are angled, the value of stress and amount of dissipated

energy is less than the actual value; except for small strain lev-

els, where less cyclic hardening is experienced. In spite of the

significant inaccuracies in this model, it is widely used in anal-

ysis due to its simplicity.

Tab. 2. Material constants of bilinear model

E (MPa) fy (MPa) ET (MPa)

205000 423 3900

4.2 Modelling cyclic steel behaviour by multi–linear model

This material model is a Besseling model [20] and also known

as sub-layer or overlay model [21]. It is similar to the piecewise

linear kinematic hardening rule and the Mroz [8] model without

any notion of surfaces. The theory is based upon the material
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Tab. 3. Stress-strain points of multi-linear model

εk (-) σk (MPa) εk (-) σk (MPa) εk (-) σk (MPa) εk (-) σk (MPa)

0.0020143 423.0 0.012422 508.6 0.022657 557.9 0.03275 579.9

0.004104 441.9 0.014484 521.7 0.024684 563.7 0.03476 581.5

0.006192 460.3 0.016538 533 0.026706 568.4 0.03677 582.8

0.008275 477.8 0.018585 542.8 0.02872 572.4 0.03878 583.9

0.010325 494 0.020624 551 0.03074 575.3 0.04078 584.7

which is macroscopically homogeneous, but inhomogeneous on

microscopic scale. In this material the plastic deformation will

occur at certain points and will spread in subsequent loading

over the whole volume. This phenomenon is composed of var-

ious portions (or sub-volumes), all is given to the same total

strain, but each portion has different yielding strength. Although

the behaviour of sub-volumes show isotropic hardening the dif-

ferent elastic limit of portions cause the hardening of volume to

be anisotropic.

This model is defined by several points of the uniaxial stress-

strain relationship (εk, σk), when sufficient segments are de-

fined, angularity of the model is reduced (Fig. 3, Table 3). The

yield stress for each sub-volumes is given by Eq. (11):

σyk =
1

2(1 + ν)
(3Eεk − (1 − 2ν)σk) (11)

The relation between the stress and strain can be expressed as

follows:

dσ = D

1 −

N∑
1

ψk(1 − µk)

 dε where

N∑
1

ψk = 1 and ψk =
E − ETk

E − 1−2ν
3

ETk

−

k−1∑
1

ψi

(12)

where ψk is the weight factor of sub-volumes and µk is defined

as constant. In ANSYS µk = 0, therefore each subvolumes are

perfectly plastic and after the last point is defined, no further

hardening is considered.

Fig. 3. Cyclic behaviour of multi-linear model

This model approximates the experimental result better, but

the difference between the numerical and experimental curves is

still significant. The calculated hysteresis loops are still angled

and they show less energy dissipation and lower stress levels

than the test results.

4.3 Modelling cyclic steel behaviour by the basic Chaboche

model

The main difference between a Besseling and Chaboche

model is the state variable. The Besseling model uses the func-

tion of strain (or plastic strain) while the Chaboche model’s state

variable is the accumulated plastic strain. If the number of sub-

layers is satisfactory, a given nonlinear stress-strain curve can

be approximated by linear sections. However, since the state

variable of the Besseling model cannot model the fading mem-

ory type, it approximates arbitrary loading histories with inferior

accuracy. This phenomenon can be seen by comparing Figs. 3

and 4/a.

The Chaboche material model can combine several Frederick-

Amstrong formula. In the simple case, only one Frederick-

Amstrong formula is used, therefore in this model the hardening

behaviour is the same as given in Eq. (2). Parameters of the

basic Chaboche model can be determined more accurately, us-

ing several stabilized hysteresis loops (Table 4). The details of

calibration are presented in [19, 22] and illustrated in Fig. 4/b.

