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Abstract

Size and shape optimization of truss structures with natu-

ral frequency constraints is inherently nonlinear dynamic op-

timization problem with several local optima. Therefore the

optimization method should be sagacious enough to avoid be-

ing trapped in local optima and in this way to reduce pre-

mature convergence. To address this problem, we develop a

Chaotic Biogeography-Based Optimization (CBBO) algorithm

which combines the chaos theory and the biogeography-based

optimization (BBO) to achieve an efficient optimization method.

In this method, new chaotic migration and mutation operators

are proposed to enhance the exploration ability of BBO. The per-

formance of the method is demonstrated through five benchmark

design examples with size and shape variables associated by

multiply frequency constraints. The results show the efficiency

and robustness of proposed method and in most cases, CBBO

finds a relatively lighter structural weight than those previously

reported results in the literature.
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1 Introduction

With increasing the desire to minimize constructional costs

of the structures and reducing the amount of material usage, op-

timal design of structures is gaining much attention. This pa-

per addresses the optimal design of truss structures with natural

frequency constraints, which has important applications in the

dynamic response analyses.

In fact, in most of the low frequency vibration problems, the

response of the structure to dynamic excitation is primarily a

function of its fundamental frequency and mode shapes [1]. In

some cases, a certain excitation frequency may cause resonance

phenomenon. In such cases, the ability to manipulate the se-

lected frequency can significantly improve the performance of

the structure. Thus, the control of natural frequencies of the

structure plays an important role to keep the structural behavior

desirable.

Structural optimization with multiply frequency constraints

is a highly nonlinear problem with respect to the design vari-

ables associated by non-convex solution space and multiple lo-

cal minima which makes finding the global optimum a challeng-

ing problem. The main objective of this optimization is to min-

imize the weight of a structure, while satisfying the natural fre-

quency constraints.

Over the past decades, many optimization algorithms have

been developed for structural optimization problems with fre-

quency constraints. The early works on the topics mostly use

various classical techniques, such as Mathematical Program-

ming (MP) and Optimality criteria (OC) methods, to size op-

timization of truss structures with frequency constraints. For

example, Grandhi and Venkaya [2] used an optimality criterion

method based on uniform Lagrangian density for resizing and a

scaling procedure to locate the constraint boundary. Sedaghati

et al. [3] employed the integrated force method to sizing both

truss and beam structures under single and multiply frequency

constraints.

On the other hand, the structure response is much more sen-

sitive with respect to joint positions variation, and more effec-

tive designs can be generated by optimizing both shape and size

parameters [4]. However, the complexity of the optimization
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problem is increases by simultaneous consideration of size and

shape variables. This complexity arises from different physical

representation of these variables and, sometimes their changes

are of widely different orders of magnitude. During the last

two decades a number of researches have utilized classical op-

timization techniques. For instance, Wang et al. [5] proposed

an optimality criteria algorithm for combined sizing-layout op-

timization of three-dimensional truss structure. In this method,

the sensitivity analysis helps to determine the search direction

and the optimal solution is achieved gradually from an infea-

sible starting point with a minimum weight increment, and the

structural weight is indirectly minimized.

Generally, the above-mentioned classical optimization tech-

niques have several drawbacks, such as computational com-

plexity, dependence on good starting point and premature con-

vergence. As an alternative to the classical optimization ap-

proaches, meta-heuristic optimization techniques have been

widely utilized and improved to solve engineering optimiza-

tion problems characterized by non-convex, dis-continuous and

non-differentiable. Meta-heuristic algorithms, such as Genetic

Algorithm [6], Particle Swarm Optimizer [7], Charged System

Search [8] and Big Bang-Big Crunch [9] algorithm are devel-

oped by the simulation of the natural processes trying to solve

complex optimization problems in a stochastic manner, where

other optimization methods have failed to be effective.

Genetic Algorithm (GA) developed by Goldberg [6], inspired

from human evolution principles, such as inheritance, mutation,

selection, and crossover. Lingyun et al. [10] introduced hybrid

Niche Hybrid Genetic Algorithm (NHGA) to shape and size op-

timization of truss structures with frequency constraints. In this

method, the exploitation capacities of GA are enhanced while

the diversity of population is maintained. In addition, the sim-

plex search is used as a local search operator.

