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Abstract

The system of governing differential equations of lateral de-

flection of symmetric multi-storey buildings subjected to uni-

formly distributed horizontal load is presented. It is shown

that the “standard” equivalent column approach (when the stiff-

nesses of the bracing units are added up) is only applicable to

the deflection analysis in the rare case when the system only

consists of shear walls and a single framework. When the brac-

ing system contains more frameworks, then a more sophisticated

approach is needed where the full interaction between the ver-

tical elements in bending and shear may need to be taken into

account.

Two new methods are developed for the determination of

the maximum deflection of mixed bracing systems consisting

of frameworks and shear walls: one is very simple while the

other one is more accurate. The accuracy of both procedures

is demonstrated using the results of over 200 bracing systems.

The error range of the more accurate method is -4% to +4%

when the buildings contain frameworks and shear walls/cores.

A worked example and step-by-step instructions are presented

to aid practical application.
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1 Introduction

The deflection analysis of multi-storey frameworks has a long

history. The mathematical problem of a cantilever composed

of a number of parallel beams interconnected by cross bars

(i.e., frameworks, using today’s terminology) was presented and

solved as early as in 1947 in a brilliant paper [Chitty, 1947].

Chitty and Wan [1948] then applied the method to tall build-

ings under wind load. However, the applicability of the orig-

inal method was considerably restricted as they neglected the

effect of the axial deformation of the columns. Numerous meth-

ods were then published, amazingly unaware of Chitty’s ef-

forts, both for individual frameworks or coupled shear walls

[Csonka, 1950; Beck, 1956; Ligeti, 1974; Szmodits, 1975;

Szerémi, 1984] and also for wall-frame buildings [Rosman,

1960; MacLeod, 1971; Despeyroux, 1972; Council, 1978;

Stafford Smith et al., 1981; Goschy, 1981; Hoenderkamp and

Stafford Smith, 1984; Taranath, 1988; Coull, 1990; Schueller,

1990; Coull and Wahab, 1993]. The most comprehensive treat-

ment, perhaps, is to be found in the excellent textbook by

Stafford Smith and Coull [1991] where a whole chapter is de-

voted to individual frameworks and another chapter deals with

symmetric wall-frame buildings. Most of the methods, however,

are too complicated, even as approximate methods, or neglect

one or more significant phenomena in order to be able to of-

fer relatively simple solutions. Furthermore, none of them are

backed up with a comprehensive accuracy analysis and, as a re-

sult, their applicability is not possible to establish for practical

structural engineering problems. Some are based on the equiv-

alent column approach and use a procedure whereas the char-

acteristic stiffnesses are simply added up for the analysis. This

approach – although perfectly legitimate for stability and fre-

quency analyses – is not acceptable for the deflection analysis,

as it will be demonstrated in this paper. All the above short-

comings were addressed in a recent paper [Zalka, 2009] which

offered a closed-form solution for the deflection of symmetric

buildings. However, that solution is still fairly complicated and,

as it will be shown later on, its accuracy can significantly be

improved.
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The aim of this paper is twofold:

• to present two new approximate procedures which can be

used in practice for the determination of the maximum de-

flection of symmetric multi-storey buildings

• to demonstrate the accuracy of the two procedures, based on

the results of over 200 test cases

The continuum method will be used and it will be assumed for

the analysis that the structures are

• regular in the sense that their characteristics do not vary over

the height

• at least four storeys high with identical storey heights

• sway structures with built-in lower end at ground floor level

and free upper end

and that

• the floor slabs have great in-plane and small out-of-plane stiff-

ness

• the deformations are small and the material of the structures

is linearly elastic

2 The governing differential equations of lateral deflec-

tion of symmetric wall-frame buildings

Symmetric cross wall-frame buildings under horizontal load

develop lateral deflection in the direction of the external load.

As the resultant of the horizontal load passes through the shear

centre of the bracing system (O), no torsion occurs. A typi-

cal building is shown in Figure 1. The bracing system of such

buildings may consist of frameworks, coupled shear walls, shear

walls and cores. Coupled shear walls can be considered frame-

works if the width of the wall sections and the shear deformation

of the connecting beams are taken into account. From now on,

frameworks also represent coupled shear walls.

The building then can be modelled by a planar system of the

bracing units which are linked by incompressible pinned bars

representing the floor slabs. Figure 2 shows a typical model

where the first f bracing units may represent frameworks and

coupled shear walls and the remaining m bracing units may be

shear walls and cores.

When the lateral load of a multi-storey building is resisted by

this system of f frameworks and m shear walls/cores, the be-

haviour of the system is complex. As a rule, the frameworks

develop a deflection shape which is a combination of bending

and shear deformation. The deflection shape of the shear walls

and cores is of “pure” bending. The floor slabs of the build-

ing, being stiff in their plane, make the bracing units assume the

same deflection shape. As the two types would have different

shapes on their own, they interact and this interaction results in

the “compromise” deflection of the system.

The characteristics of the interaction can be best investigated

by using the governing differential equations of the system and

Fig. 1. Symmetric cross wall–frame building with f frameworks/coupled

shear walls and m shear walls/cores.

analysing the different roles that the two different bracing types

play. The system of governing differential equations of f frame-

works and m shear walls/cores consists of two sets of equa-

tions. The first set represents f compatibility conditions for the

f frameworks expressing continuity at the vertical lines of con-

traflexure of the beams of the frameworks. (The frameworks at

this stage are single-bay structures but the final results will be

valid for multi-bay frameworks as well.)

