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Abstract

Reservoir level modeling is important for the operation of

dam reservoir, design of hydraulic structures, determining pol-

lution in reservoir and the safety of dam. In this study,

daily reservoir levels for Millers Ferry Dam on the Alabama

River in USA were predicted using artificial neural networks

(ANN). Bayesian regularization backpropagation training algo-

rithm is employed for optimization of the network. The results

of the optimal ANN models were compared with conventional

auto-regressive models (AR), auto-regressive moving average

(ARMA), multi-linear regression (MLR) models. The models

are compared with each other according to the three criteria,

namely, mean square errors, mean absolute relative error and

correlation coefficient. The comparison results show that the

ANN models perform better than the conventional models.
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1 Introduction

Reservoir level is a complex index of natural water exchange

within their watersheds. Longterm level fluctuations in natural

(unregulated) lakes and large dam reservoirs also reflect climate

change occurring in the region. Dams are also the most impor-

tant fresh water sources and their construction is very expen-

sive. Reservoir level fluctuations are also important not only in

the planning, designing, and operating the fresh water reservoir

made for any purpose (i.e. domestic, industrial, hydropower,

and irrigation water supply as well as flood control, navigation,

and water quality and quantity improvement) but also in all hy-

draulic structures. Therefore, they must be well planned and op-

erated for the maximum return benefits. Level measurements or

their future equally likely replicas obtained through a estimation

model are a direct way of obtaining lake management decision

variable. Although it is possible to identify sophisticated mod-

els taking into consideration the hydrological and hydro mete-

orological parameters such as the precipitation, runoff, humid-

ity and temperature, it is economically preferred if a model that

simulates the level variations on the basis of past level records

is at the hand of the decision maker whether he/she be adminis-

trator, local authority or a technical operator (Sen et al. [1]).

Reservoir water level forecasting at various time intervals us-

ing the records of past time series is an important issue in wa-

ter resources planning (engineering, etc.). Variations in reser-

voir level are complex outcomes of many environmental factors,

such as precipitations, direct and indirect runoffs from neigh-

bor catchments, evaporation from free water body, air and wa-

ter temperature, and interactions between the reservoir and the

low lying aquifers. Although it is possible to identify sophisti-

cated models taking into consideration the aforementioned pa-

rameters, it is preferable that a model which simulates lake-level

variations based on previously recorded lake levels be available

for research as well as practical purposes.

Recently, the use of artificial intelligence (AI) methods such

as artificial neural networks (ANNs), adaptive neuro-fuzzy has

been accepted as an appropriate tool for modeling complex

nonlinear phenomena in hydrology and water resources sys-

tems, leading to widening of their applications. In this context,
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AI methods have been widely applied. Recent investigations

showed that the ANNs could be successfully used in modeling

water resource variables (e.g., ASCE [2], Kisi [3–5]; Wu and

Chau [6]). A review of all ANN studies in water resources en-

gineering is beyond the scope of this paper and therefore only

some most relevant studies is addressed here. Jain et al. [7]

used ANN for predicting reservoir inflow and operations. Deo

and Naidu [8] applied ANNs method for wave forecasting. More

and Deo [9] used ANNs in wind forecasting. Makarynskyy et al.

[10] used ANN in predicting hourly sea-level variations for the

following 24 h as well as for half-daily, daily, 5-daily, and 10-

daily average sea levels. Ondimu and Murase [11] applied ANN

for forecasting reservoir level. Makarynska and Makarynskyy

[12] used ANN in predictimg hourly sea-level variations with

warning times from 1 to 5 days. Cimen and Kisi [13] used SVM

and ANN models in modeling lake-level fluctuations. Unes [14]

used ANN model for predicting reservoir level fluctation. Unes

[15] predicted plunging depth of density flow in dam reservoir

using the ANN technique.

The present study investigates the abilities of ANN and con-

ventional auto-regressive (AR), autoregressive moving average

(ARMA), multi-linear regression (MLR) techniques to forecast

daily reservoir levels in different lag time steps. The subsequent

parts of this paper are organized as follows; the second section

deals with describing the used dataset as well as the applied

ANN technique. The third part describes the applied statisti-

cal measures for model analysis, followed by the fourth section

including results and discussions. Finally, the last section gives

the concluding remarks of the present study.