Tab. 4. Material constants of the basic Chaboche model

E (MPa) fy (MPa) C (MPa) γ (-)

205000 429 19140 116

4.4 Modelling cyclic steel behaviour by the NLISO model

The NLISO model (Chaboche model combined with Non-

Linear ISOtrope hardening) is developed to increase the ac-

curacy of the basic Chaboche model. In this model three

Frederick-Armstrong formulas are used and combined with non-

linear isotropic hardening, developed by Voce [22]. The harden-

ing variable (X) is expressed in Eq. (4), and the yielding law is

given in Eq. (5) where the R variable is specified by the follow-

ing form:

R = R0 · εpl + R∞(1 − e−bεpl ) (13)

Ro, R∞, b characterize the isotropic hardening behaviour of ma-

terials detailed in Table 5. Ro + R∞ are the initial isotropic hard-

ening modulus, Ro is the asymptotic hardening and b controls

the decrease of hardening in the function of equivalent plastic

strain. This model describes the stress-strain curves more accu-

rately: its loops are less angled, isotropic hardening is taken into

consideration and description of the ratcheting effect is satisfac-

tory, as shown in Fig. 5. The used Frederic-Armstrong formulas

are in Eq. (2), the used material constants are in Table 5.
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Fig. 4. Cyclic behaviour of the basic Chaboche model (a), curve fitting by the method of least squares of, using 6 stabilized hysteretic loops (b)

The decreasing of the yielding surface is taken into consid-

eration by lower constant yielding stress ( fy,num), instead of its

saturation tendency (Table 5). By this modification the model

describes the cyclic behaviour at large plastic strain levels ap-

propriately. Under monotonic loading and at small plastic strain

levels, however, to follow the mild steel behaviour is completely

different. Since its parameters are calibrated by saturated steel

behaviour, the model shows some inaccuracy: if the loading

level is smaller than the plastic strain corresponds to saturation

of Bauschinger effect (0.5- 1%) the model shows lower stress-

strain values than it is created.

Tab. 5. Parameters of the NLISO model

fy,num = 260 MPa Kinematic hardening Isotropic hardening

fy,real =423 MPa Chaboche models Voce model

E = 205000 MPa C γ ∆σ parameters

Formula #

I. 100000 1500 133 R0 50

II. 7500 375 20 R∞ 30

III. 400 0 - b 50

Fig. 5. Cyclic behaviour of the NLISO model

4.5 Modelling cyclic steel behaviour by the MISO model

The MISO model (Chaboche model combined with Multi-

linear ISOtrope hardening) is developed to describe the differ-

ence between monotonic and cyclic steel behaviour into con-

sideration better. Monotonic and cyclic behaviour are difficult

to follow by the same equations and material constants, there-

fore a separate set of monotonic and cyclic parameters should

be created. Each parameter set consist a Chaboche model with

five Frederick-Armstrong formulas, and a multi-linear isotropic

hardening, as shown in Table 6. The difference between the

two parameter sets is the isotropic part of the hardening, but the

Chaboche model is the same. The yielding plateau of mono-

tonic steel is described by a special superposition of hardening

models: combination of kinematic hardening with multi-linear

isotropic softening results in constant stress, the decrease of

yielding surface in the plateau region and hardening after the

plateau. This approach gives accurate results for monotonic

loading.

In this case the Eq. (1) is modified in the following form:

f = I2(σ − X) − σk (14)

where σk can be determined directly from the equivalent plas-

tic strain. Fig. 6 shows the isotropic hardening behaviour, the

kinematic hardening behaviour and the sum of them.

The decrease of σk follows the decrease of the yielding sur-

face at the plateau zone. In the numerical model the fy,num yield-

ing stress is defined for Chaboche and isotropic model. The real

yielding stress is calculated as the sum of isotropic and kine-

matic hardening.

The monotonic parameter set is used at the beginning of the

loading. At the first occurrence of unloading if the yielding point

is reached, the cyclic parameter set is applied (Table 6). By

this configuration the MISO model can describe the difference

between monotonic and cyclic behavior, as shown in Fig. 7.

If the strain range is larger than approximately 0.4%, the

cyclic (or monotonic of saturated steel) stress response is greater

than the response of virgin monotonic loading. If the loading do

not reach this strain level, the stress-strain response of steel is

bigger than the cyclic steel behaviour. In the MISO model there

are two considered state variables, which control the switch of

parameter set: (i) equivalent plastic strain, (ii) equivalent stress.