Fig. 2. A planar system of f frameworks and m shear walls/cores.

Based on the derivation regarding a single framework under

uniformly distributed horizontal load [Zalka, 2009], these equa-

tions are as follows:

y′′1 −
l1

K1

N′′1 +
l1

EIg,1
N1 = 0 (1)

y′′2 −
l2

K2

N′′2 +
l2

EIg,2
N2 = 0 (2)

y′′f −
l f

K f

N′′f +
l f

EIg, f
N f = 0 (3)

In the above f equations EIg,i is the global bending stiffness

of the ith framework (with i = 1 . . . f ) – see Equation (27) for

the determination of Ig,i. Term Ki represents the shear stiffness:

Ki =

(
1

Kc,i
+

1

Kb,i

)−1

= Kb,i
Kc,i

Kb,i + Kc,i
= Kb,iri (4)

The shear stiffness has two “components”; Kb,i is related to

the beams while Kc,i is linked to the columns of the framework.

They are defined as

Kb,i =
12EIb,i

lih
and Kc,i =

12EIc,i

h2
(5)
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where Ib,i and Ic,i are the sums of the second moments of area of

the beams and columns, respectively, of the ith framework.

A second set of equations is needed as in the above equations,

in addition to the deflection (yi), the normal forces that originate

from the bending of the beams of the frameworks (Ni) are also

unknown quantities. This second set (of f + m equations) rep-

resents the bending of the vertical elements, i.e., the full-height

columns of f frameworks and m shear walls/cores:

y′′1 EI1 = −M1 + l1N1 (6)

y′′2 EI2 = −M2 + l2N2 (7)

y′′f EI f = −M f + l f N f (8)

and

y′′f +1EI f +1 = −M f +1 (9)

y′′f +2EI f +2 = −M f +2 (10)

y′′f +mEI f +m = −M f +m (11)

where the first shear wall/core is marked by subscript f + 1.

Bending stiffness EIi for the frameworks (1 ≤ i ≤ f ) is de-

termined using the sum of the second moments of area of the

columns (Ic,i), adjusted by parameter ri [Equation (4)], resulting

in the local bending stiffness of the ith framework as

EIi = EIc,iri (12)

The bending stiffness of the shear walls/cores ( f + 1 ≤ i ≤ m)

is determined in the usual manner.

Moment Mi in the above equations is the moment share on

the ith bracing unit, according to

Mi = qiM (13)

where

M =
wz2

2
(14)

is the total external moment on the system and qi is the appor-

tioner of the external load. Its value is determined according to

the “overall stiffness” of the bracing unit in question:

qi =
S i

f +m∑
i=1

S i

(15)

The “overall stiffness” of a bracing unit (either a framework

or a shear wall/core) is defined as

S i =
1

yi(H)
(16)

where yi(H) is the maximum deflection of the ith unit. It follows

from the above equations that the relationship

wi = qiw (17)

also holds, expressing the load share on the ith bracing unit.

The above two sets of differential equations represent the

complete governing differential equations of the bracing system

consisting of frameworks and shear walls/cores. The first set

consists of f equations and these equations are responsible for

fulfilling the compatibility conditions. The second set consists

of f + m equations in two parts. The first part (with f equations)

represent the bending of the columns of the frameworks and the

second part (with m equations) stand for the bending of the shear

walls/cores.

There are two possibilities to proceed from here. One ap-

proach leads to a very simple solution and the other approach

results in a more accurate solution. Both solutions are impor-

tant. Although the more accurate solution will be recommended

for use regarding this planar problem, the simple solution will

play an important role when the torsional behaviour of asym-

metric buildings are investigated (in a follow-up paper).

3 A simple solution

A close look at the two sets of equations reveals the fact that

the second part of the second set [Equations (9),(10) and (11)]

are not directly needed for the solution. The solution of the prob-

lem requires 2 f equations and Equations (1), (2), (3) and (6),

(7), (8) represent 2 f equations. Setting Equations (9), (10) and

(11) aside is equivalent to taking the shear walls/cores out of the

system and creating two sub-systems: the frameworks and the

shear walls/cores. Naturally, both sub-systems have their own

external load share. The load that belongs to the frameworks is

defined by apportioners q1, q2, . . . q f and the load on the shear

walls/cores is determined by q f +1, q f +2, . . . q f +m.

Consider first the first sub-system of f frameworks. Equa-

tions (1), (2) and (3) represent the compatibility conditions of

the f frameworks and Equations (6), (7) and (8) stand for the

bending of the vertical elements of system, i.e., the full-height

bending of the columns. The normal forces from the compati-

bility equations can be eliminated using the relevant equations

in the second set.