Particle Swarm Optimizer (PSO) originally developed by

Kennedy and Eberhart [7] is inspired by social behavior of bird

flocking or fish schooling. Gomes [11] utilized standard PSO to

optimization of truss structures with dynamic constraints. Re-

cently, Kaveh and Zolghadr [12] introduced democratic parti-

cle swarm optimization (DPSO) to mass minimization of trusses

with frequency constraints. In this method, the exploration ca-

pability of standard PSO is improved by using the information

produced by all of the eligible members of the swarm. As the

name suggests, in the DPSO algorithm all of the better particles

and some of the worse particles affect the new position of the

particle under consideration.

Kaveh and Zolghadr [13] proposed a hybridized Charged

System Search and Big Bang-Big Crunch algorithm (CSS-

BBBC) with trap recognition capability for weight optimization

of trusses on layout and size. This hybrid algorithm, improved

the diversification properties of the standard CSS and uses BB-

BC algorithm to maintain an extra disturbance and to help the

agents to leave the trap. Charged System Search (CSS) algo-

rithm developed by Kaveh and Talatahari [8] is one of the most

recent optimization algorithms. The method utilizes the govern-

ing Coulomb law from electrostatics and the Newtonian laws

of mechanics to simulate the charged particles, which can af-

fect each other based on their fitness values and their separation

distances [8]. In addition, the Big Bang-Big Crunch (BB-BC)

algorithm was developed by Erol and Eksin [9]. It is based on

the theory of the evolution of the universe; namely, the Big Bang

and Big Crunch theory. The BB-BC consists of two phase: Big-

bang phase and Big-crunch phase. In the Big Bang phase, en-

ergy dissipation produces disorder and randomness is the main

feature of this phase; whereas, in the Big Crunch phase, ran-

domly distributed particles are drawn into an order [9].

Recently, a new population-based meta-heuristic algorithm

based on the biogeography theory, namely Biogeography-Based

Optimization (BBO), is introduced by Simon [14]. The biogeog-

raphy theory, describes the geographical distribution of biologi-

cal organisms. The framework of BBO inspired from mathemat-

ical models of biogeography which is developed by MacArthur

and Wilson [15]. These mathematical models state that how

species migrate between the islands (habitats) [14]. BBO is a

successful heuristic search technique that has been successfully

applied to global optimization of numerical functions [16, 17]

and were used to solve numerous real-world optimization prob-

lems [14, 18, 19]. However, despite having a good exploitation

ability, the standard BBO has the problem of premature conver-

gence The main reason of poor exploration ability of standard

BBO arises from it is migration operator. In the consecutive

generations, the poor solutions are probabilistically updated by

the migration operator, which shares the information of good so-

lutions. After several generations, the current solutions finally

converge to the same local optimum and the migration operator

shares similar information among solutions. Although this simi-

lar information sharing leads to good exploitation capability, but

it considerably decreases the exploration ability of BBO. In ad-

dition, the simple stochastic mutation operator of BBO may lead

to revisiting non-productive regions of the search space.

As a kind of characteristic of non-linear systems, chaos is a

bounded unstable dynamic behavior that exhibits sensitive de-

pendence on initial conditions and includes infinite unstable

periodic motions [2]. Chaos is a deterministic process with

stochastic appearance exhibited by a deterministic nonlinear

system. Due to the non-repetition of chaos, it can carry out over-

all searches at higher speeds than stochastic ergodic searches

that depend on probabilities [21]. Chaotic sequences are very

sensitive to the initial conditions and two quite different se-

quences can be generated by the two very close initial param-

eters. Recently, many researchers have used the idea of employ-

ing chaotic sequences during the optimization process of meta-

heuristics instead of random sequences, such as chaotic particle

swarm optimization (CPSO) [22, 23], chaotic differential evolu-

tion (CDE) [24] and chaotic harmony search (CHS) [25]. The

choice of chaotic sequences is justified theoretically by their un-

predictability, i.e., by their spread-spectrum characteristic and
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ergodic properties [25].