2 Materials and methods

2.1 Case study

In this study, daily time-series data of reservoir level records

of Millers Ferry Dam station (Station No. 02427505, Latitude

32°06’02”, longitude 87°23’57” operated by the US Geological

Survey, USGS) on Alabama River at the California in USA were

used (Fig. 1). The drainage area at this site is 20.637 mi2 (square

miles). The gauging station datum is 40 m above sea level. For

this station, daily time series of lake levels were downloaded

from the web server of the USGS.

The Alabama River which is 318-mile long originates north

of Montgomery from the confluence of the Coosa River and the

Tallapoosa River near the Fall Line. The Fall Line is the bound-

ary between the East Gulf Coastal Plain and provinces of the

Appalachian Highlands Region. As with most of the great rivers

of Alabama, dams slow the progress of the Alabama River as

it flows to meet the Tombigbee River and it forms the Mobile

River.

All of the Alabama River is commercially navigable. The Al-

abama Scenic River Trail is a 631-mile boating trail from Weiss

Lake down the Coosa River into the Alabama River.

Data sample consists of 6 years (from 1 October 2006 to

19 December 2012) of daily reservoir level records. For each

model, the first 1461 daily levels data were used for training,

the remaining 811 daily levels data were used for testing. Ta-

ble 1 represents the statistical parameters of used data during

the study period.

2.2 Artificial Neural Networks (ANNs)

The ANN models are derived from the parallel information

architectures found in the brain neuron systems. Rumelhart et al.

[16] developed a theoretical framework for neural network. One

specific advantage of an ANN compared to traditional methods

is that it is not dependent on the complexity or the phenomenon

structure. Hence, ANN can be used to solve complex non-linear

problems. The complex non-linear problems have a lot of dif-

ferent input parameters and varying scale and boundary condi-

tions. In the executing of an ANN, the observed data set are di-

vided into two groups as the training and testing data. Multilayer

perceptrons (MLP) are feed-forward networks with one hidden

layer and back-propagation algorithm (BPA) (see Fig. 2). The

inputs used in this study are daily reservoir levels and reservoir

level recorded at lag time (Lt−1. . . Lt−5.). The output indicates the

monthly reservoir level at time Lt. Wi j are associated weights;

and B is the bias terms. MLP can occur on more than one hid-

den layer, although theoretical works have shown that a single

hidden layer is sufficient for an ANN to approximate any com-

plex nonlinear function (Kisi [17], Cybenco [18], Hornik et al.

[19]). Since selection of an appropriate number of hidden layer

nodes is important to obtain better network performance, after

many trials, the most appropriate hidden layer was selected. A

large number of hidden nodes may cause over fitting and is com-

putationally unattractive. In contrast, a small number may be

inadequate to learn the input-output relationship (Eberhart and

Dobbins [20]). The first stage in the procedure is feed-forward

phase, where the input values are associated through weights

with the hidden layer. The subsequent stage is back-propagation

phase, which adjust weights based on difference between the

prediction and observation.

Bayesian regularization technique is used in the training of

the MLPs. The technique updates the weights and bias val-

ues according to Levenberg-Marquardt optimization. It mini-

mizes a combination of squared errors and weights, and then

determines the correct combination so as to produce a network

that generalizes well. This Bayesian regularization takes place

within the Levenberg-Marquardt algorithm. Detailed informa-

tion about the Bayesian regularization technique and Levenberg-

Marquardt algorithm are available in the literature [3,17,20–23].

Further details about ANNs can be found in Bishop [24] or

Haykin [25].

2.3 Autoregressive Moving Average (ARMA) Models

ARMA[p, q] (autoregressive moving average) models (Box

and Jenkins [26]) use a weighted linear combination of previous
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Fig. 1. a) Millers Ferry Dam map b) Location of Millers Ferry Dam in USA

Tab. 1. Statistical parameters of applied data set during the study period.

Period
Number of Statistical parameters of recorded data

patterns Xmax Xmin Xmean S x Csx

Training 1461 24.6 23.5 24.3 0.247 -1.472

Testing 811 24.6 23.8 24.3 0.126 -0.937

Xmean Xmax, Xmin, S X , CV and CSX denote the mean, maximum,

minimum, standard deviation and skewness coefficient, respectively.