In doing so, the governing equation of the ith framework of

the first sub-system (with 1 ≤ i ≤ f ) is obtained as

y′′i −
1

Ki

(
y′′i EIi + Mi

)′′
+

1

EIg,i

(
y′′i EIi + Mi

)
= 0 (18)

Introducing Equations (13) and (14) and after some rearrange-

ment, Equation (18) can be written as

yi
′′′′ − yi

′′

(
Ki

EIi

+
Ki

EIg,i

)
=

qiw

EIi

(
z2

2

Ki

EIg,i
− 1

)
(19)

The structure of Equation (19) clearly shows that, as a rule, it

is not possible to create an equivalent column in such a way that

the corresponding stiffnesses of the frameworks (EIi, EIg,i and

Ki) are simply added up. This is a significant observation as the

situation with the stability and frequency analyses is completely

different: the solution of the frequency and stability problems is

based on an equivalent column whose characteristic stiffnesses
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are obtained by adding up the stiffnesses of the individual brac-

ing units [Zalka, 2013].

The governing differential equations of the second sub-system

of m shear walls/cores (with f + 1 ≤ i ≤ m) can be expressed in

a similar (but much simpler) form:

yi
′′EIi = −

qiwz2

2
(20)

Using the above consecutive f + m equations would lead to

the complete system of governing differential equations of the

whole system. However, there is no need for this procedure

that would lead to a fairly complicated solution. Two impor-

tant observations can be made that make it possible to simplify

the deflection problem:

a) According to the assumption regarding the floor slabs, all

the bracing units assume the same deflection shape, i.e., y1 =

y2 = . . . = yi = y.

b) The fact that the bracing units take on the external load

according to their stiffness [Equations (16) and (17)] makes it

possible to concentrate on one bracing unit only.

If a framework is to be used for the determination of the de-

flection of the building, then the solution of Equation (19) is

needed. The short form of Equation (19) is

yi
′′′′ − κ2

i yi
′′ =

qiw

EIi

(
aiz

2

2
− 1

)
(21)

where

κi =
√

ai + bi, ai =
Ki

EIg,i
, bi =

Ki

EIi

(22)

The structure of the above differential equation is identical to

that of a single, independent framework and therefore its solu-

tion can be directly applied. Bearing in mind that the deflection

of the ith framework is identical to the deflection of the whole

system, the formula for the deflection of the system is obtained

as

y(z) =yi(z) =
qiw

EI f ,i

(
H3z

6
−

z4

24

)
+

qiwz2

2Kis
2
i

−
qiwEIi

K2
i

s3
i

(
cosh κi(H − z) + κiH sinh κiz

cosh κiH
− 1

) (23)

where

EI f ,i = E(Ii + Ig,i) (24)

is the sum of the local and global bending stiffnesses and

si = 1 +
ai

bi

=
Ig,i + Ii

Ig,i
= 1 +

Ii

Ig,i
(25)

Maximum deflection develops at z = H:

ymax = yi,max =
qiwH4

8EI f ,i
+

qiwH2

2Kis
2
i

−
qiwEIi

K2
i

s3
i

(
1 + κiH sinh κiH

cosh κiH
− 1

)
(26)

Although the original derivations assume single-bay frame-

works, the formulae for the deflection (given here and also in

Section 4) are also applicable to multi-bay frameworks if the

basic stiffness characteristics (Ii, Ig,i and Ki) are calculated in

such a way that the number of bays is taken into account. This

leads to simple summations for Ii and Ki. As for Ig,i, the second

moments of area of the cross-sections of all the columns should

be taken with regard to the centroid of the cross-sections:

Ig,i =

n∑
j=1

A jt
2
j (27)

where A j is the cross-sectional area of the jth column of the

ith framework, t j is its distance from the centroid of the cross-

sections of the columns and n is the number of (full-height)

columns.

If a shear wall is to be used for the determination of the de-

flection of the building, then the solution of Equation (20) is

needed:

y(z) = yi(z) =
qiw

EIi

(
H3z

6
−

z4

24

)
(28)

and the maximum deflection is

ymax = yi,max =
qiwH4

8EIi

(29)

The beauty of this solution is in its simplicity. It should be

noted, however, that the determination of the load share on the

bracing unit that is used for the calculation of the deflection of

the building requires the determination of the maximum deflec-

tion of every bracing unit of the bracing system – see Equa-

tions (15) and (16). Equations (26) and (29) can be used for this

purpose. An arbitrary apportioner, say qi = 1, can be used for

these calculations as the intensity of the load drops out of the

formulae.

The drawback of this procedure lies in the fact that in the

process of separating the two sub-systems the direct interaction

between the shear walls and the frameworks is tacitly ignored.

This fact – and the numerical consequences regarding accuracy

– are spectacularly shown in Figure 6. A comprehensive accu-

racy analysis is presented in Section 5.

4 A more accurate solution

The accuracy of the procedure presented in the previous sec-

tion can be improved if the direct interaction between the shear

walls and frameworks is taken into account.

Before this step is taken, it is worth analysing the structures

of the governing differential equations. It is also useful to con-

sider the different nature of the interaction among the individ-

ual frameworks, the individual shear walls, and between the

frameworks and the shear walls. When frameworks of differ-

ent stiffnesses are considered, there is an interaction because

(due to the different stiffnesses) their deflections are of different

shape. (The only exception is when the frameworks are iden-

tical.) When shear walls are considered, there is no interaction

because their deflection shapes are identical. When a system

of frameworks and shear walls is considered, there is always an

interaction because their deflection shapes are always different:
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the frameworks develop a mixture of bending and shear defor-

mation while the shear walls are always in pure bending.