In the present study, the BBO is combined with the chaos

theory to obtain a new optimization method called the Chaotic

Biogeography-Based Optimization (CBBO) to size and shape

optimization of truss structures with frequency constraints. In

order to accelerate the convergence speed, two operators based

on Chaos theory are developed, namely chaotic migration and

mutation operators. The proposed migration operator employs

logistic map function and a selection strategy for efficient in-

formation sharing between the habitats. Through this migration

scheme, the exploration ability of the algorithm is increased and

CBBO can quickly and accurately find an near-optimum solu-

tion. In addition, based on the ergodicity, symmetry and stochas-

tic property of the improved logistic map function, we develop

new mutation operator to increase the population diversity. A set

of five well-known design examples are considered to validate

the efficiency of the proposed method. The simulation results

validate the superiority of the new method in obtaining optimal

designs as compared with other methods.

The rest of the paper is organized as follows. Section 2 pro-

vides a mathematical description of the optimum design prob-

lem. In Section 3 the simple BBO and chaotic sequences are

briefly described and then the proposed CBBO algorithm are

presented and explained in detail. Five optimal design examples

illustrating the efficiency of the proposed algorithm are covered

in the Section 4. Finally, conclusions are presented in Section 5

2 Mathematical description of the optimum design

problem

The main aim of layout and size optimization of a truss struc-

ture is to minimize the weight of the structure while satisfying

some constraints on natural frequencies. In this class of opti-

mization problems, cross-sectional areas and nodal coordinates

are taken as design variables. The optimal design of a truss

structure can be formulated as:

Find X = [x1, x2, . . . , xn]

To minimize W(X) =

m∑
i=1

ρiAiLi

(1)

Subjected to:

g (X) =
ω j

ω∗
j

− 1 ≥ 0, for some natural frequencies j

h (X) = ωk

ω∗
k

− 1 ≤ 0, for some natural frequencies k

xmin
i
≤ xi ≤ xmax

i
,

Where X is the vector containing the design variables, includ-

ing both nodal coordinates and cross-sectional areas; n is the

number of design variables; W(X) is the weight of the structure;

m is the number of members making up the structure; ρi is the

density of member i; Ai is the cross-sectional area of the member

i; Li is the length of the member i; g (X) and h (X) are the con-

straint violations for natural frequencies of the structure; ω j and

ω∗
j
are the jth natural frequency of the structure and correspond-

ing lower limit, respectively; ωk is the kth natural frequency of

the structure and ω∗
k

is its upper bound; xmin
i

and xmax
i

are the

lower and upper bounds of the ith design variable, respectively.

Optimal design of truss structure should satisfy the above

mentioned constraints. In this study, the constraints are handled

by using a simple penalty function method, which can guide the

unfeasible candidate solutions to move to the feasible regions of

search space. Thus we define the fitness function for each solu-

tion candidates. The fitness function of solution candidate X is

defined as follow:

F f itness = W (X) × fpenalty (2)

fpenalty = (1 + ε1.ϕ)ε2 , ϕ =
q∑

i=1

ϕi (3)

Where fpenalty, is the penalty function represented by individ-

ual X, q is the number of constraint violation and ϕ is the penalty

factor which is related to the violation of constraints. In order

to obtain the values of ϕi the natural frequencies of the struc-

ture are compared to the corresponding upper or lower bounds.

For example for jth frequency constraint, the penalty factor is

calculated as follow: ϕ j =

∣∣∣∣∣ω∗j−ω j

ω∗
j

∣∣∣∣∣ for ω j < ω
∗
j

ϕ j = 0 for ω j ≥ ω
∗
j

(4)

As it can be seen from Eq. (2), if the constraints are not vio-

lated, the value of the penalty function will be zero. In Eq. (3),

the parameters ε1 and ε2 are selected considering the exploration

and the exploitation rate of the search space. In this study ε1 is

taken as unity and ε2 starts from 2 and gradually increases. The

value of ε2 for tth iteration is calculated as follow:

ε(t)

2
= ε(t−1)

2
+ 10−3t (5)

3 Optimization method

3.1 Biogeography-based optimization (BBO)

BBO is a simple and efficient optimization algorithm orig-

inally proposed and shown effective for finding global optima

for some optimization problems by Simon [14]. In fact, BBO is

a population-based meta-heuristic algorithm motivated by mi-

gration behavior of species between the habitats, in which each

habitat is a solution candidate for the optimization problem. In

BBO, the position of each habitat H in an n-dimensional search

space is represented by suitability index variables (SIVs), which

is an n-dimensional vector The fitness value of each habitat is

demonstrated by Habitat Suitability Index (HSI).

