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Abstract

In this paper the elastic and geometric stiffness matrices of

the semi-analytical finite strip method (FSM) are discussed.

The stiffness matrices are derived in various options. New

derivations are presented for different longitudinal base func-

tions, which corresponds to column/beam member with general

boundary conditions. Numerical studies are performed to ver-

ify the new stiffness matrices as well as to illustrate the effect

of the various options. It is shown that inconsistency is existing

in the current implementations of FSM, which inconsistency has

negligible effect in most of the practical cases, but might have

non-negligible effect in certain specific cases.
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1 Introduction

Buckling has crucial role in the behaviour of thin-walled

members. It is buckling which makes the behaviour and design

of a thin-walled member far more complex than those of typ-

ical compact sections used in structural engineering. Since the

load carrying capacity of thin-walled members is often governed

by buckling phenomena, the ability to calculate the associated

elastic critical loads is of great importance. In current design

codes, e.g. relevant Eurocode [14], the accurate calculation of

the elastic critical loads is crucial in predicting the ultimate load

carrying capacity of a thin-walled member.

Analytical formulae exist for the calculation of certain buck-

ling loads, but their applicability is limited. Therefore, numeri-

cal methods are widely used, including e.g., the shell Finite Ele-

ment Method (FEM), or the (constrained) Finite Strip Method

(FSM or cFSM). FEM is certainly the most well-known and

most general, but FSM is also popular since it is much faster

and easier to use than FEM. The presented research focuses on

the FSM, more exactly on the FSM version with no longitudi-

nal discretization, as proposed by Cheung [9], than applied by

Schafer in the CUFSM software ([15] and [10]). Recently a spe-

cial version of FSM has been proposed, called constrained Finite

Strip Method (cFSM), presented in [4]. cFSM uses mechani-

cal criteria to enforce or classify deformations to be consistent

with global (G), distortional (D), local (L), and other (i.e., shear

and transverse extension, S+T) deformations. cFSM is imple-

mented in CUFSM, too. Both FSM and cFSM are widely used

in the analysis of thin-walled members. FSM is the essential

part of the Direct Strength Method which is developed to predict

the load bearing capacity of thin-walled cold-formed steel mem-

bers, which now is included in the relevant North-American de-

sign code [18]. FSM/cFSM is also widely applied in recent re-

searches, e.g. in searching for optimized shape of cold-formed

steel members’ cross-sections ([7] and [6]), in characterizing the

geometrical imperfections of cold-formed steel members [8], or

in identifying deformations of thin-walled columns or beams

calculated by shell FEM analysis [5].

Recent analytical studies (see [1] and [2]) showed some in-

consistency in CUFSM caused by the inconsistent handling

Local stiffness matrices for the semi-analytical Finite Strip Method 1872014 58 3

http://dx.doi.org/10.3311/PPci.7339
http://periodicapolytechnica.org/ci
http://creativecommons.org/licenses/by/3.0/


of through-thickness variation of strains-stresses. In recent

CUFSM the through-thickness variation is neglected in the work

of the external forces (i.e. the negative of the external potential

energy), while in the internal strain energy (i.e. in the inter-

nal potential energy) the through-thickness variation is consid-

ered. The practical effect of the inconsistency was discussed

in the frame of global buckling (e.g., flexural, torsional, lateral-

torsional buckling), and was concluded that the inconsistency

has practically negligible effect on the vast majority of practical

cases, but examples are found when this inconsistency has non-

negligible effect, e.g. in case of short members, thicker cross-

sections, and especially for torsional type buckling modes (i.e.

pure-torsional, flexural-torsional and lateral-torsional buckling).

As the inconsistency comes from the different assumptions of

internal and external potential energy, the problem is embedded

in the derivation of elastic and geometric stiffness matrices. In a

recent paper [11] the derivations are presented for the simplest

case: members with (globally and locally) pinned ends. How-

ever, in the latest version of CUFSM software, Li and Schafer

introduced the solution for general boundary conditions [13].

In this paper the derivation of stiffness matrices is general-

ized in two ways: (i) various longitudinal base functions are

considered as in [3] and [13] (which correspond to various end

restraints: simple-simple, clamped-clamped, simple-clamped,

clamped-free and clamped-guided), and (ii) a general distribu-

tion of the loads is assumed over the strip. As in [11] the elastic

stiffness matrix is derived in two different versions: through-

thickness variation is considered or neglected in the internal

strain energy. The geometric stiffness matrix is derived in four

different ways: through-thickness variation is considered or ne-

glected in the work of the external forces, and the second-order

term of the longitudinal displacement is considered or neglected

in the second-order strain. The different stiffness matrices are

derived in closed form with these assumptions, and implemented

into the recent version of CUFSM software. With the modified

software numerical studies are performed to verify the new stiff-

ness matrices as well as to illustrate the effect of the various op-

tions. Critical stresses are calculated for general buckling cases,

and also for pure buckling modes: global (i.e. flexural, torsional,

lateral-torsional), distortional and local plate buckling. These

FSM critical values are compared to each other and to Shell

FEM, Beam FEM and generalized beam theory (GBT) results.

2 Finite strip method stiffness matrices

2.1 Overview of the derivations

In the semi-analytical finite strip method a member is dis-

cretized into longitudinal strips, unlike in finite element method

which applies discretization in both the longitudinal and trans-

verse directions. In Fig. 1 a single strip is highlighted, along

with the local coordinate system and the degrees of freedom

(DOF) for the strip, the dimensions of the strip, and the applied

end tractions. Unlike in previous FSM derivations (see [10]),

here the dependency of the displacements on the local z coordi-

nate is explicitly considered, otherwise the usual steps of finite

element or finite strip derivations are followed. It is to highlight

that here the positive sign of the rotational degree of freedom,

Θ, corresponds to the positive rotation in the coordinate system,

which is just the opposite the sign convention used in [9], [13]

and [10].

T = Ty0 + T
′

xx + T
′

z1z +
T
′

z2
− T

′

z1

b
xz (1)

where Ty0 is the load on one end of the mid-line at x = 0

point, T
′

x is the variation in x direction, while T
′

z1
and T

′

z2
are the

variations in z direction at x = 0 and x = b points.