Fig. 2. Artificial neural network structure used in this study
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values and shocks which can be written as:

yt = ϕ1yt−1+ϕ2yt−2 . . .+ϕt−pyt−p+. . . .+at+θ1at−1+θ2at−2 . . .+θt−pat−p

(1)

where yt is the predicted value, ai’s are the residuals, and ϕi’s

and θi’s are the weights associated with each previous obser-

vation and shock respectively. The [p, q] notation indicates

the number of autoregressive and moving average terms in the

model. The Box-Jenkins method, provides a systematic itera-

tive approach to determine the optimal number of terms and sets

varying weights until an optimal weight set is discovered. Stan-

dard ARMA models were fitted to the reservoir level data using

software developed and supplied with Masters’ textbook on time

series prediction (Masters [27]) In this paper, models ARMA(1,

1). . . ARMA(5,5) have been applied to reservoir level data by

using MATLAB.

2.4 Autoregressive (AR) Models

The autoregressive (AR) model of an order p can be written

as AR(p) and is defined as

yt = ϕ1yt−1 + ϕ2yt−2 . . . + ϕt−pyt−p + zt (2)

where zt is a purely random process; and E(zt) = 0, Var(zt) =

σ2
z . The parameters ϕ1. ,. . . , ϕp are called the AR coeffi-

cients. The name “autoregressive” comes from the fact that

Xt is regressed on the its past values. In this paper, models

AR(1). . . AR(3) have been applied to reservoir level data by us-

ing MATLAB. The Yule-Walker equation was used to estimate

AR coefficients.

2.5 Multi-Linear Regression (MLR) Model

MLR is used to model the linear relationship between a de-

pendent variable and one or more independent variables. It is

also used to (understand which among the independent vari-

ables are related to the dependent variable, and to) determine

the forms of these relationships. The MLR method is generally

based on least squares: the model is fit such that the sum-of-

squares of differences of actual and forecasted values is mini-

mized. In this model, the values of the independent variable x is

associated with the values of the dependent variable y. Although

dam reservoir density flow problems are a nonlinear problem,

statistical MLR model is developed to compare the other mod-

els. If there are m independent variables and one dependent

variable, the multi-linear regression equation can be generally

obtained as,

y = a + b1x1 + b2x2 + ... + bmxm + e (3)

Where y is a linear combination of the parameters, bm’s are the

constants of regression equation, e refers the residual term, and

the subscript i indexes a particular observation. The training and

testing data groups used for the models are also used for MLR

models. For each model, mean square error (MSE) and mean

absolute error (MAE) are computed as follows

MS E =
1

N

N∑
i=1

(
Yiobserved − Yi f orecast

)2
(4)

MAE =
1

N

N∑
i=1

∣∣∣Yiobserved − Yi f orecast

∣∣∣ (5)

Where, N and Yi denote the number of data sets and dam reser-

voir level, respectively.

3 Application and Results

The present study aims to forecasting of reservoir level fluc-

tuations by ANN, MLR, AR and ARMA models. Several input

combinations are constructed to forecast reservoir levels based

on partial autocorrelation function analysis (see Fig. 3). Lt rep-

resents the daily lake levels at the time t. The input combi-

nations present the previously recorded daily lake levels (Lt−5,

Lt−4, Lt−3, Lt−2, and Lt−1).

The correlation analysis is employed for selecting appropri-

ate input vectors. The autocorrelation (AC) and partial autocor-

relation (PAC) statistics and the corresponding 95% confidence

bands from lag 0 to lag 14 are estimated for the daily reservoir

level time series ( Fig. 3).

The AC function describes the correlation between all the

pairs of points in the reservoir level time series. As it can be

seen from Fig. 3 that the lake-level values are moderately auto

correlated. The slower water exchange in reservoir leads to in-

ertia of the water levels. This produces a low frequency oscil-

lation component. A PAC refers the AC of a series with itself

under stationary conditions, while controlling for the interven-

ing lags’ effect. The precise AC of a series with itself without

the confounding effects of intervening lagged AC is showed by

PAC (Mutlu et al. 2008). The PAC function indicates significant

correlation up to lag 5 and, thereafter, fell within the confidence

limits. The rapid decaying pattern of the PAC confirms the dom-

inance of the autoregressive process, relative to the moving av-

erage process. The PAC coefficients suggest the incorporation

of lake- level values up to 5 days lag in input vector to the used

models (Fig. 3). Considering the correlation analyses and multi

linear regression (MLR) model was used to evaluate the degree

of effect of each variable and to select the most effective input

vectors. The following combinations of input data were evalu-

ated: (i) Lt−1, (ii) Lt−3, Lt−2, and Lt−1 (iii) Lt−5, Lt−4, Lt−3, Lt−2,

and Lt−1. In all cases, the output layer has only one neuron, the

reservoir level Lt for the current day.