Habitats with a high HSI tend to have a large number of

species, while those with a low HSI have a small number of

species [14]. The two main operators of this algorithm are Mi-

gration and Mutation operators
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In the BBO approach, the emigration and immigration pro-

cess is done by migration operator between good and poor habi-

tats to share information about the appropriate habitats which

are possible solutions for optimization problem. This informa-

tion sharing depends on the immigration rate λ and emigration

rate µ of each habitat, which are functions of the number of

species in the habitat. These can be calculated by Eq. (6) and

Eq. (7), as follows [14]:

λk = I

(
1 −

K

S max

)
(6)

µk = E

(
K

S max

)
(7)

Where I is the maximum possible immigration rate; E is the

maximum possible emigration rate; K is the number of species

of the kth habitat and S max is the maximum number of species.

Fig. 1 illustrates a linear migration model for the case of E = I.

As it can be seen from Fig. 1, the habitat which has few species

(poor solution, low HSI) like S 1 has a low emigration rate and

a high immigration rate. This means that, the habitat with low

HSI have a greater chance to take information about the good

habitats. On the other hand, the habitat which has more species

(good solution, high HSI) like S 2 has a low immigration rate

and a high emigration rate. In this way, the habitat with high

HSI tends to share its good information among the habitats. In

addition, the habitat with medium HSI, like point S 0, both im-

migration and emigration rates are equal, in which the probabil-

ity of taking or giving information from or to other habitats is

equal. The point S 0 is the equilibrium number of species. The

migration operator can be described as follow:

Hi(S IV)←− H j(S IV) (8)

Where Hi and H j are the immigrating and emigrating habi-

tats, respectively. These habitats, is the probabilistically selected

habitats based on the immigration and emigration rates. Fig. 2

depicts the migration producer of BBO algorithm.

After migration operator, BBO utilizes the mutation operator

to increase the population diversity. The mutation operator is

a probabilistic operator that modifies a habitat’s SIV randomly

based on mutation rate pMutate that is related to the habitat

probability. The mutation rate pMutate is calculated as follows:

pMutate = mmax

(
1 − Pi

Pmax

)
(9)

Where mmax is a user-defined parameter and Pmax = max{Pi}.

The complete details for the calculation of Pmax and Pi can be

found in [14]. According Eq. (9), each habitat has a different

chance to mutate, but in this paper the same mutation probability

are considered for all habitats. The mutation operator of BBO

algorithm can be described as Fig. 3.

Another feature of BBO is that some habitats with high HSI

(elites) selected by the parameter of KeepRate to keep elites

from one generation to the next. It means that, the new habi-

tats of current iteration combined with some elites from prior

iteration. After combining habitats, habitats with high HSI are

selected to the formation of new population. In this study, the

value of parameter KeepRate is set to 0.1 for all numerical ex-

amples. For example, when the number of habitats is 50, five

habitats with high HSI are selected to keep.