The vector of general displacement field, u, is approximated

with the matrix of shape functions, N[m], and the vector of the

nodal line displacements, d[m], as:

u =


u (x, y, z)

v (x, y, z)

w (x, y, z)

 =

q∑
m=1

N[m]d[m] (2)

where

N[m] =


Nu[m] −z

∂Nw[m]

∂x

Nv[m] −z
∂Nw[m]

∂y

0 Nw[m]

 (3)

and

d[m] =
[
u1[m] v1[m] u2[m] v2[m]

w1[m] Θ1[m] w2[m] Θ2[m]

]T (4)

The shape functions for approximation of in-plane displace-

ments from u and v are Nu[m] and Nv[m], while the shape function

for approximation of out-of-plane displacement from w and Θ is

Nw[m], as:

Nu[m] =
[ (

1 − x
b

)
0

(
x
b

)
0

]
Y[m] (5)

Nv[m] =
[
0

(
1 − x

b

)
0

(
x
b

)]
Y
′

[m]

1

c[m]

(6)

Nw[m] =

[(
1 −

3x2

b2
+

2x3

b3

)
−

(
x −

2x2

b
+

x3

b2

)
(

3x2

b2
−

2x3

b3

)
−

(
−

x2

b
+

x3

b2

)]
Y[m]

(7)

The approximation in the transverse directions is the same as

a classical beam finite element (using the Hermite polynomi-

als), while in the longitudinal direction Y[m] is applied, which is

a trigonometric function depending on the end boundary condi-

tions (see [3]). In Nv[m] the parameter c[m] = mπ/a. For different

end boundary conditions, the Y[m] functions are the following:
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Fig. 1. Coordinate system, degrees of freedom and loads of a strip

S-S: simple-simple

Y[m] = sin
mπy

a

(8)

C-C: clamped-clamped

Y[m] = sin
mπy

a
sin

πy

a

(9)

S-C: simple-clamped

Y[m] = sin
(m + 1) πy

a
+

(
m +

1

m

)
sin

mπy

a

(10)

C-F: clamped-free

Y[m] = 1 − cos
(m − 1/2) πy

a

(11)

C-G: clamped-guided

Y[m] = sin
(m − 1/2) πy

a
sin

πy

2a

(12)

It is to mention that later c[n], Yn, Nu[n], etc. symbols will

also be used, see e.g., Eq. (32) or Eq. (38), with c[n] = nπ/a,

Y[n] = sin
nπy

a
, etc.

The strain vector, ε, can be expressed by the operator matrix,

L, the matrix of shape functions, N[m] (see Eq. (3)), and the

vector of the nodal line displacements, d[m] (see Eq. (4)), as:

ε =


εx (x, y, z)

εy (x, y, z)

γxy (x, y, z)

 =

q∑
m=1

B[m]d[m] = L

q∑
m=1

N[m]d[m] (13)

where the operator matrix is:

L =


∂
∂x

0 0

0 ∂
∂y

0
∂
∂y

∂
∂x

0

 (14)

The stress vector, σ, can be expressed with the material ma-

trix, E, and the strain vector, ε, as:

σ = Eε, (15)

where the material matrix, assuming linear elastic orthotropic

material, is:

E =


E11 E12 0

E21 E22 0

0 0 G

 =


Ex

1−νxyνyx

νyxEx

1−νxyνyx
0

νxyEy

1−νxyνyx

Ey

1−νxyνyx
0

0 0 G

 (16)

and the stress vector is:

σ =


σx (x, y, z)

σy (x, y, z)

τxy (x, y, z)

 (17)

Since the method is intended to be applicable for geometri-

cally nonlinear analysis (e.g., linear buckling analysis), nonlin-

ear strains must be considered. This is completed here by using

the second-order terms of Green-Lagrange strains. However,

since longitudinal loading is assumed only, it is the longitudinal

normal strain only where second-order term is necessary (simi-

larly to [9],[13] and [10]), as follows:

ε II
y =

1

2

(∂u

∂y

)2

+

(
∂v

∂y

)2

+

(
∂w

∂y

)2
 (18)

which can be expressed with the matrix of shape functions

and the vector of the nodal line displacements using Eqs. (3)

and (4), as:

ε II
y =

1

2

q∑
m=1

q∑
n=1

d[m]
T ∂N[m]

T

∂y

∂N[n]

∂y
d[n] =

=
1

2

q∑
m=1

q∑
n=1

d[m]
T G[m]

T G[n]d[n]

(19)

The total potential energy, Π , can be calculated from the in-

ternal strain energy, U, and the work of the external forces, W,

(i.e., the negative of the external potential), as:

Π = U −W (20)
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The internal strain energy, U, can be expressed using

Eqs. (13) and (15), as:

U =
1

2

∫
V

σT εdV =
1

2

∫
V

εT EεdV =

=
1

2

q∑
m=1

q∑
n=1

d[m]
T

[∫
V

B[m]
T EB[n]dV

]
d[n] =

(21)

=
1

2

q∑
m=1

q∑
n=1

d[m]
T ke[mn]d[n]

The work of the external forces, W, can be written as follows,

using Eqs. (1) and (19):

W =

∫
V

T ε II
y dV =

=
1

2

q∑
m=1

q∑
n=1

d[m]
T

[∫
V

TG[m]
T G[n]dV

]
d[n] =

(22)

=
1

2

q∑
m=1

q∑
n=1

d[m]
T kg[mn]d[n]

In Eq. (21) the elastic stiffness matrix, while in Eq. (22) the

geometric stiffness matrix appears, as a function of the m and n

parameters:

ke[mn] =

∫
V

B[m]
T EB[n]dV (23)

kg[mn] =

∫
V

TG[m]
T G[n]dV (24)

2.2 The different options

Though the above steps of the derivation are always valid,

simplifications in the formulae are possible and sometimes ap-

plied. Simplification is possible at three steps, namely: (i) def-

inition of second-order strain, (ii) integration in the work of the

external forces, and (iii) integration in internal strain energy.

These possible simplifications are shown as follows.