If the yielding stress is used as state variable and the first unload-

ing occurs at a small plastic strain level (the maximum deforma-

tion is less than 0.4%), the cyclic parameter set of the MISO

model produces lower stresses than the experiments. Further-

more, the dislocation of the yield surface is different in the two

configurations, which leads to discontinuity in the stress-strain

curve, as it can be seen in Fig. 8/a.

If the switching to the cyclic parameter set is controlled by

the maximal equivalent strain level instead of the yield stress,

the experienced discontinuity of the stress-strain curve can be

avoided but the combination of isotropic softening and kine-

matic hardening leads to the cyclic decrease of the yield surface.
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Fig. 6. Monotonic behaviour of special isotropic hardening, kinematic hardening and the MISO model

Fig. 7. Cyclic behaviour of MISO model under constant amplitude of loading (a) and increasing loading (b)

Fig. 8. Inaccuracy of the MISO model at small plastic strain range controlled by yield stress (a), and controlled by maximal plastic strain (b)

Tab. 6. Parameters of MISO model

fy,num = 335 MPa Monotonic set Cyclic set

fy,real = 423 MPa Chaboche models Multi-linear Chaboche models Multi-linear

E = 205000 MPa C γ εpl [-] σ C γ εpl [-] σ

Formula #

I. 75000 1500 0.00200 328 75000 1500 0.002 328

II. 21000 375 0.00235 315 21000 375 0.05 339

III. 7000 120 0.00610 288 7000 120 0.1 355

IV. 1100 25 0.01 355 1100 25 4.5 450

V. 300 0 4.5 45 300 0
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Therefore, the model is still inaccurate in the zone of small plas-

tic strains (Fig. 8/b).

This model approximates the experimental result in general

accurately, but if the plastic strain range is small, parameters of

the MISO model (either monotonic or cyclic) cannot follow the

yield surface and the transition from exclusively monotonic to

cyclic behaviour. This is why the saturation of the Bauschinger

effect and the decrease of the yielding plateau require transi-

tional states. The parameter refreshing method is developed

to extend the accuracy of the MISO model to the small plastic

strain range, too.

5 Chaboche model with dynamically updated parame-

ters

On the basis of the above experiences by the different

Chaboche models an improvement on the MISO model is

completed. A dynamically updated material model (called

PRESCOM – Parameter REfreshed and Strain COntrolled com-

bined Chaboche Model with isotropic hardening) is developed.

It consists of a Chaboche model with five superposed Frederick-

Armstrong formula and a multi-linear isotropic hardening. The

model details, parameter calibration and verification are pre-

sented in this chapter.

5.1 Strategy of development

The presented MISO model is able to describe steel behaviour

under monotonic, and large amplitude cyclic loading, although

the cyclic and monotonic parameter set with constant param-

eters cannot follow the change in material behaviour. There-

fore, a third parameter set is defined to describe the transitional

state, from monotonic to cyclic behaviour. In this state a func-

tion is used to calculate model parameters during the loading.

Two variables are examined considering experimental results:

(i) the maximum value of equivalent plastic strain (εpl,MAX), and

(ii) the maximum value of strain range (q). Although saturation

of the Bauschinger effect and the decrease of the yield surface

depend on the maximum plastic strain, the stress-strain relation-

ship at the small strain range is also influenced by the previously

experienced maximum strain range, as shown in Fig. 9. The op-

timal approximation is obtained when the maximum of εpl,MAX

and q is used as state variable in the model:

εRPL = max(εpl.MAX , q) (15)

where εRPL is called the relevant plastic strain.

The change of the material behaviour can appear after each

load steps. In this case a load step means the difference in the

loading history between two points, where the inner point of

yielding surface is reached. This phenomenon is described by

the stress ratio, shown in Eq. (16). When Nσ is less than one

the stress state is elastic, else yielding occurs. σk depends on

the yielding condition and σe is the equivalent stress evaluated

using the deviatoric stress tensor.