Fig. 3. A system of f frameworks and one shear wall.

It should be noted that the equations in the second part of the

second set [i.e., Equations (9), (10) and (11)] are of the same

structure and, more importantly, they do not contain normal

forces Ni that are needed for the overall solution. The mathemat-

ical consequence of this is that these equations are not needed

directly for the solution of the deflection problem from the point

view of the frameworks. (This fact was utilized in the previous

section when the two groups – frameworks and shear walls –

were effectively separated.) The practical consequence of this is

that any number of shear walls can be “put together” (by adding

up their bending stiffnesses) for the deflection analysis. This

also follows from the fact that there is no interaction among the

shear walls themselves, whose deflection shapes (in pure bend-

ing) are of the same nature and their load is proportional to their

stiffnesses.

The problem of f frameworks and m shear walls is thus re-

duced to a system of f frameworks and one shear wall, accom-

panied by differential equations (1), (2), (3), (6), (7), (8) and (9).

For practical reasons, subscript f + 1 is replaced with the more

meaningful w as it refers to the shear wall (Figure 3).

Instead of separating the different types of bracing unit (and

losing the effect of direct interaction), the shear wall will now be

incorporated into the system of frameworks. The investigation

of a single framework and one shear wall (Figure 4) shows how

this can be achieved.

Fig. 4. A system of a single framework and one shear wall.

The differential equations of this system are Equations (1), (6)

and (9). With y1 = y2 = y, and using subscript w referring to the

shear wall, they assume the form

y′′ −
l1

K1

N′′1 +
l1

EIg,1
N1 = 0 (30)

y′′EI1 = −M1 + l1N1 (31)

y′′EIw = −Mw (32)

where M1 and Mw are the moment shares on the framework and

the shear wall, respectively. It is clear that Equations (31) and

(32) can be combined: they represent the same type of bending

(i.e., pure bending), their left-hand side only contain bending

stiffness and they stand for the same deflection shape y:

y′′E(I1 + Iw) = −M + l1N1 (33)

with M = M1 + Mw being the total external moment.

Altogether, two equations are needed for the final solution (y

and N1 being the two unknowns) and Equations (30) and (33)

furnish these two equations. In practical terms, it can be said

that the shear wall has been “pushed” into the framework, in-

creasing its local bending stiffness. There is another important

aspect of this procedure. By incorporating the shear wall into

the framework, the interaction between the framework and the

shear wall is automatically taken into account through the solu-

tion of Equations (30) and (33) as Iw is now part of the system

to be solved. This is what we have referred to in the beginning

of this section as “direct interaction”. (In the previous section

when we presented the “simple solution”, the second moments

of area of the walls were not part of the system to be solved as

the shear walls were separated into another sub-system.)

The above equations also demonstrate the precise meaning of

the term “wall-frame interaction”. The term is normally inter-

preted as the interaction between the two bracing units, i.e., the

shear wall and the framework. It may be more to the point to

refer to this phenomenon as the interaction between the bending

and shear deformations.

The situation is similar, although slightly more complicated

when the system consists of f frameworks and one shear wall

(that, as we saw above, may be the sum of several shear walls).

The number of equations needed for the solution is 2 f . The

choice for one set of f equations is obvious: the compatibility

equations represented by Equations (1), (2) and (3). The ques-

tion arises, how to obtain the second set of f equations. Pro-

ceeding as with the case of the single frame–single wall above,

the differential equation of the shear wall [Equation (32)] should

be combined with those representing the bending of the vertical

elements of the frameworks [Equations (6), (7) and (8)]. This

task seems to be difficult – if not impossible – as there is only

one shear wall and there are f frameworks, and f equations are

needed. However, understanding the behaviour of the system

during interaction points at the solution. Due to the floor slabs,

the shear wall interacts with all the frameworks during deflec-
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tion as, as a rule, their individual deflection shapes are differ-

ent. It follows that all the frameworks participate when – as

with the single frame–single wall case – the bending stiffness

of the shear wall is added to the frame system. The “intensity”

of the interaction depends on the stiffnesses of the participants.

It follows that the bending stiffness of the shear wall should be

apportioned among the frameworks according to their relative

stiffnesses. This is achieved if apportioners q̄i are used, that are

only related to the first f bracing units, i.e., to the original frame-

works:

q̄i =
S i

f∑
i=1

S i

(34)

The system of f frameworks and m shear walls has now been

reduced to a system of f frameworks. However, these are not

the original frameworks as the local bending stiffness of each

framework is now amended by its share of the bending stiffness

of the shear wall. Accordingly, the second set of equations as-

sume the form

y′′1 E(I1 + q̄1Iw) = −M∗1 + l1N1 (35)

y′′2 E(I2 + q̄2Iw) = −M∗2 + l2N2 (36)

y′′f E(I f + q̄ f Iw) = −M∗f + l f N f (37)

Including the stiffness of the shear wall(s) in the above equa-

tions also means that the interaction between the shear wall(s)

and the frameworks is directly taken into account.