In classical finite strip derivations (see [9] and [10]) as well as

in finite element derivations the second-order strain term is ex-

pressed as shown in Eq. (18). However, it is also common to use

a simplified formula, too, with neglecting the second-order term

of the longitudinal displacement (i.e., neglecting the (∂v/∂y)2

term). This simplified formula is the one typically used in clas-

sical buckling solutions of beams and columns. Therefore, the

second-order strain term will be considered here in two options,

as:

ε II
y =

1

2

(∂u

∂y

)2

+

(
∂v

∂y

)2

+

(
∂w

∂y

)2
 (25)

ε II
y =

1

2

(∂u

∂y

)2

+

(
∂w

∂y

)2
 (26)

Furthermore, in performing the integration to calculate the

work of the external forces (see Eq. (22)), two options are used

in the practice, as follows:

W =

∫ t/2

−t/2

∫ a

0

∫ b

0

T ε II
y dxdydz (27)

W = t

∫ a

0

∫ b

0

T ε II
y dxdy (28)

The formula in Eq. (27) is the mathematically precise one, but

the other formula (in Eq. (28)) is also widely used, especially in

case of thin-walled members where the effect of the variation

through the thickness is considered to be negligible. (Note, in

case of the formula in Eq. (28), both T and ε II
y functions should

be considered with their mean values, i.e. with substituting z =

0.)

Finally, in calculating the internal strain energy (see Eq. (21)),

two options might be established (similarly to those of the ex-

ternal work), as:

U =
1

2

∫ t/2

−t/2

∫ a

0

∫ b

0

σT εdxdydz (29)

U =
1

2
t

∫ a

0

∫ b

0

σT εdxdy (30)

The variation of strains and stresses through the thickness

can be considered (see Eq. (29)) or disregarded (see Eq. (30)),

which latter case corresponds to neglecting the bending energy.

(Again, in case of the formula in Eq. (30), both σT and ε func-

tions should be considered with their mean values, i.e. with sub-

stituting z = 0.)

Thus, there are altogether eight different versions, as summa-

rized in Tab. 1. As far as the options are concerned, here are

some remarks:

• The first two options have influence on the geometric stiffness

matrix, but no influence on the elastic stiffness matrix. On the

other hand, the third option has influence on the elastic stiff-

ness matrix only. This means that the elastic stiffness matrix

(ke) can be defined in two versions, while the geometric stiff-

ness matrix (kg) in four versions.

• The classical FSM (see [9] and [10]) uses yny version.

• It does not seem to be consistent to consider through-

thickness variation at one step of the derivation, while dis-

regard it in another step, thus, ∗ny or ∗yn versions are theoret-

ically inconsistent (even though this inconsistency might have

negligibly small practical effect).

• If a version is referenced with ∗ in it, that means it can be both

yes or no (e.g. ∗ny summarizes the nny and yny versions).

2.3 Different versions of the elastic stiffness matrix

The elastic stiffness matrix appears in the calculation of in-

ternal strain energy (see Eq. (21)). As it mentioned in Section

2.2, there are two different ways for the calculation of the inter-

nal potential: the through-thickness stress-strain variation can be
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Tab. 1. Definition of the different calculation versions according to the three options

Different versions

Options nnn nny nyn nyy ynn yny yyn yyy

(∂v/∂y)2 term considered? No No No No Yes Yes Yes Yes

Through-thickness integration in external work W? No No Yes Yes No No Yes Yes

Through-thickness integration in internal potential U? No Yes No Yes No Yes No Yes

considered (as in Eq. (29)), or can be neglected (as in Eq. (30)).

It also means that the elastic stiffness matrix has two different

versions, one is the k∗∗n
e[mn]

matrix in case of neglect, the other is

the k
∗∗y

e[mn]
matrix, when through-thickness stress-strain variation

is considered. The substitution and subsequent integration leads

to the following closed-formed solution for the ∗∗n version:

k∗∗ne[mn] =

k∗∗ne,11[mn]
0

0 0

 (31)

where 0 denotes a four-by-four zero matrix, and the non-zero

term is expressed as:

k∗∗ne,11[mn] =

= t



3E11I1+Gb2I5

3b
−

E12I3+GI5

2c[n]

−6E11I1+Gb2I5

6b

−E12I3+GI5

2c[n]

−
E21I2+GI5

2c[m]

E22b2I4+3GI5

3bc[m]c[n]

E21I2−GI5

2c[m]

E22b2I4−6GI5

6bc[m]c[n]

−6E11I1+Gb2I5

6b

E12I3−GI5

2c[n]

3E11I1+Gb2I5

3b

E12I3+GI5

2c[n]

−E21I2+GI5

2c[m]

E22b2I4−6GI5

6bc[m]c[n]

E21I2+GI5

2c[m]

E22b2I4+3GI5

3bc[m]c[n]


(32)

In case of ∗∗y version, the elastic stiffness matrix can be cal-

culated from the ∗∗n version (see Eq. (31)) with an additional

matrix, ∆k
∗∗y

e[mn]
, as:

k
∗∗y

e[mn]
= k∗∗ne[mn] + ∆k

∗∗y

e[mn]
(33)

where

∆k
∗∗y

e[mn]
=


0 0 0

0 ∆k
∗∗y

e,22[mn]
∆k
∗∗y

e,23[mn]

0 ∆k
∗∗y

e,32[mn]
∆k
∗∗y

e,33[mn]

 (34)

and the two-by-two submatrices are:

∆k
∗∗y

e,22[mn]
=

= t3


 E11I1

b3 −
E12I3+E21I2

10b

+ 13E22bI4

420
+

2GI5

5b

 − E11I1

2b2 +
E12I3+11E21I2

120

−
11E22b2I4

2520
−

GI5

30

− E11I1

2b2 +
11E12I3+E21I2

120

−
11E22b2I4

2520
−

GI5

30

  E11I1

3b
−

E12bI3+E21bI2

90

+ E22b3I4

1260
+

2GbI5

45




(35)

∆k
∗∗y

e,23[mn]
= ∆k

∗∗y

e,32[mn]

T
=

= t3


− E11I1

b3 +
E12I3+E21I2

10b

+ 3E22bI4

280
−

2GI5

5b

 − E11I1

2b2 +
E12I3+E21I2

120

+ 13E22b2I4

5040
−

GI5

30

 E11I1

2b2 −
E12I3+E21I2

120

−
13E22b2I4

5040
+

GI5

30

  E11I1

6b
+

E12bI3+E21bI2

360

−
E22b3I4

1680
−

GbI5

90




(36)