Nσ =
σe

σk

(16)

5.2 Calculation of the dynamic model parameters

The algorithm of the dynamic model parameter calculation

can be seen in Fig. 10. At the beginning of the loading the

monotonic parameter set is used for every steel element in the

dissipative zones of the structure. After a load step the maxi-

mum value of equivalent plastic strain is evaluated, and the ma-

terial model constants are updated by the following way: if the

value of the plastic strain is zero, the parameter set is kept mono-

tonic, if it is greater than a pre-defined limit (εEQW2), the cyclic

parameter set is loaded and if it is in between 0 and εEQW2,

the behaviour can be characterized by the transitional parame-

ters, using the function of relevant plastic strain given in Section

5.1. The maximal equivalent plastic strain and the maximum

strain range are evaluated after each load step. If the new rel-

evant strain is greater than the previous one, the parameter set

of the model is updated using the above procedure. If the rel-

evant strain does not change, the parameters remain the same.

This procedure builds the hardening memory effect at the criti-

cal range of small plastic strains into the material model using

the relevant plastic strain to describe the change in the material

behaviour. The most accurate solution is given if this procedure

is performed on the integration point level of the numerical dis-

cretization. Note that in the ANSYS environment the evaluation

and the material setting of the presented PRESCOM model are

completed on element level instead of integration point level.

The PRESCOM model uses yield stress ( fy,num), which refers

to the decreased yield surface, similarly to the MISO model. The

yield surface gradually decreases after each consecutive load cy-

cle depending on the maximal strain level reached during the

given cycle. In spite of this yield surface reduction, the stress at

the maximal strain level cannot decrease during cyclic loading.

Therefore, the hardening rate of the model has to be increased

in parallel with the shrinkage of the yield surface, as shown in

Fig. 11. At the transitional range the model parameters are up-

dated to reach the appropriate stress level when the strain ampli-

tudes reach the maximum.

The material model consists of Chaboche models with five

different formulas, as detailed in Table 7. The PRESCOM

model’s initial hardening behaviour primarily depends on the

Frederick-Armstrong formula with large C and γ parameters.

The maximum shifting of loading surface is given by C/γ [14].

The shifting value is fixed in Fig. 12. Applying large C and

γ value results in significant initial hardening, but the whole

hardening saturates already at a small plastic strain level (εs

in Fig. 12). While Eq. (2) produces larger shifting of yielding

surface than the initial hardening modulus, the initial harden-

ing modulus is used. The combined isotropic hardening is rel-

atively small and the Frederick-Armstrong formulas with small

C values has relatively small effect at this strain rate (Model 4

in Fig. 12). The first Frederic-Armstrong formula of PRESCOM

model governs the small plastic strain behaviour, the second and

third govern both small and large plastic stress-strain relation-
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Fig. 9. Illustration of the PRESCOM model with two variables: function of q (a) function of the maximum value of equivalent plastic strain (b)

Fig. 10. Algorithm of the parameter updating in the PRESCOM model

Fig. 11. Illustration of hardening behaviour by the Chaboche model
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ship, while the effect of the fourth and the fifth formulas have

relatively small effect in small plastic strain range; these have

effects only on the behaviour at larger strain level.

The translation of the yield surface can be expressed as a

function of the accumulated plastic strain at each Frederick-

Armstrong formula:

∆σi

2
=

Ci

γi

tanh

(
γi

∆εpl

2

)
where γi

∆εpl

2
= β (17)

where Ci, γi are material model constants, ∆εpl is the accumu-

lated plastic strain increment. The β in Eq. (17) controls the

saturation rate of the hardening; if β reaches 2.5, the hardening

is saturated by 99%.

In the transitional range of plastic strain the first three

Frederick-Armstrong formulas are dominant; updating param-

eters of the other formulas are negligible, as shown Model 4

in Fig. 12. The main goal of the dynamic parameter calcula-

tion in the PRESCOM model is the accurate description of the

transitional steel behaviour. In this state as the relevant plastic

strain increases, the yielding surface decreases, and in parallel

the hardening increases, as it seen in Fig. 11 (as the strain am-

plitude increase (εs3 > εs2) the yielding surface decrease, while

the kinematic hardening increase (∆σ3 < ∆σ2)).