It should be noted that M∗
1
,M∗

2
and M∗

f
in the above equa-

tions are different from their equivalents in Equations (6), (7)

and (8) as the frameworks themselves are different from the orig-

inal frameworks. Their value

M∗i = q∗i M (38)

is determined using the new apportioner

q∗i =
S ∗

i

f∑
i=1

S ∗
i

(39)

whose values are determined using the “new” frameworks. The

“overall stiffness” of the ith “new” framework is defined as

S ∗i =
1

y∗
i
(H)

(40)

where y∗
i
(H) is the maximum deflection of the ith (new) frame-

work. The load share on this framework is now

w∗i = q∗i w (41)

The star in the above equations indicates that the frameworks

in question differ from the original ones in that they also contain

a portion of the bending stiffness of the shear wall.

It is now feasible to combine the two sets of differential equa-

tions: Equations (1), (2) and (3) representing the compatibil-

ity conditions of the f frameworks, and Equations (35), (36)

and (37) representing the bending of the vertical elements of

the bracing system including the shear walls incorporated into

the frameworks. In doing so, the governing equation of the ith

framework of the system is obtained as

yi
′′ −

1

Ki

(
yi
′′EI∗i + M∗i

)′′
+

1

EIg,i

(
yi
′′EI∗i + M∗i

)
= 0 (42)

where

I∗i = Ii + q̄iIw (43)

In the above equations Ki, EIi and EIg,i are the stiffnesses of

the ith (original) framework and EIw is the bending stiffness of

the shear wall.

Equation (42) is clearly analogous with Equation (18) and

therefore the procedure presented in Section 3 can be repeated.

This leads to the governing differential equation

yi
′′′′ − κ∗2i yi

′′ =
q∗

i
w

EI∗
i

(
aiz

2

2
− 1

)
(44)

where

κ∗i =

√
ai + b∗

i
, ai =

Ki

EIg,i
, b∗i =

Ki

EI∗
i

(45)

The solution – after amending the relevant bending stiffnesses

– can also be used. The formulae for the deflection of the system

is obtained as

y(z) =y∗i (z) =
q∗

i
w

EI∗
f ,i

(
H3z

6
−

z4

24

)
+

q∗
i
wz2

2Kis
∗2
i

−
q∗

i
wEI∗

i

K2
i

s∗3
i

(
cosh κ∗

i
(H − z) + κ∗

i
H sinh κ∗

i
z

cosh κ∗
i
H

− 1

) (46)

where

EI∗f ,i = E(I∗i + Ig,i) (47)

is the sum of the local and global bending stiffnesses and

s∗i = 1 +
ai

b∗
i

=
Ig,i + I∗

i

Ig,i
= 1 +

I∗
i

Ig,i
(48)

Maximum deflection develops at z = H:

ymax =y∗i (H) =
q∗

i
wH4

8EI∗
f ,i

+
q∗

i
wH2

2Kis
∗2
i

−
q∗

i
wEI∗

i

K2
i

s∗3
i

(
1 + κ∗

i
H sinh κ∗

i
H

cosh κ∗
i
H

− 1

) (49)

The situation is similar to that with the “simple solution” in

Section 3 in that the determination of the load share on the

framework (q∗
i
w) that is used for the calculation of the deflection

of the building requires the determination of the maximum de-

flection of each framework [cf. Equations (39) and (40)]. These

values are calculated using Equation (49) with an arbitrary ap-

portioner, say, q∗
i

= 1, as the intensity of the load drops out of

the formulae.

Again, the above equations spectacularly demonstrate that, as

a rule, it is not possible to carry out the lateral deflection anal-

ysis of a building by adding up the corresponding stiffnesses
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of the bracing units in order to create an equivalent column,

as is widely circulated in the literature. The equivalent col-

umn approach does work for the frequency and stability analyses

[Zalka, 2013] but not for the deflection analysis. There is only

one exception: a system of shear walls and a single framework.

5 Practical application: worked example

When the formulae for the maximum deflection were derived

above, the presentation followed an order that was most suitable

for, and in line with, the theoretical considerations. For prac-

tical applications, however, it is advisable to follow a different

order to simplify and minimize the amount of calculation. This

is shown here using a 28-storey building whose layout is shown

in Figure 5. The building is subjected to a uniformly distributed

horizontal load of intensity w∗ = 1 kN/m2 in direction y.

Fig. 5. Layout for the worked example.

The maximum deflection of the building will be determined

using both methods. The building has a symmetric bracing

system that consists of four frameworks and two cores. Be-

cause of symmetry, it is possible to consider half of the sys-

tem (with half of the external load: w = w∗L/2 = 15 kN/m).

The storey-height is h = 3 m and the total height of the build-

ing is H = 28 × 3 = 84 m. The modulus of elasticity is

E = 25 × 106 kN/m2. The cross-sectional characteristics of the

frameworks are given in Table 1. The relevant second moment

of area of the core (Ix) is Iw = 11.245 m4.

The Finite Element based computer program Axis [2003]

gives y = 0.1844 m as the maximum deflection of the building.

This value is considered the “exact” solution.

Tab. 1. Cross-sectional characteristics for frameworks F5 and F7.