3.2 Chaotic sequence

Chaos is a deterministic process with stochastic appearance

exhibited by a deterministic nonlinear system in which small

changes in the parameters or the starting values for the data lead

to different future behaviors, such as stable fixed points, periodic

oscillations, bifurcations, and ergodicity [26]. Recently, chaotic

sequences are used in place of random sequences during the op-

timization process. There are various one-dimensional chaotic

maps to generate chaotic sequences such as Logistic map, Kent

map, Bernoulli shift map, Sine map and Circle map. Logistic

map is one of the most used chaotic maps in literature. It has

been brought to the attention of researchers by May [27] which

often cited as an example of how complex behavior can arise

from simple dynamic systems. The simple Logistic chaotic map

is described as follows:

yt+1 = βyt (1 − yt) , t = 1, 2, . . . ; y0 ∈ (0, 1) (10)

Where β is the control parameter, yt is a chaotic variable in

iteration t It can be mathematically prove that the system with

initial condition y0 < (0, 0.25, 0.5, 0.75), is entirely in chaotic

status when β = 4 Fig. 4 shows the ergodic property and the

probability distribution of the Logistic map function considering

the initial value of y0 = 0.35 and 3000 iterations. By setting

yt = (zt + 1) / 2 in Eq. (8), the improved chaotic logistic map

with symmetrical region (−1, 1) is expressed as Eq. (9) [28]:

zt+1 = 1 − 2z2
t , t = 1, 2, ...; ztε(−1, 1) (11)

Fig. 5 shows the ergodic property and the probability distribu-

tion of the improved logistic map function considering the initial

value of z0 = 0.35 and 3000 iterations.

3.3 Chaotic biogeography-based optimization (CBBO)

As mentioned before, the basic BBO, which has been widely

used to solve various scientific and engineering optimization

problems, employs simple migration and mutation operators.

However, such simple operators may lead to some disadvantages

such as a low exploration ability and premature convergence. In

Eq. (8), the immigrating habitat updated by simply replacing one

of the SIV of emigrating habitat randomly, which often implies

a rapid loss of diversity in the population. On the other hand,

the purely random mutation operator of BBO may lead to revis-

iting non-productive regions of the search space which lead to

long computing time. To cope with these disadvantages of BBO,
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Fig. 1. The simple linear migration model. Emigration and immigration rates for case E = I.

Fig. 2. The migration operator of BBO.
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Fig. 3. The mutation operator of BBO.

Fig. 4. The ergodic property and the probability distribution of the logistic map function with the initial value of y0 = 0.35 and 3000 iterations.
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Fig. 5. The ergodic property and the probability distribution of the improved logistic map function with the initial value of z0 = 0.35 and 3000 iterations.

A Chaotic Biogeography-Based optimization (CBBO) based on

new chaotic migration and mutation operators is proposed

During the information sharing process of the migration op-

erator, some habitats may be trapped into local optimum and it

is necessary to exchange the solution space information among

the whole population, efficiently Thus, the migration operator

should provide a variety of information about the population be-

tween the habitats. In order to get a better performance includ-

ing the better solution and convergence speed, the new logistic

map based migration operator is described as follows:

Hi(k) = Hi(k) + c1 × y
(1)
t ×(

H j(k) − Hi(k)
)

+ c2 × y
(2)
t × (Hl(k) − Hi(k))

(12)

Where Hi is the immigrating habitat, H j and Hl are the emi-

grating habitats, c1 and c2 are two positive constants which ad-

just the influence degree of two selected emigrating habitats and

yt is the chaotic variable between (0, 1) generated by Eq. (10) It

is important to note that, y
(1)
t and y

(2)
t are two different chaotic

sequences with different initial value (y0) generated by Eq. (10).

The initial values for chaotic sequences are randomly selected

between 0 and 1, except points (0, 0.25, 0.5, 0.75) Here the

two emigrating habitats H j and Hl are selected probabilistically

based on emigration rates At each iteration cycle, the kth vari-

able of position of habitats is updated by Eq. (12). Note that,

whenever the updated position of a habitat goes beyond its lower

or upper bound, the habitat will take the value of its correspond-

ing lower or upper bound.

The proposed migration operator appears to be more useful

because it takes into consideration two different habitats. As

mentioned before, the emigrating habitats are randomly selected

based on their emigrating rates, and the emigration rates are di-

rectly proportional to the HSI values (fitness values). In fact,

according to Eq. (12), all of the better and worse habitats affect

the new position of the habitat under consideration, but the habi-

tats with high HSI have a high chance to affect the new position.

This migration scheme can improve the exploration ability of

the algorithm and alleviate premature convergence.