In the transitional state it is important to reach the yielding

stress at the previously experienced maximum strain level re-

gardless the decrease of yielding surface. This hardening (be-

tween the virgin and the saturated behaviour) is reproduced

by the first Frederick-Armstrong formula. Although the yield

stress is constant ( fy,num) in the transitional parameter set, yield-

ing seems to occur at a higher stress level than fy,num if large

initial hardening parameter is used (Model 1 in Fig. 12, or

εREL =0.5‰; εREL =1‰in Fig. 13/a). The decrease of initial

hardening modulus leads to the decrease of this virtual yield sur-

face.

The parameters of the first formula can be updated as:

γ1 =
β

εRPL

and C1 = γ1σ∆ (18)

where εRPL is the relevant von Mises strain, and σ∆ takes the

cyclic degradation of the yield stress into account. Using ap-

propriate β value in Eq. (18), the γ1 value ensures the follows:

the hardening from the decreased yielding surface ( fy,num) to the

stress level of the plateau ( fy,real) occurs at the appropriate strain

value. Therefore the first formula always produces the same

shifting of loading surface, the hardening, however, saturates by

the relevant plastic strain. The smaller the maximal strain am-

plitude of the previous loading, the larger the parameters of the

first model will be, ensuring that yielding plateau is reached at

the relevant strain amplitude.

The second and third models describe the hardening during

the saturation of the Bauschinger effect (εREL = 1, 2, 3, 6‰, on

Fig. 13/a). The experimental results show that, the cyclic hard-

ening of the steel in the transitional zone hardly larger than the

yielding stress. Therefore the initial hardening parameters of

the second and third formulas are less than in the cyclic set.

The transition to cyclic state is described by a polynomial func-

tion, given in Eq. (19). At the end of the transitional range,

the behaviour by the transitional parameters is the same as the

behaviour with the cyclic parameter set, the parameters of tran-

sitional set is calculated by the cyclic parameter values.

Ci =

(
εRPL

εEQW2

)α
Cc

i (19)

where i = 2 or 3 and α = 1.5.

The stress level at a given strain rate depends on the loading

history and this results in different stress values for the same

strain level (see Fig. 10). The decrease of the hardening of sec-

ond and third formulas in the transitional set, however, affects

the hardening behaviour of model at larger strain level. Using

smaller hardening, according to Eq. (19), produces too small

hardening at larger strain level. Therefore the C parameter of

the fifth formula is modified in order to offset the second and

third formulas effect at large strain rate as detailed in Eq. (20).

C5 = Cc
5

(
αL − (αL − 1)

(
εRPL

εEQW2

)α)
(20)

where αL =5 and α =1.5.

As a result of this procedure PRESCOM model can follow

the steel behaviour at small range of plastic strain, can consider

the effect of the preloading, too. Fig. 13/b shows the pure virgin

and cyclic behaviour.

5.3 Model parameter calibration

Model parameters are determined by the “Trial and error

method” using the experimental results of Youngjiu et. al. [5]

as the basis of calibration. In this paper the results of the model

calibration of Q345B specimens are presented. The numerical

model is a simply supported, cuboid solid element (Fig. 14), that

can describe the material behaviour without the influence of ele-

ment geometry. The calibrated parameters are shown in Table 7;

the static parameter set is equal to the static set of MISO model,

as detailed in Table 6.

Parameters of the transitional Chaboche models are calcu-

lated from the cyclic parameter set by three constants: α, αL, β;

for the calibration the experimental results of [5,7] are used. The

β parameter influences the curvature of the stress-strain curve

at small plastic strain levels. β = 2.5 approximates the exper-

imental result appropriately, as shown in Fig. 15. The futher

parameters of the hardening according to Eqs. (19) and (20) are

determined as α = 1.5 and αL = 5.0.
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Fig. 12. Illustration of hardening behaviour modeled by Frederic-Armstrong formulas