Bracing

unit

cross-

section of

columns

[m]

cross-

section of

beams

[m]

Ic,i [m4] Ib,i [m4] Ig,i [m4]

1: F5 0.4×0.7 0.4×0.4 0.0343 0.00426̇ 20.16

2: F7 0.4×0.4 0.4×0.4 0.0064 0.00426̇ 11.52

5.1 Solution 1: A simple solution

The calculation is best carried out in two steps:

1) The basic stiffness characteristics, the maximum deflec-

tion, the overall stiffness and the apportioner for each bracing

unit are calculated (EI, EIg,K, ymax, S , q)

2) The maximum deflection of the building is determined us-

ing any of the bracing units [Equation (26) or Equation (29)]

1) The basic characteristics for each bracing unit

Framework F5 With the part shear stiffnesses given by

Equations (5)

Kb,1 =
12EIb

lh
=

12 · 25 · 106 · 0.00426̇

6 · 3
= 71111 kN,

Kc,1 =
12 · 25 · 106 · 0.0343

32
= 1143333 kN

the shear stiffness of the framework is calculated using Equa-

tion (4)

K1 =Kb,1
Kc,1

Kb,1 + Kc,1
= Kb,1r1 = 71111

1143333

71111 + 1143333

= 71111 · 0.9414 = 66947 kN

which also furnishes the value of parameter r1 = 0.9414.

The local bending stiffness is given by Equation (12):

EI1 = EIc,1r1 = 25 · 106 · 0.0343 · 0.9414 = 807250 kNm2

The global bending stiffness is calculated using Equa-

tion (27):

EIg,1 = E

n∑
j=1

A jt
2
j = 25 · 106 · 0.4 · 0.7 · 62 · 2

= 504000000 kNm2

The sum of the local and global stiffnesses [Equation (24)] is:

EI f ,1 = EI1 + EIg,1 = 504807250 kNm2

With auxiliary quantities a1, b1, s1 and κ1 obtained from Equa-

tions (22) and (25) as

a1 =
K1

EIg,1
=

66947

504000000
= 0.000133,

b1 =
K1

EI1

=
66947

807250
= 0.08293,

s1 = 1 +
a1

b1

= 1 +
0.000133

0.08293
= 1.0016,

κ1 =
√

a1 + b1 =
√

0.000133 + 0.08293 = 0.288,

κ1H = 24.2

the maximum deflection of the framework is calculated using

Equation (26) (with q1 = 1):

y1 =
15 · 844

8 · 504807250
+

15 · 842

2 · 66947 · 1.00162

−
15 · 807250

669472 · 1.00163

(
1 + 24.2 sinh 24.2

cosh 24.2
− 1

)
= 0.185 + 0.788 − 0.063 = 0.910 m

The overall stiffness of the framework is given by Equa-

tion (16):

S 1 =
1

y1(H)
=

1

0.91
= 1.10 m−1
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Framework F7 A copycat calculation leads to the overall

stiffness of the framework.

With the part shear stiffnesses given by Equations (5)

Kb,2 =
12EIb

lh
=

12 · 25 · 106 · 0.00426̇

6 · 3
= 71111 kN,

Kc,2 =
12 · 25 · 106 · 0.0064

32
= 213333 kN

the shear stiffness of the framework is calculated using Equa-

tion (4)

K2 =Kb,2
Kc,2

Kb,2 + Kc,2
= Kb,2r2 = 71111

213333

71111 + 213333

= 71111 · 0.75 = 53333 kN

which also furnishes the value of parameter r2 = 0.75.

The local bending stiffness is given by Equation (12):

EI2 = EIc,2r2 = 25 · 106 · 0.0064 · 0.75 = 120000 kNm2

The global bending stiffness is calculated using Equa-

tion (27):

EIg,2 = E

n∑
j=1

A jt
2
j = 25 · 106 · 0.4 · 0.4 · 62 · 2

= 288000000 kNm2

The sum of the local and global stiffnesses [Equation (24)] is

EI f ,2 = EI2 + EIg,2 = 288120000 kNm2

With auxiliary quantities a2, b2, s2 and κ2 obtained from

Equations (22) and (25) as

a2 =
K2

EIg,2
=

53333

288000000
= 0.000185,

b2 =
K2

EI2

=
53333

120000
= 0.44444,

s2 = 1 +
a2

b2

= 1 +
0.000185

0.44444
= 1.000416,

κ2 =
√

0.000185 + 0.44444 = 0.6668,

κ2H = 56.0

the maximum deflection of the framework is calculated using

Equation (26) (with q2 = 1):

y2 =
15 · 844

8 · 288120000
+

15 · 842

2 · 53333 · 1.0004162

−
15 · 120000

533332 · 1.004163

(
1 + 56 sinh 56

cosh 56
− 1

)
= 0.324 + 0.991 − 0.035 = 1.28 m

The overall stiffness of the framework is given by Equa-

tion (16):

S 2 =
1

y2(H)
=

1

1.28
= 0.78 m−1

U-core The maximum deflection of the core is calculated

using Equation (29) (with q3 = 1):

y3 =
wH4

8EIw

=
15 · 844

8 · 25 · 106 · 11.245
= 0.332 m

and the stiffness of the core is

S 3 =
1

y3(H)
=

1

0.332
= 3.01 m−1

The three apportioners are determined using Equation (15):

q1 =
S 1

f +m∑
i=1

S i

=
1.1

1.1 + 0.78 + 3.01
= 0.225,

q2 =
0.78

4.89
= 0.16,

q3 =
3.01

4.89
= 0.615

2) The maximum deflection of the building

The maximum deflection of the building is calculated using

the U-core with its load share [Equation (29)]:

ymax = y3(H) =
q3wH4

8EI3

=
0.615 · 15 · 844

8 · 25 · 106 · 11.245
= 0.204 m

This value is 10.6% greater than the “exact” (computer based)

solution. Naturally, the same value is obtained using the two

frameworks with their load shares.