After migration operator, each variable of a habitat is mutated

according to the mutation probability (pMutation). As men-

tioned before, standard BBO uses a purely random generation

to mutate habitats, which leads to revisiting non-productive re-

gions of the search space and often exhibit unacceptably slow

convergence rate. In order to reduce the effects of purely ran-

dom mutation and to prevent the local trapping of the algorithm,

the new improved logistic map based mutation operator for kth

variable of ith habitat is described as follow:

Hi (k) = Hi (k) + zt × α × (Hmax (k) − Hmin (k)) (13)

Where zt is the chaotic variable between (-1, 1) generated by

Eq. (11), α is the user defined parameter, Hmax(k) showing the

upper bound and Hmin(k) indicating the lower bound for variable

k.

It seems that the values of low mutation probabilities (pMu-

tation) is appropriate values and high values of this parameter

may not be suitable. This parameter is usually set as too small

to get good results. In this study, the value of mutation proba-

bility (pMutation) is considered as 0.1 for all experiments.

The value of α controls search length of the mutation operator.

A small length may be inefficient in exploring different regions
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of the search space and therefore unsuccessful at improving the

search quality. On the other hand, with a longer length, the mu-

tation operator may cause revisiting non-productive regions un-

necessarily.

In order to better explain the algorithm, the detailed steps of

CBBO can be summarized as below:

Step 1: define the optimization problem, set the initial val-

ues for chaotic sequences (z0 and y0) and initialize the CBBO

parameters:

• pMutation: the mutation probability;

• KeepRate: parameter to keep elites from prior iteration to the

next;

• NH: the number of habitats (population size);

• c1 and c2: the parameters of migration operator;

• α: the parameter of mutation operator;

As it mentioned previously, the value of parameters pMuta-

tion and KeepRate are set to 0.1 in all design examples So, in

CBBO algorithm, NHc1, c2 and α are the internal parameters

that should be controlled.

Step 2: Initialize habitats with randomly generated NH habi-

tats and evaluate fitness (HSI) for each habitat.

Step 3: For each individual, map the HSI to the number of

species and calculate the immigration rate λ and the emigration

rate µ for each habitat.

Step 4: Update the position of each habitat by the migration

and mutation operators and evaluate them.

Step 5: Combine the elites from previous iteration with new

habitats and select NH habitats with high HSI among them.

Step 6: Repeat from Steps 3 to 6 till the termination criterion

is met.

For other algorithms and comparative studies the interested

reader may refer to [31–33].

4 Design examples

In this section, five design examples are studied to assess

the performance of the CBBO approach for the optimization of

truss structures with natural frequency constraints: 10-bar pla-

nar truss, the simply supported 37-bar planar truss, 52-bar space

truss, 120-bar dome truss and 200-bar planar truss. Examples

1, 4 and 5 focus on optimal design of truss structures consid-

ering only size variables, while examples 2 and 3 discuss the

weight minimization of truss structures considering both size

and shape variables together. The performance of the CBBO

may depend on some internal parameters such as number of

habitats NH , constant parameters c1, c2 and α In each design

example, sensitivity analysis was performed for internal param-

eters of the CBBO algorithm to investigate how the CBBO is

affected by these parameters and the best combination of them

obtained. The sensitivity analyses are carried out on the CBBO

using different values of population size (NH) and three con-

stant parameters (c1c2 and α). For design examples 1 through

4, three settings are considered for NH parameter and two set-

tings for C1C2 and α parameters That is, NH ∈ {20, 30, 40},

(c1c2)∈ {1, 2} and α ∈ {0.05, 0.15} For last design example the

case of NH = 50 is added to parameter setting cases. The pro-

posed method were run 10 times with random initial popula-

tion for each case of parameter combination and the best, worst,

mean structural weights and standard deviations are obtained.

In order to assess the effect of different initial solution vec-

tor (i.e. initial population and initial values of y0 and z0) on the

final result and because of the random nature of the algorithm,

each design example are independently optimized 20 times with

selected parameters by sensitivity analysis. The best result, aver-

age and the standard deviation of 20 independent runs are given

in the tables.