∆k
∗∗y

e,33[mn]
=

= t3


 E11I1

b3 −
E12I3+E21I2

10b

+ 13E22bI4

420
+

2GI5

5b

  E11I1

2b2 −
E12I3+11E21I2

120

+ 11E22b2I4

2520
+

GI5

30

 E11I1

2b2 −
11E12I3+E21I2

120

+ 11E22b2I4

2520
+

GI5

30

  E11I1

3b
−

E12bI3+E21bI2

90

+ E22b3I4

1260
+

2GbI5

45




(37)

The parameters in the matrices are c[m] = mπ/a, c[n] = nπ/a,

and:

I1 =
∫ a

0
Y[m]Y[n]dy I2 =

∫ a

0
Y
′′

[m]
Y[n]dy

I3 =
∫ a

0
Y[m]Y

′′

[n]
dy I4 =

∫ a

0
Y
′′

[m]
Y
′′

[n]
dy

I5 =

∫ a

0

Y
′

[m]Y
′

[n]dy

(38)

where I1-I5 parameters have explicit integration results for all

the five end boundary conditions (see Eqs. (8)-(12)), discussed

in paper [13].

2.4 Different versions of the geometric stiffness matrix

The geometric stiffness matrix appears in the calculation of

the work of external loads (see Eq. (22)). As it discussed in

Section 2.2, there are four different ways for the calculation of

the external work: in the second-order strain the (∂v/∂y)2 term

can be considered (as in Eq. (25)) or neglected (see Eq. (26)),

while in the calculation of external work, the through-thickness

variation can be considered (as in Eq. (27)), or neglected (see

Eq. (28)), too. It means that the geometric stiffness matrix has

altogether four different versions.

The simplest option is the nn∗ version. In this case, the knn∗
g[mn]

matrix can be written as:

knn∗
g[mn] =

knn∗
g,11[mn]

0

0 knn∗
g,22[mn]

 (39)

where the non-zero submatrices are:

knn∗
g,11[mn] = btI5


4Ty0+Txb

12
0

2Ty0+Txb

12
0

0 0 0 0
2Ty0+Txb

12
0

4Ty0+3Txb

12
0

0 0 0 0

 (40)
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and

knn∗
g,22[mn] =

= btI5


13Ty0+3Txb

35
−

22Ty0b+7Txb2

420

18Ty0+9Txb

140

13Ty0b+6Txb2

420

−
22Ty0b+7Txb2

420

8Ty0b2+3Txb3

840
−

13Ty0b+7Txb2

420
−

2Ty0b2+Txb3

280

18Ty0+9Txb

140
−

13Ty0b+7Txb2

420

13Ty0+10Txb

35

22Ty0b+15Txb2

420

13Ty0b+6Txb2

420
−

2Ty0b2+Txb3

280

22Ty0b+15Txb2

420

8Ty0b2+5Txb3

840


(41)

If the (∂v/∂y)2 term is considered and the through-thickness

variation is neglected, it leads to the yn∗ version. The geometric

stiffness matrix, k
yn∗

g[mn]
, can be calculated using the nn∗ version

(see Eq. (39)) with an additional matrix, as:

k
yn∗

g[mn]
= knn∗

g[mn] + ∆k
yn∗

g[mn]
(42)

where

∆k
yn∗

g[mn]
=

∆k
yn∗

g,11[mn]
0

0 0

 (43)

with

∆k
yn∗

g,11[mn]
= btI4


0 0 0 0

0
4Ty0+Txb

12c[m]c[n]
0

2Ty0+Txb

12c[m]c[n]

0 0 0 0

0
2Ty0+Txb

12c[m]c[n]
0

4Ty0+3Txb

12c[m]c[n]

 (44)

If the (∂v/∂y)2 term is neglected and the through-thickness

variation is considered, it leads to the ny∗ version. The geomet-

ric stiffness matrix, k
ny∗

g[mn]
, can be calculated in the same way

as before, using the nn∗ version (Eq. (39)) with an additional

matrix, as:

k
ny∗

g[mn]
= knn∗

g[mn] + ∆k
ny∗

g[mn]
(45)

where

∆k
ny∗

g[mn]
=

 0 ∆k
ny∗

g,12[mn]

∆k
ny∗

g,21[mn]
∆k

ny∗

g,22[mn]

 (46)

and the non-zero submatrices are

∆k
ny∗

g,12[mn]
= ∆k

ny∗

g,21[mn]

T
=

= t3I5


3Tz1+2Tz2

120

6Tz1b−Tz2b

720
−

3Tz1+2Tz2

120
−

4Tz1b+Tz2b

720

0 0 0 0
2Tz1+3Tz2

120
−

Tz1b+4Tz2b

720
−

2Tz1+3Tz2

120

−Tz1b+6Tz2b

720

0 0 0 0


(47)

and

∆k
ny∗

g,22[mn]
=

= t3I5


2Ty0+Txb

20b
−

Ty0+Txb

120
−

2Ty0+Txb

20b
−

Ty0

120

−
Ty0+Txb

120

4Ty0b+Txb2

360

Ty0+Txb

120
−

2Ty0b+Txb2

720

−
2Ty0+Txb

20b

Ty0+Txb

120

2Ty0+Txb

20b

Ty0

120

−
Ty0

120
−

2Ty0b+Txb2

720

Ty0

120

4Ty0b+3Txb2

360


(48)

Finally, if both the (∂v/∂y)2 term and the through-thickness

variation are considered, it is resulted in the yy∗ version. In

this case the geometric stiffness matrix, k
yy∗

g[mn]
, can be calculated

summarizing the matrix of nn∗ version (Eq. (39)), the additional

matrices of yn∗ and ny∗ versions (Eqs. (43) and (46)), and an

additional matrix, ∆k
yy∗

g[mn]
, as:

k
yy∗

g[mn]
= knn∗

g[mn] + ∆k
yn∗

g[mn]
+ ∆k

ny∗

g[mn]
+ ∆k

yy∗

g[mn]
(49)

where

∆k
yy∗

g[mn]
=

 0 ∆k
yy∗

g,12[mn]