5.2 Solution 2: A more accurate solution

The procedure for the more accurate solution can be orga-

nized into three steps.

1) The basic stiffness characteristics, the maximum deflec-

tion, the overall stiffness and the apportioner for each framework

are calculated (EI, EIg, K, ymax, S , q̄)

2) Using apportioners q̄, the bending stiffness of each frame-

work is amended (EI → EI∗). All characteristics that are af-

fected are re-calculated for each framework (y∗, S ∗, q∗)

3) The maximum deflection of the building is determined us-

ing any of the frameworks [Equation (49)]

1) The basic characteristics for each framework

This task has already been completed in Section 5.1 and the

results will be used below.

2) New bending stiffness and new characteristics for the

frameworks

Framework F5∗ According to Equation (43), a portion of

the second moment of area of the shear wall that is proportional

to the overall stiffness of framework F5 is added to its origi-

nal second moment of area. The apportioner is given by Equa-

tion (34). The amended local bending stiffness is

EI∗1 = E(I1 + q̄1Iw)

= 25 · 106

(
0.0343 · 0.9414 +

1.1

1.1 + 0.78
11.245

)
= 165295282 kNm2
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Because of this change, three other parameters have to be

amended, according to Equations (45) and (48):

b∗1 =
K1

EI∗
1

=
66947

165295282
= 0.000405,

s∗1 = 1 +
a1

b∗
1

= 1 +
0.000133

0.000405
= 1.328

κ∗1 =

√
a1 + b∗

1
=
√

0.000133 + 0.000405 = 0.0232 and

κ∗1H = 1.948

The sum of the local and global stiffnesses [Equation (47)] is

EI∗f ,1 = EI∗1 + EIg,1 = 165295282 + 504000000

= 669295282 kNm2

Equation (49) (with q∗
1

= 1) gives the maximum deflection of

framework F5∗:

y∗1 =
15 · 844

8 · 669295282
+

15 · 842

2 · 66947 · 1.3282

−
15 · 165295282

669472 · 1.3283

(
1 + 1.948 sinh 1.948

cosh 1.948
− 1

)
= 0.316 m

Its stiffness [Equation (40)] is

S ∗1 =
1

y∗
1

=
1

0.316
= 3.164 m−1

Framework F7∗ The procedure for the other framework is

the same. Its amended local bending stiffness is

EI∗2 =E(I2 + q̄2Iw) = 25 · 106(0.0064 · 0.75 +
0.78

1.1 + 0.78
11.245)

=116756968 kNm2

Because of this change, three other parameters have to be

amended, according to Equations (45) and (48):

b∗2 =
K2

EI∗
2

=
53333

116756968
= 0.000457,

s∗2 = 1 +
a2

b∗
2

= 1 +
0.000185

0.000457
= 1.405,

κ∗2 =

√
a2 + b∗

2
=
√

0.000185 + 0.000457 = 0.0253 and

κ∗2H = 2.128

The sum of the local and global stiffnesses [Equation (47)] is

EI∗f ,2 = EI∗2 + EIg,2 = 116756968 + 288000000

= 404756968 kNm2

Equation (49) (with q∗
2

= 1) gives the maximum deflection of

framework F7∗:

y∗2 =
15 · 844

8 · 404756968
+

15 · 842

2 · 53333 · 1.4052

−
15 · 116756968

533332 · 1.4053

(
1 + 2.128 sinh 2.128

cosh 2.128
− 1

)
= 0.443 m

Its stiffness [Equation (40)] is

S ∗2 =
1

y∗
2

=
1

0.443
= 2.257 m−1

Equation (39) gives the new apportioners for the two frame-

works:

q∗1 =
S ∗

1

f∑
i=1

S ∗
i

=
3.164

3.164 + 2.257
= 0.584,

q∗2 =
S ∗

2

f∑
i=1

S ∗
i

=
2.257

3.164 + 2.257
= 0.416

3) The maximum deflection of the two frameworks

These have already been calculated under a horizontal load of

w = 15 kN/m. According to Equation (49), the same calcula-

tion – but with the real load share of the framework – gives the

maximum deflection of the building. Using framework F5∗, this

is

ymax = q∗1y∗1(H) = 0.584 · 0.316 = 0.184 m

This value is practically identical with the “exact” (computer

based) solution. Naturally, using the other framework with its

load share leads to the same value.

The performance of the two approximate procedures pre-

sented in this paper and that of the “old” method [Zalka, 2009]

is shown in Figure 6 where the height of the building varies be-

tween four and eighty storeys. The error is defined as the differ-

ence between the approximate and “exact” solutions, related to

the “exact” solution. Positive errors indicate greater deflections,

i.e., an approximation on the safe side.