Each run stops when the maximum iterations are reached. In

all design examples, the maximum iterations are set to 200. In

order to show effectiveness of the proposed algorithm, CBBO

is compared with both standard BBO algorithm and other opti-

mization methods in literature. It is worth mentioning that the

same parameters are used for standard BBO and CBBO algo-

rithms in all design examples. The CBBO and BBO implemen-

tation was coded in Matlab program

Example 1. A 10-bar planar truss

The first design example is the size optimization of a 10-

bar planar truss with fixed configuration shown in Fig. 6. The

Young’s modulus and material density of truss members are

6.89× 1010 kg/m2 and 2770.0 kg/m3, respectively. As seen in

Fig. 6 a non-structural mass of 454.0 kg are attached for all

free nodes. The lower and upper bounds for the cross-sectional

areas are specified as 0.645 cm2 and 50 cm2, respectively. In

this design example, the three natural frequency constraints are

considered as: ω1 ≥7 Hz, ω2 ≥15 Hz, ω3 ≥20 Hz. It should

be noted that in some references the Young’s modulus of truss

members is given as 6.98× 1010 kg/m2. So, for a fair compar-

ison, two cases are considered as: E = 6.89× 1010 kg/m2 (Case

1) and E = 6.98× 1010 kg/m2(Case 2).

The results of the sensitivity analysis carried out to find the

best combination of the parameters for CBBO are presented in

Tab. 1. It is apparent from Tab. 1 that NH = 30, c1 = 1, c2 = 1

and α = 0.05 are the relatively best case of parameter settings

for Case 1 of this example. The results obtained by standard

BBO and CBBO for two cases are summarized in Tab. 2 and

compared to those reported previously.

From Tab. 2, in Case 1 , it can be concluded that CBBO gives

lightest design as compared to the results obtained by Grandhi

and Venkayya [2], Sedaghati and et al. [3], Wang et al. [5]

and Lingyun et al. [10], but slightly heavier design than DPSO

[12] method. Also it is clear that the values of mean weight

and standard deviation for CBBO are relatively less than other

methods.

In Case 2, the results obtained by the standard BBO and

Per. Pol. Civil Eng.404 Shahin Jalili / Yousef Hosseinzadeh / Ali Kaveh



Fig. 6. Schematic of the planar 10-bar truss structure.

Tab. 1. Results of sensitivity analysis carried out to find the best combination of the parameters of CBBO for the planar 10-bar truss problem (Case 1).

Parameters Weight (kg)

Case NH c1 c2 α Best Mean Std Worst

1 20 1 1 0.05 533.68 539.21 3.79 545.77

2 20 2 1 0.05 535.75 542.58 4.12 547.47

3 20 1 2 0.05 534.41 540.55 4.21 547.72

4 30 1 1 0.05 532.47 535.49 3.49 541.55

5 30 2 1 0.05 532.96 538.52 3.85 542.84

6 30 1 2 0.05 534.88 539.84 3.40 543.49

7 40 1 1 0.05 533.08 535.89 3.11 542.37

8 40 2 1 0.05 533.73 537.32 3.10 542.12

9 40 1 2 0.05 534.81 541.51 3.46 546.52

10 20 1 1 0.5 534.42 538.45 3.50 543.41

11 20 2 1 0.5 538.21 546.88 7.61 560.15

12 20 1 2 0.5 537.38 546.37 6.94 561.01

13 30 1 1 0.5 533.80 537.07 3.26 545.24

14 30 2 1 0.5 537.54 542.82 3.48 549.04

15 30 1 2 0.5 535.1 544.39 4.94 552.69

16 40 1 1 0.5 533.91 538.02 3.81 545.34

17 40 2 1 0.5 539.74 544.24 3.56 550.93

18 40 1 2 0.5 535.33 541.39 4.27 548.29
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Tab. 2. Optimized designs (cm2) obtained for the 10-bar planar truss problem (the optimized weight does not include the added masses).

Case 1 Case 2

Design

vari-

able

Gran-

dhi and

Ven-

kayya

[2]

Seda-

ghati et

al. [3]

Wang

et al.