∆k
yy∗

g,21[mn]
∆k

yy∗

g,22[mn]

 (50)

and the non-zero submatrices are

∆k
yy∗

g,12[mn]
=

= bt3I4


0 0 0 0

−
16Tz1+5Tz2

720c[m]

2Tz1b+Tz2b

720c[m]
−

4Tz1+5Tz2

720c[m]
−

Tz1b+Tz2b

720c[m]

0 0 0 0

−
5Tz1+4Tz2

720c[m]

Tz1b+Tz2b

720c[m]
−

5Tz1+16Tz2

720c[m]
−

Tz1b+2Tz2b

720c[m]


,

(51)

∆k
yy∗

g,21[mn]
= bt3I4


0 −

16Tz1+5Tz2

720c[n]
0 −

5Tz1+4Tz2

720c[n]

0
2Tz1b+Tz2b

720c[n]
0

Tz1b+Tz2b

720c[n]

0 −
4Tz1+5Tz2

720c[n]
0 −

5Tz1+16Tz2

720c[n]

0 −
Tz1b+Tz2b

720c[n]
0 −

Tz1b+2Tz2b

720c[n]

 (52)

and

∆k
yy∗

g,22[mn]
=

= bt3I4


13Ty0+3Txb

420
−

22Ty0b+7Txb2

5040

6Ty0+3Txb

560

13Ty0b+6Txb2

5040

−
22Ty0b+7Txb2

5040

8Ty0b2+3Txb3

10080
−

13Ty0b+7Txb2

5040
−

2Ty0b2+Txb3

3360

6Ty0+3Txb

560
−

13Ty0b+7Txb2

5040

13Ty0+10Txb

420

22Ty0b+15Txb2

5040

13Ty0b+6Txb2

5040
−

2Ty0b2+Txb3

3360

22Ty0b+15Txb2

5040

8Ty0b2+5Txb3

10080


(53)

The parameters in the matrices are c[m] = mπ/a, c[n] = nπ/a,

while I4 and I5 are mentioned in Eq. (38).

2.5 Stiffness matrices of a member

The matrices derived in Section 2.3 and 2.4 are eight-by-eight

submatrices of the full local elastic and geometric stiffness ma-

trices of a single strip, ke and kg. Assuming m = 1 . . . q and

n = 1 . . . q, both matrices can be expressed from q2 submatrices,

as follows:

ke =



ke[11] · · · ke[1m] · · · ke[1n] · · · ke[1q]

...
. . .

...

ke[m1] ke[mm] ke[mn] ke[mq]

...
. . .

...

ke[n1] ke[nm] ke[nn] ke[nq]

...
. . .

...

ke[q1] · · · ke[qm] · · · ke[qn] · · · ke[qq]


(54)
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kg =



kg[11] · · · kg[1m] · · · kg[1n] · · · kg[1q]

...
. . .

...

kg[m1] kg[mm] kg[mn] kg[mq]

...
. . .

...

kg[n1] kg[nm] kg[nn] kg[nq]

...
. . .

...

kg[q1] · · · kg[qm] · · · kg[qn] · · · kg[qq]


(55)

The global stiffness matrices of a member consists of multiple

strips can be assembled using ke and kg. The matrices must be

transformed at first from local to global coordinate system, then

the global elastic and geometric stiffness matrices, Ke and Kg,

can be compiled. Transformation of the stiffness matrices of

strip j follows from:

K
(j)
e = Γ(j)T k

(j)
e Γ

( j) (56)

and

K
(j)
g = Γ(j)T k

(j)
g Γ

( j) (57)

where Γ( j) is the 2D rotation matrix. The global stiffness matri-

ces may be assembled as an appropriate summation of the local

stiffness matrices for all the s strips:

Ke =

j=1...s∑
assembly

K
(j)
e (58)

and

Kg =

j=1...s∑
assembly

K
(j)
g (59)

3 Numerical studies

3.1 In general

The numerical studies are completed for two reasons: in or-

der (i) to verify the newly derived stiffness matrices, and (ii)

to show the effect of the different matrix options on the critical

forces. The calculations are performed by a modified version

of the CUFSM software [15], in which the new stiffness matri-

ces are used. These results are compared to results of shell and

beam finite element analysis by ANSYS [16], and to results of

generalized beam theory by GBTUL [17].

Prismatic members are analyzed with a wide range of mem-

ber lengths and various cross-sections: two I-sections, an I-

section with two web-stiffeners and a C-section (see Fig. 2).

Linearly elastic material is used with steel-like material con-

stants: E = 210000 MPa, G = 105000 MPa, ν = 0. It is to note

that the Poisson’s ratio is assumed to be zero for no other reason

than to avoid the artificial stiffening effect of restrained (mid-

plane) transverse extension which takes place in G and D modes

for non-zero Poisson’s ratios, as discussed in detail in [12]. Alto-

gether five combination of end restraints are studied (but not all

of them appears in the results): simple-simple (S-S), clamped-

clamped (C-C), simple-clamped (S-C), clamped-free (C-F) and

clamped-guided (C-G) supports. In case of simple support the

end is free to rotate about the transverse axes and free to warp,

but restrained against transverse translations and rotation about

the longitudinal axes. Clamped end is restrained against trans-

verse translations, rotations about all axes and warping. Guided

end is restrained against rotations about all axes and warping

while free to move in the transverse directions (i.e., perpendic-

ular to the member longitudinal axis). The members are loaded

by two concentrated longitudinal forces (column with compres-

sion) or loaded by two concentrated moments (beam with bend-

ing) at both ends, equal in magnitude but opposite in direction,

which results in a constant compression force or constant bend-

ing moment along the member.

In case of these members various buckling problems were

studied, and elastic critical stresses were calculated. For a

bended member the critical stresses are interpreted on the mid-

line of the top/bottom flange. On the one hand general buckling

modes were assumed: different interactions of global, distor-

tional and local plate buckling. On the other hand the pure buck-

ling modes were studied, including pure global modes (flexural,

torsional and lateral-torsional buckling), pure local plate buck-

ling and pure distortional buckling. In most of the cases only the

first buckling modes were calculated, but for some instance the

higher modes are shown, too.