Fig. 13. The results of PRESCOM model under monotonic loading

calibrated by steel material Q435 [5]: in the function of maximal relevant

plastic strain experienced in preloading (a); pure virgin (monotonic set) and

cyclic (cyclic set) material behaviour (b)

Fig. 14. Numerical FEM model for testing material model

Fig. 15. Results of the PRESCOM model in the function of β parameter in the small range of plastic strain
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Tab. 7. Parameters of PRESCOM model

fy,real =423 MPa Monotonic set Cyclic set Transitional set

fy,num =335 MPa Chaboche model Chaboche model Chaboche model

E =205 GPa εEQW2 =12‰

Kinematic hardening C γ ∆σ C γ ∆σ C γ ∆σ

Formula #

I. 75000 1500 50 25000 500 50 f (εRPL, σ∆, β) σ∆

II. 21000 375 56 21000 375 56 f (εRPL, εEQW2, α,C
c
2
) f (C2)

III. 7000 120 58 7000 120 58 f (εRPL, εEQW2, α,C
c
2
) f (C3)

IV. 1100 25 40 1000 25 40 1000 25 40

V. 300 0 - 300 0 - f (εRPL, εEQW2, α, αL) -

Isotropic hardening εpl [-] σk (MPa) εpl [-] σk (MPa) εpl [-] σk (MPa)

Point #

I 0.0020 328 0.000 328 0.000 335

II. 0.00235 315 0.05 339 4.5 450

III. 0.006 288 0.1 355

IV. 0.05 350 4.5 450

V. 4.5 350

Fig. 16. Transition of the yielding plateau and decrease of the yielding stress

under non proportional loading (a) ; and cyclic behaviour in the transitional

plastic strain range (b)

Fig. 17. Effect of preloading on small amplitude of plastic strain
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5.4 Monotonic, saturated, ratcheting and cyclic behaviour

The above detailed procedure results in a model that can de-

scribe the saturation of Bauschinger effect and the decrease of

yield surface. Fig. 13 shows the model behaviour under mono-

tonic loading, with and without previous loading. The dynamic

updating of parameters allows to describe the transition between

the two stages. The initial hardening parameter of the first

Chaboche model decreases in the function of previous loading

causing lower virtual yield surface; and the C value of the sec-

ond and third models increases, causing additional hardening.

The decrease of stress observed by the MISO model at small

amplitude of cyclic loading (see Fig. 8) does not occur by this

model, and saturation under low strain cyclic loading is de-

scribed properly (Fig. 16). (In this case the small amplitude of

loading means the loading which cause smaller plastic strains

than the necessary plasticity for saturation Bauschinger effect.)

Fig. 17 shows the effect of the preloading on small amplitude

of plastic strain. If the preloading is relative small, the steel

behaviour hardly differs from monotonic case (∆ε =0.3%). By

the increasing amplitude of preloading, however, the behaviour

gradually becomes cyclic.

The decrease of yielding surface is shown in Fig. 18. The

elastic part of the stress-strain curve becomes smaller, as the

amplitude of plastic strain raises. Fig. 18 shows the inaccuracy

of PRESCOM model. During monotonic loading if the material

is given plastic loading and the loading direction turns into op-

posite direction but it remains in the elastic range (Fig. 18/a), the

behaviour of the material stays monotonic (there are not plastic-

ity in the opposite direction). However the parameter refreshing

is calculated if the unloading occurs (if the inner point of yield

surface is reached). Therefore the behaviour of material can be

switched to cyclic even if the next load direction remains elastic

and the behaviour of material also remains monotonic or transi-

tional.

If the state variable of the material is maximum value of strain

range (εRPL = q) the result of the material model is shown on

Fig. 19. If the amplitude of q stays small and the reloading re-

mains elastic range the steel is described better, nevertheless this

inaccuracy can occur whit this state variable as the unloading

occurs at higher strain level (the relevant plastic strain raises).

Fig. 20 shows ratcheting behaviour results of the PRESCOM

model. In Fig. 20/a the mean stress is σxm = 40 MPa with σxa =

420 MPa fluctuations, and in Fig. 20/b these values are: σxm =

−15 MPa and σxa = 440 MPa. Although the PRESCOM model

can describe the ratcheting phenomenon of the steel, the results

slightly overestimate the experimental values [24, 25].