3.1 Prediction of reservoir level fluctuations of the Millers

Dam

It is clear from Table 1 that the data show high skewness co-

efficient; that is far to normal distribution. The difference in

statistical properties of the training, and testing data is infinites-

imal and can be considered insignificant. Nevertheless, accord-

ing to the partial autocorrelation function, the 5 lag times have
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Fig. 3. Autocorrelation and partial autocorrelation functions of daily reservoir levels

significant influence on predicting level for the following time

step (Lt−1), so it seems that up to 5 reservoir levels are necessary

for task on hands. MSE and MAE values of MLR model for

various lead times during the test period are shown in Table 2.

Using Lt−1 as the only input variable resulted in less accurate

simulations with MSE = 0.0068 m and MAE = 0.0602 m, while

the input combination Lt−5, Lt−3, and Lt−1 gives the best results

with MSE = 0.0060 m and MAE = 0.0567 m compared to others.

Thus, the MLR application indicates that introducing reservoir

water levels up to Lt−5 significantly increases the modeling ac-

curacy, while adding more variables does not noticeably affect

the prediction accuracy.

The backpropagation neural network described in the preced-

ing section was implemented in MATLAB code for predicting

reservoir levels using the previously recorded daily reservoir

level values. In all MLP models, simulations during the train-

ing and testing stages, after trying various MLP structure, a net-

work structure is taken with one hidden layer having different

nodes and one output neuron. The number of hidden layer nodes

of each ANN model has been determined iteratively. Different

number of input combinations is performed for real observed

data sets to find out how well the models perform. The ANN

network’s training was stopped after 1000 epochs. The testing

statistics of ANN models in term of R, MAE and MSE are also

presented in Table 2.

The ANN model whose inputs are the current reservoir level

as well as five previous reservoir levels (five-input ANNs) pro-

duces the best results among other input combinations.

Table 2 represents the ANN, ARMA, AR and MLR results

of daily dam reservoir level forecasts with various input combi-

nation for the testing periods. In the present study, each input

combination was applied for introducing the models to produce

good predictions. The table clearly shows that the ANN model

using Bayesian regularization technique while the input combi-

nation Lt 5, Lt 3, and Lt 1 (as shown ANN5 on the table) gives

the best results.

Fig. 4 displays the observed and simulated reservoir level val-

ues for Lt−1 input combination produced by the optimal ANN,

ARMA, AR and MLR models during the testing period. ANN

model performs better than the other models in terms of the R,

MSE and MAE statistics, in the test period. Fig. 4 shows that the

ANN1 model has less scattered predictions than the other mod-

els and provided the highest R coefficient (0.887) for the Lt−1 in-

put combination. The overall evaluation of the other three meth-

ods reveals that the ARMA, AR and MLR models give similar

accuracy. The similar accuracy of the ARMA and AR models

can be clearly seen from the Fig. 4 and Table 2.

Having selected the optimal input combination ANN3, the

ARMA, AR, ANN and MLR models were applied to forecast

dam reservoir levels (see Table 2). Fig. 5 displays the observed

and simulated reservoir level values for Lt−3, Lt−2 and Lt−1input

combination produced by the optimal ARMA, AR, ANN and

MLR models during the test periods. The overall evaluation of

the all methods reveals that ANN model performs better than

the other models. The test results also indicate that increasing

input combination leads to little increase in the model accuracy.

The R increases from 0.887 to 0.893 for the ANN, from 0.792

to 0.800 for the other models (Fig. 5).