3.2 Applied numerical models

The FSM results are compared to altogether three different

numerical methods: shell and beam finite element methods by

ANSYS, and generalized beam theory by GBTUL. Fig. 3 shows

the main differences between the different methods.

In case of shell finite element model (Shell FEM) rectangular

four-node shell elements are applied with six degrees of free-

dom on every node (three translational and three rotational),

based on Kirchhoff plate theory (called SHELL63 in ANSYS).

A relatively fine discretization is used with approx. 2000-20000

shell elements (depending on member length). The supports

are applied in the gravity center of the end cross-section, and

the other nodes of the cross-section are linked to this node

with support-specific degrees of freedom: for simple support

the transverse translational and the longitudinal rotational dofs,

while for clamped and guided support all dofs are applied. This

difference of the supports needs difference in the load applica-

tion mode, too. In case of simple support (S) and free end (F)

the forces or moments have been applied as linearly distributed

loads on the lines of end cross-sections so that the resultant

would be equal to a unit compression force or bending moment,

while for clamped (C) and guided (G) supports the loads are

applied on the nodes of the supports as a concentrated force or

moment. To enforce the members to buckle according to desired

modes the shell finite element model have to be constrained,

which is not an obvious process, and depends on the desired
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Fig. 2. The applied cross-sections

Fig. 3. The applied numerical models: FSM, Shell FEM, Beam FEM and GBT
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buckling mode. For pure global buckling the constraining can

be applied in three steps: (i) virtual diaphragms can be used for

all cross-sections in order to exclude cross-section distortions,

(ii) constraints can be applied in order to enforce linear warp-

ing distribution in transverse directions on each plate element,

and (iii) shear panels can be used for each plate element in or-

der to exclude the in-plane shear deformations. To enforce the

member for pure local plate buckling only the shear panels are

used out of above-mentioned constraints, and the corner points

of the cross-sections are supported in both transverse directions.

Finally, there is no simple way to enforce a general shell finite

element model to buckle according to the pure distortional buck-

ling mode, so distortional buckling is not studied by shell FEM.

For the beam finite element model (Beam FEM) three-node

beam elements are used with seven degrees of freedom on every

node (three translational, three rotational and warping), based

on Timoschenko beam theory (called BEAM189 in ANSYS).

A fine meshing is applied with approx. 10-100 beam elements

(depending on member length). The supports and the loads have

been applied on the member end nodes. In case of Beam FEM

only the global, flexural buckling modes can be studied, as the

cross-sections remains rigid with this beam element (even with

the warping dof). To exclude the shear deformations, the shear

modulus have been increased thousandfold.

Generalized beam theory (GBT) has also been used for com-

parison, with the GBTUL software [17]. With this method both

the general (interacted) buckling modes and the pure buckling

modes can be studied.

3.3 Results

In Fig. 4 critical stresses are presented, calculated from a stan-

dard FSM analysis with considering multiple m terms. Though

the actual plot belongs to the C-section (Fig. 2) column mem-

ber, the observed tendencies are generally valid for the majority

of practical problems. It is to observe that only four options

lead to buckling solutions, i.e., in a general FSM analysis the

∗∗n options cannot be used. It is also to observe that the differ-

ences between the four valid options are rather small, and in fact

negligible for a wide range of member lengths. Thus, the gen-

eral conclusion is that any of ∗∗y options lead to practically cor-

rect critical loads if the analyzed problem can be considered to

be a ’standard’ problem, i.e., standard thin-walled cross-section,

standard loading, the length is not extremely small, there are no

special constraints, etc. However, if the analyzed problem is less

usual, the above general conclusions might not be always and

exactly valid, which is also intended to be demonstrated here.

A special version of FSM has recently been proposed, called

constrained Finite Strip Method (cFSM), presented in [4]. cFSM

uses mechanical criteria to enforce or classify deformations to

be consistent with global (G), distortional (D), local (L), and

other (i.e., shear and transverse extension, S+T) deformations.

Since cFSM is implemented in CUFSM, it is possible, and in

fact, easy to perform the buckling analysis in a reduced displace-

ment field, and to have the critical loads specifically to global

buckling (e.g., flexural buckling, torsional buckling, lateral-

torsional buckling, etc), to distortional buckling or to local plate

buckling. Since the enforced mechanical criteria can also be

interpreted as special, unusual restraints, they are worth to in-

vestigate.

In Figs. 5-9 typical critical load vs. buckling length plots are

presented for pure modes, namely: for flexural buckling of a col-

umn (Fig. 5), for pure torsional buckling of a column (Fig. 6),

for lateral-torsional buckling of a beam (Fig. 7), for distortional

buckling of column member (Fig. 8), and for local plate buck-

ling of a column member (Fig. 9). The most important observa-

tions are as follows.

• Unlike in a general FSM buckling analysis, all the eight ver-

sions lead to reasonable results in case of global buckling. In

case of distortional buckling, though all the eight versions can

be solved, only the four ∗∗y versions lead to reasonable criti-

cal loads (while the ∗∗n versions lead to clearly wrong critical

load values for longer buckling lengths). Finally, local buck-

ling can be solved by using the four ∗∗y versions, only.

• In case of global and distortional buckling, there is a distinct

difference depending on how the longitudinal second-order

strain term is assumed (Eq. (25) or (26)): critical loads of

n∗∗ versions go infinitely large as the member length tends to

zero, while critical loads of y∗∗ versions converge to a finite

value as the member length tends to zero.

• When torsion is important in the global buckling, there is a

distinct difference between ∗∗n and ∗∗y versions: ∗∗n critical

loads converge to zero, while ∗∗y critical loads converge to a

finite value as the member length tends to infinity.