The used state variable influences the ratcheting phenomenon

calculated by the PRESCOM model. In Fig. 21/a εREL is cal-

culated by Eq. (15); in this case the increase of maximal plastic

strain cause the change of hardening conditions in PRESCOM

model, therefore the curves becomes wider and more energy dis-

sipation, as it can be observed in the test results of [25]. In

Fig. 21/b the state variable is q; although the plastic strain in-

creases, the difference of accumulated plastic strain between two

load direction hardly differs, therefore the hardening behaviour

of PRESCOM model remains the same, and does not occur the

decrease of the yielding surface. This produces very narrow hys-

teretic loops, and less energy dissipation.

According to the model behaviour under elastic unloading-

reloading and non-proportional ratcheting, the following con-

clusions can be done:

1 Using maximum value of strain range (q) as state variable pro-

duces more accurate behaviour, if the elastic unloading and

reloading occurs, although if the elastic unloading appears on

high strain level at first, the accuracy decrease, because the

cyclic parameter set is activated.

2 In the case of ratcheting simulations the decrease of yielding

surface cannot be formed in some loading conditions if the

state variable is q. If the model uses the relevant plastic strain

(Eq. (15) as state variable (Figs. 9, 18, 19, 21), it fits best to

most of the loading conditions.

The results of the application of PRESCOM material model un-

der different cyclic loading are shown in Fig. 22 together with

the experimental data. The obtained results are properly accu-

rate, especially at the tension side of the hardening. In case of

compression the calculated curves show higher values than the

experimental tests.

6 Conclusion

The paper focuses on the modeling of the cyclic behaviour of

conventional steel material. The main propose of the research is

to develop an efficient material model which is sufficiently accu-

rate and can be implemened in a finite element program, such as

ANSYS, for high precision numerical calculations. The paper

presents some Chaboche base material model, and a compara-

tive analysis of steel material models of different efficiency and

accuracy under cyclic loading in ANSYS environment. Three

basis cyclic material models (bilinear, multi-linear, Chaboche)

and three developed Chaboche-based material models are pre-

sented (NLISO, MISO, PRESCOM). Although the models are

developed in the ANSYS finite element environment, the pro-

cedure can be adopted in other software, where the Chaboche

model is available and they can be combinational. During the

research the following results are occurred:

• Three Chaboche-based material models are developed, the

most accurate material model is the Parameter refreshed and

strain controlled combined Chaboche model with isotropic

hardening (PRESCOM model).

• The implemented parameter refreshing calculation method

makes the model possible to follow accurately the steel be-

haviour for the whole range of cyclic loading, particularly at

the transitional phase.
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Fig. 18. Monotonic behaviour of PRESCOM model under under elastic unloading (a); under small amplitude of plastic unloading (b)

Fig. 19. Monotonic behaviour of PRESCOM with εRPL = q model under elastic unloading (a) under small amplitude of plastic unloading (b)

Fig. 20. Ratcheting behaviour results of PRESCOM model

Fig. 21. Racheting behaviour calculated by the PRESCOM model with different state variable: a): εRPL = max(εpl,MAX, q) and b): εRPL = q
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Fig. 22. Comparison of the PRESCOM model and test results for different

cyclic loading histories: (a) proportionally increased amplitudes of loading; (b)

constant proportional loading; (c) non-proportionally increased amplitudes of

loading; (d) non-proportionally increased loading with constant amplitudes; (e)

non-proportionally increased loading with various amplitudes
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• The developed material model can describe both mono-

tonic and cyclic behaviour, the disappearance of the yielding

plateau, the saturation of the Bauschinger effect, the ratchet-

ing effect and the load history dependence.

• The material model is calibrated on the basis of uniaxial ex-

perimental results. The accuracy of the numerical model is

verified by several load paths. The developed material model

is proved to be accurate and it can be applied in nonlinear

time history, and cyclic geometrical and material nonlinear

imperfect analyses.
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