AR and ARMA models are experimented in this study and

the application of the AR(3) and ARMA(5,5) models provided

similar low R coefficient (0.792-0.799) for the test period. The

model predictions for the test period are compared with the ob-

served reservoir levels in the scatter plots. Such scatter graphs

are given for AR(1), AR(1), AR(3), ARMA(1,1), ARMA(3,3)

and ARMA(5,5) models in Figs. 4, 5 and 6, respectively. It can

be seen from these scatter plots of autoregressive models pro-

vide a low agreement between observation and prediction reser-

voir levels. However, AR and ARMA models has the smallest

R coefficient (0.792-0.799) compared to ANN and MLR results

of the second and third input combination.

The predictions of different input combinations for 1-day

ahead show that the model accuracy increases with different in-

put combinations. Fig. 6 provides the scatter plots of the ob-

served and simulated dam reservoir levels during the ANN5 test

periods. As seen from Table 2, ANN5 model has the smallest

MSE (0.0032 m), MAE (0.0415 m) and the highest R (0.893)

for five-input combination during the test period. According to

the entire model results, ANN singles out as having very small

MSE, MAE and high R values for the same input combination.
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Fig. 4. Observed and predicted reservoir levels for Millers Dam in the test period a) ANN1, b) MLR1 , c) AR(1) and d) ARMA(1,1)
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Fig. 5. Observed and predicted reservoir levels for Millers Dam in the test period a) ANN3, b) MLR3 , c) AR3 and d) ARMA(3,3)
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Fig. 6. Observed and predicted reservoir levels for Millers Dam in the test period a) ANN5, b) MLR5 , c) AR(5) and d) ARMA(5,5)
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Tab. 2. Comparison of different models with MSE, MAE and R for testing period

Models Input combination MSE (m) MAE (m) R

ANN1 Lt−1 0.0034 0.0425 0.887

ANN3 Lt−3, Lt−2, and Lt−1 0.0033 0.0418 0.891

ANN5
Lt−5, Lt−4, Lt−3,

Lt−2, and Lt−1

0.0032 0.0415 0.893

MLR1 Lt−1 0.0068 0.0602 0.792

MLR3 Lt−3, Lt−2, and Lt−1 0.0061 0.0564 0.797

MLR5
Lt−5, Lt−4, Lt−3,

Lt−2, and Lt−1

0.0060 0.0567 0.800

AR(1) Lt−1 0.0069 0.0602 0.792

AR((1)) Lt−3, Lt−2, and Lt−1 0.0063 0.0573 0.796

AR((3))
Lt−5, Lt−4, Lt−3,

Lt−2, and Lt−1

0.0060 0.0564 0.799

ARMA(1-1) Lt−1 0.0066 0.0587 0.792

ARMA(3-3) Lt−3, Lt−2, and Lt−1 0.0061 0.0565 0.798

ARMA(5-5)
Lt−5, Lt−4, Lt−3,

Lt−2, and Lt−1

0.0060 0.0566 0.799

4 Conclusions

Predicting dam reservoir level fluctuations is of importance

for planning and constructing lake coastal structures and other

industrial operations as well as water resources integrated man-

agement. In the present study, dam reservoir level observations

from the Millers Ferry Dam in USA were forecasted by using

ANN, MLR, AR, and ARMA models. The following points can

be drawn from the study.

The presented ANN model provides better estimates of the

reservoir level fluctuations than the conventional models.

The multi-linear regression model did not reach the desired

accuracy in the problem and it can not provide a good prediction

for reservoir levels.

Autoregressive and autoregressive moving average models

provide more scattered results compared with the ANNs for all

input combination. It is possible to state that a neural network

solution can provide a tighter fit to the observed data.

The ANN correctly adapts to the changing input conditions,

such as water demand policy changes in the reservoir operation.

The advantages of the ANNs over conventional methods in the

prediction of reservoir levels can be explained by saying that

ANN structure includes the non-linear dynamics of the problem

in the whole data set.

The results presented here showed the capability of the ap-

plied models for learning the nonlinear behavior of reservoir

level variations in terms of R, MSE, and MAE.

When an ANN model is developed for a specific region, the

model can be quite helpful in the water resources management

studies. The monthly reservoir level estimations can be quite

informative for the determination of the periodic water supply

strategies, the hydroelectric energy computations and the flood

management studies. Finally, these results show that ANN is a

useful alternative method for dam reservoir level prediction.

ANN method was used in this study for predicting dam reser-

voir level fluctuations. Some other nonlinear methods such as

fuzzy logic, genetic programming etc can also be used and com-

pared with ARMA and MLR methods in the future studies.
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