Though the differences in between the various reasonable ver-

sions might be small, smaller differences still exist. These dif-

ferences cannot be properly visualized in classical critical load

vs. length plots, but can be examined numerically. In Tabs. 2-

10 critical stress values are summarized, comparing the various

versions to each other in various situations, and for a wide range

of lengths. Tab. 2 shows results for a bended C-section beam

in case of S-S support, considering multiple m terms, including

all buckling mode possibilities. The last row of the table indi-

cates the typical buckling modes. In Tabs. 3 and 4 the first seven

buckling modes of a compressed C-section column and a bended

I-2s section beam are summarized. And finally Tabs. 5-10 are

showing results for pure buckling modes of different members:

flexural buckling of a compressed I-1 section column with S-S

support (Tab. 5) and the same buckling mode of a compressed

I-2 section column with C-G support (Tab. 6) (it is to note, that

GBT results are based on S-S support – which has the same

buckling length as C-G support – by reason of GBTUL software

limitation), torsional buckling of a compressed I-2 section col-

umn with C-C support (Tab. 7), lateral-torsional buckling of a

bended I-2 section beam with S-S support (Tab. 8), distortional
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Fig. 4. Buckling of a compressed C-section column: tendencies

Fig. 5. Flexural buckling of a compressed I-section column: tendencies

Fig. 6. Pure torsional buckling of a compressed I-section column: tendencies

Fig. 7. Lateral-torsional buckling of a bended I-section beam: tendencies
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Fig. 8. Distortional buckling of a compressed C-section column: tendencies

Fig. 9. Local plate buckling of a compressed C-section column: tendencies

Tab. 2. C-section beam, S-S support, all buckling mode possibilities

σcr Length [mm]

[N/mm2] 5 10 50 100 500 1000 5000

FSM nny 252 381 65 840 7 031.7 4 727.7 2 324.8 1 936.4 152.93

FSM nyy 250 251 65 305 6 989.4 4 714.9 2 321.8 1 936.0 152.90

FSM yny 210 472 65 839 7 028.1 4 720.8 2 320.9 1 923.7 152.89

FSM yyy 115 080 50 477 6 904.6 4 694.4 2 317.8 1 923.2 152.86

Shell FEM - 64 776 6 994.2 4 689.4 2 319.6 1 923.2 152.96

GBT - 65 512 6 966.7 4 558.1 2 237.4 1 838.7 148.48

Buckling

mode
L L L L D G G

Tab. 3. C-section column, L = 450 mm, C-C support, critical stress for the first seven modes

σcr Buckling modes

[N/mm2] 1st 2nd 3rd 4th 5th 6th 7th

FSM nny 1 002.3 1 026.7 1 315.4 1 387.2 1 785.1 1 939.9 2 432.5

FSM nyy 1 001.5 1 025.8 1 314.2 1 386.1 1 783.5 1 938.2 2 430.4

FSM yny 1 002.0 1 026.4 1 315.2 1 386.1 1 782.5 1 939.8 2 431.4

FSM yyy 999.5 1 024.0 1 309.8 1 380.7 1 774.4 1 924.7 2 408.1

Shell FEM 996.8 1 019.7 1 309.0 1 380.9 1 775.8 1 933.4 2 424.0

GBT 987.0 1 009.7 1 306.4 1 343.0 1 718.8 1 937.4 2 414.0

Buckling

mode
L L L D+L D+L L D+L

Tab. 4. I-2s section beam, L = 500 mm, S-S support, critical stress for the first seven modes

σcr Buckling modes

[N/mm2] 1st 2nd 3rd 4th 5th 6th 7th

FSM nny 2 364,8 7 307,9 14 501 22 103 23 153 23 801 28 050

FSM nyy 2 362,2 7 300,2 14 484 21 990 22 761 23 399 27 687

FSM yny 2 350,4 7 135,4 13 849 20 970 23 025 23 309 27 005

FSM yyy 2 346,4 7 110,2 13 749 20 602 22 622 22 867 26 026

Shell FEM 2 351.5 7 139.9 13 853 20 941 23 030 23 321 26 886

Buckling

mode
G G G G+L D D G+L
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Tab. 5. I-1 section column, S-S support, critical stress for flexural buckling about minor axes

σcr Length [mm]

[N/mm2] 10 50 100 500 1000 5000 10000

FSM nnn 3.323·107 1 329 287 332 322 13 293 3 323.2 132.93 33.232

FSM nny 3.328·107 1 331 362 332 841 13 314 3 328.4 133.14 33.284

FSM nyn 3.323·107 1 329 287 332 322 13 293 3 323.2 132.93 33.232

FSM nyy 3.328·107 1 331 362 332 841 13 314 3 328.4 133.14 33.284

FSM ynn 208 681 181 350 128 683 12 502 3 271.4 132.84 33.227

FSM yny 209 007 181 633 128 884 12 521 3 276.6 133.05 33.279

FSM yyn 208 358 181 106 128 560 12 500 3 271.4 132.84 33.227

FSM yyy 208 683 181 389 128 761 12 520 3 276.5 133.05 33.279

Shell FEM 209 043 181 648 128 812 12 521 3 276.7 133.18 33.292

Beam

FEM
3.318·107 1 329 719 332 738 13 312 3 328.3 133.14 33.285

GBT 3.328·107 1 331 362 332 841 13 314 3 328.4 133.14 33.284

Tab. 6. I-2 section column, C-G support, critical stress for flexural buckling about minor axes

σcr Length [mm]

[N/mm2] 10 50 100 500 1000 5000 10000

FSM nnn 1 492 284 59 691 14 923 596.91 149.23 5.9691 1.4923

FSM nny 2 017 347 80 694 20 173 806.94 201.73 8.0694 2.0173

FSM nyn 1 492 284 59 691 14 923 596.91 149.23 5.9691 1.4923

FSM nyy 2 017 347 80 694 20 173 806.94 201.73 8.0694 2.0173

FSM ynn 184 094 46 480 13 933 595.22 149.12 5.9690 1.4923

FSM yny 248 867 62 834 18 835 804.65 201.59 8.0692 2.0173

FSM yyn 140 696 43 122 13 615 594.63 149.09 5.9689 1.4923

FSM yyy 190 201 58 294 18 405 803.85 201.54 8.0691 2.0173

Shell FEM - 62 842 18 834 804.70 201.59 8.0703 2.0189

Beam

FEM
2 017 307 80 693 20 174 806.93 201.73 8.0694 2.0172

GBT (S-S

supp.)
2 017 347 80 694 20 173 806.94 201.73 8.0694 2.0174

Tab. 7. I-2 section column, C-C support, critical stress for torsional buckling

σcr Length [mm]