The weakness of the simple method is spectacularly shown in

Figure 6: it neglects the effect of the direct interaction between

the shear walls and the frameworks. As a rule, this effect is

smaller for very low and tall structures and greater for medium-

rise buildings.

5.3 Practical considerations

In many practical cases a deflection analysis is needed in or-

der to demonstrate that the maximum deflection of the structure

does not exceed a certain value, say H/500, and the procedure is

used as a checking mechanism. In such cases it is worth consid-

ering the use of one of the procedures in a simplified manner.

Equations (26) and (49) consist of three terms: the first

two terms represent bending and shear deflections, respectively,

while the third term is responsible for the interaction. It is per-

fectly clear from the equations that the effect of interaction is al-

ways beneficial. Neglecting the third term, therefore, represents

an approximation on the safe side, while makes the calculation

extremely simple – a true back-of-the-envelope procedure. If

the building still meets the requirement regarding the maximum

deflection, then it is not necessary to use the full formulae (with

the hyperbolic terms that are not suitable for hand calculation).

6 Accuracy analysis

The results of the worked example (Figure 6) offer some in-

dication regarding the accuracy of the two procedures (“simple
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Fig. 6. Accuracy of the approximate methods over the height.

Fig. 7. Structures for the accuracy analysis. a)-g): reinforced concrete frames, h)-j): steel frames, k)-n): reinforced concrete shear walls.

Fig. 8. Accuracy of “Solution 1: a simple method”.
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Fig. 9. Accuracy of “Solution 2: a more accurate method”.

method” and “more accurate method”) but, clearly, more infor-

mation is needed if the proposed procedures are to be used for

practical application.

In order to carry out a comprehensive accuracy analysis, 14

individual bracing units (F1, F2, F3, F5, F6, F7, F10, F11, F12,

F13, W, W2, W4 and W5) were chosen whose details are given

in Figure 7. Using these structures, twenty-two bracing systems

were then created: F1W, F2-W, F3-W, F6-W5, F13-W2, F2-F5,

F2-F5-W, F2-F5-F10, F2-F5-F10-W4, F3-F6, F3-F6-W2, F3-

F6-F11, F3-F6-F11-W4, F1-F7, F1-F7-W2, F1-F6-F7, F1-F6-

F7-W4, F1-F6-F7-F10, F1-F6-F7-F10-W4, F1-F6-F7-F12-F13,

F1-F6-F7-F12-F13-W4 and F6-F10-W5. The height of the brac-

ing units varied from 4 storeys to 80 storeys in nine steps. This

resulted in 198 test structures. The storey height and the bays

were 3 metres and 6 metres, respectively, in each case. The

bracing units and systems were chosen to cover a wide range

of structures. Among the bracing systems, there are bending

dominated systems, shear dominated systems, mixed systems,

systems consisting of frameworks only, systems consisting of

frameworks and shear walls, systems consisting of reinforced

concrete and steel bracing units, etc. The modulus of elasticity

for the concrete and steel structures were E = 25 kN/mm2 and

E = 200 kN/mm2, respectively.

The Finite Element based computer program Axis [2003] was

used for the determination of the maximum deflection of the

bracing systems and these results were considered “exact”.

Figures 8 and 9 demonstrate the accuracy of the “simple

method” and the “more accurate method”, respectively. Solid

lines represent systems with a shear wall and dashed lines mark

systems that only contain frameworks.

In the case of the simple method, the error range proved to be

-4% to +18%, with an average absolute error of less than 6%.

Positive error means that the method overestimates the maxi-

mum deflection.

It is interesting to note that the simple method performs better

when the bracing system does not contain shear walls. This fol-

lows from the fact that no significant (wall–frame) interaction is

neglected.

The situation with the more accurate method is the opposite:

as a rule, its performance is better when the bracing system also

contains shear walls. This is a lucky coincidence as in practical

situations the bracing system normally consists of frameworks

and shear walls/cores. In such cases (solid lines in Figure 9) the

error range of the more accurate method is quite spectacular:

-4% to +4%, with a less than 1% average absolute error.

Compared to the “old” method [Zalka, 2009], both proce-

dures proposed here are more accurate. The accuracy of the

“simple solution” is slightly better (but the method itself is much

simpler). The “more accurate solution” is still simpler and, as far

as accuracy is concerned, spectacularly outperforms the “old”

method.

7 Conclusions

In applying the continuum method to the deflection analysis

of regular multi-storey buildings, it is not possible to create an

equivalent column by simply adding up the characteristic stiff-

nesses of the bracing units in the hope of producing a simple

and reliable solution as with the case of the stability and fre-

quency analyses. However, it is possible to reduce the system of

differential equations to the investigation of a single differential

equation.

In doing so, two different avenues can be followed. In ig-

noring the direct interaction between the shear walls and frame-

works, a very simple procedure can be produced.

Alternatively, when the direct interaction between the shear

walls and frameworks is taken into account, a slightly more

complicated but much more accurate solution can be produced

for the deflection of the building. Based on the accuracy anal-

ysis of 126 test structures containing frameworks and shear

walls/cores, its error range proved to be 4% to +4%, with a less

than 1% absolute average error.
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