[N/mm2] 10 50 100 500 1000 5000 10000

FSM nnn 1.205·107 482 035 120 509 4 820.4 1 205.1 48.20 12.05

FSM nny 1.348·107 539 798 135 537 6 173.1 2 130.5 836.84 796.41

FSM nyn 1.203·107 481 138 120 285 4 811.4 1 202.8 48.11 12.03

FSM nyy 1.345·107 538 794 135 285 6 161.6 2 126.5 835.28 794.93

FSM ynn 206 403 146 275 76 569 4 712.2 1 198.2 48.19 12.05

FSM yny 230 815 163 803 86 118 6 034.6 2 118.3 836.65 796.37

FSM yyn 184 914 135 077 73 322 4 691.2 1 195.2 48.10 12.03

FSM yyy 206 784 151 263 82 466 6 007.7 2 113.0 835.07 794.88

Shell FEM - 164 100 86 164 6 036.7 2 118.5 836.54 796.38

GBT 1.348·107 539 798 135 537 6 173.1 2 130.5 836.84 796.41
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Tab. 8. I-2 section beam, S-S support, critical stress for lateral-torsional buckling

σcr Length [mm]

[N/mm2] 10 50 100 500 1000 5000 10000

FSM nnn 3 024 900 120 996 30 249 1 210.0 302.49 12.10 3.025

FSM nny 3 719 523 149 195 37 621 1 870.5 678.06 114.37 56.819

FSM nyn 3 023 542 120 942 30 235 1 209.4 302.35 12.09 3.024

FSM nyy 3 717 853 149 128 37 604 1 869.7 677.76 114.31 56.793

FSM ynn 196 367 76 766 26 440 1 203.0 302.05 12.10 3.025

FSM yny 241 460 94 657 32 884 1 859.8 677.09 114.36 56.818

FSM yyn 177 093 73 614 26 049 1 201.7 301.87 12.09 3.023

FSM yyy 217 760 90 770 32 397 1 857.7 676.67 114.31 56.792

Shell FEM - 94 688 32 901 1 860.8 677.49 114.43 56.867

GBT 3 719 523 149 195 37 621 1 870.5 678.06 114.37 56.819

Tab. 9. I-2s section column, S-S support, critical stress for distortional buckling

σcr Length [mm]

[N/mm2] 10 50 100 500 1000 5000 10000

FSM nnn 2 413 168 96 527 24 132 965.3 241.3 10 2

FSM nny 2 841 123 118 757 34 018 6 096.8 9 876.0 161 143 634 802

FSM nyn 2 383 612 95 344 23 836 953.4 238.4 10 2

FSM nyy 2 806 326 117 303 33 602 6 050.1 9 800.4 159 909 629 940

FSM ynn 193 188 66 130 21 644 960.9 241.0 10 2

FSM yny 221 916 81 360 30 512 6 064.3 9 862.8 161 135 634 793

FSM yyn 166 234 62 172 21 031 948.4 238.0 10 2

FSM yyy 195 714 76 491 29 647 6 013.8 9 785.6 159 900 629 931

Tab. 10. C-section column, S-S support, critical stress for local plate buckling

σcr Length [mm]

[N/mm2] 5 10 50 100 500 1000 5000

FSM nny 249 061 62 528 2 878.3 1 119.2 3 632.1 13 294 323 032

FSM nyy 248 856 62 476 2 875.9 1 118.3 3 628.8 13 282 322 739

FSM yny 249 061 62 528 2 878.3 1 119.2 3 632.1 13 294 323 032

FSM yyy 113 978 48 213 2 842.3 1 115.0 3 628.4 13 281 322 739

Shell FEM - 62 381 2 874.8 1 117.8 3 626.8 13 270 -

GBT 251 725 63 975 2 989.0 1 167.1 3 920.0 14 391 350 037
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buckling of a compressed I-2s section column with S-S support

(Tab. 9) and local plate buckling of a compressed C-section col-

umn with S-S support (Tab. 10). These tables are used also to

compare the FSM results to results of other numerical methods,

especially to shell finite element analysis and GBT analysis. The

most important observations are as follows.

• In case of general cross-sections only small differences can

be noticed (except in case of extremely small lengths).

• Shell FEM and FSM results are fairly similar. In case of

global buckling, Shell FEM seems to be yny version. Coinci-

dence of the Shell FEM and FSM results exists independently

of end restraints or loading (i.e., compression or bending).

• Beam FEM results can be calculated just for global flexural

buckling with the mentioned method. Beam FEM seems to

be similar to FSM nny version.

• GBT and FSM results are similar, too. In case of global buck-

ling GBT results practically exactly coincide with FSM nny

version. In case of pure local buckling mode, GBTUL results

are slightly different.

• If the cross-section is unusual, such as I-2, there are non-

negligible differences between the versions, even in case of

flexural buckling (see Tab. 6).

• In case of distortional buckling: the differences in between

the reasonable ∗∗y versions are small, not more than 1% (see

Tab. 9).

• In case of local buckling, the differences in between the valid

(i.e, ∗∗y) versions is small, not more than a few percentage

even if the plates are relatively thick (see Tab. 10).

• The differences are larger for higher buckling modes (see

Tabs. 3 and 4).

It is also to note that various cFSM options are also compared

to analytical results in case of global buckling, as summarized

in [2], and excellent coincidence has been found.

4 Conclusions

In this paper elastic and geometric stiffness matrices for the

semi-analytical finite strip method are derived. Altogether eight

versions are considered and tested by numerical studies. The

results justify the newly derived stiffness matrices as well as

demonstrate the effect of various versions. Based on the results

the general conclusions are as follows:

• In a general case ∗∗y versions can only be used, which means

the through-thickness variation of the strains have to be con-

sidered, otherwise the calculation leads to false critical values.

• It is a question of decision how to consider the second-

order (longitudinal) strain term (i.e. the (∂v/∂y)2 term, as in

Eq. (25) or (26)). Both alternatives are correct and widely

used in practice, but lead to different results in case of short

members.

• It seems to be more logical to use consistent versions (i.e.,

nyy or yyy), where the through-thickness variation of strains-

stresses are both considered.

• Though yny version is theoretically inconsistent (as through-

thickness variation is neglected in external work, but consid-

ered for the strains), it is found that yny version is widely used

in practice, since shell FEM analysis - most probably - uses

this version. In most cases the inaccuracy caused by the in-

consistency of version yny is negligible.
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