[5]

Lin-

gyun et

al. [10]

Kaveh

and

Zol-

ghadr

[12]

Present work
Gomes

[11]
Kaveh and Zolghadr [13] Present work

NHPGA DPSO BBO CBBO PSO CSS

En-

hanced

CSS

CSS-

BBBC
BBO CBBO

A1 36.584 38.245 32.456 42.234 35.944 42.220 35.897 37.712 38.811 39.569 35.274 41.524 34.895

A2 24.658 9.916 16.577 18.555 15.530 16.336 15.071 9.959 9.031 16.740 15.463 16.94 14.359

A3 36.584 38.619 32.456 38.851 35.285 31.854 35.171 40.265 37.099 34.361 32.110 35.048 34.946

A4 24.658 18.232 16.577 11.222 15.385 18.418 14.804 16.788 18.479 12.994 14.065 8.3278 14.541

A5 4.167 4.419 2.115 4.783 0.648 0.734 0.645 11.576 4.479 0.645 0.645 3.765 0.645

A6 2.070 4.419 4.467 4.451 4.583 4.831 4.6946 3.955 4.205 4.802 4.880 4.5674 4.5984

A7 27.032 20.097 22.810 21.049 23.610 21.757 24.094 25.308 20.842 26.182 24.046 24.932 23.818

A8 27.032 24.097 22.810 20.949 23.599 23.581 24.056 21.613 23.023 21.260 24.340 21.182 24.057

A9 10.346 13.890 17.490 10.257 13.135 12.771 12.986 11.576 13.763 11.766 13.343 12.229 12.402

A10 10.346 11.452 17.490 14.342 12.357 12.104 12.358 11.186 11.414 11.392 13.543 13.256 12.646

Weight

(kg)
594 537.01 553.8 542.75 532.39 541.32 532.47 537.98 531.95 529.25 529.09 535.73 524.60

Mean

weight

(kg)

N/A N/A N/A 552.447 537.8 553.57 537.01 540.89 536.39 538.53 N/A 551.76 527.23

Standard

devia-

tion

(kg)

N/A N/A N/A 4.864 4.02 7.64 3.90 6.84 3.32 5.97 N/A 11.92 2.52
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CBBO are compared with those reported in the literature like

PSO [11], CSS, Enhanced CSS and CSS-BBBC [13]. It is ob-

served from Tab. 2 that the CBBO significantly outperforms

other methods in terms of the values of best, mean and standard

deviation of structural weight. In addition, the mean weight ob-

tained by CBBO is also lighter than the best weights presented

by other methods, which shows its accomplishment in reach-

ing the near-optimal design. Moreover, it should be noted that

Kaveh and Zolghadr [12] obtained a weight of 524.70 kg for

Case 2 which is heavier than the weight obtained by CBBO.

The natural frequencies evaluated at the optimum designs for

each case are given in Tab. 3. In addition, the convergence be-

haviors of the best solution and the average of 20 independent

runs for each case are shown in Fig. 7. It is clear from Fig. 7

that the CBBO converges to the near-optimum solution after 80

iterations without any abrupt oscillations, while standard BBO

method converges to local solution as a result of suffering from

the shortcoming of premature convergence The CBBO reached

the best result in iterations 120 and 113 for Case 1 and Case 2,

respectively.

Example 2. A simply supported 37-bar planar truss

The second design example deals with the size and shape

optimization of a simply supported 37-bar planar truss shown

in Fig. 8. The Young’s modulus and material density of truss

members are 2.1× 1011 N/m2 and 7800 kg/m3, respectively. As

seen in Fig. 8, a non-structural mass of 10 kg are attached for

all free nodes. The constant rectangular cross-sectional areas of

4 × 10−3 m2 are specified for all members of the lower chord and

the cross-sectional areas of other members are considered as de-

sign variables. In addition, the y-coordinate of upper nodes are

taken as layout variables considering symmetry and their ver-

tical position must not exceed ±1.5 m Thus, the optimization

problem includes 19 design variables (5 for shape variables and

14 for size variables). Furthermore, the structure is subject to

the first three frequency constraints as: ω1 ≥20 Hz, ω2 ≥40 Hz,

ω3 ≥60 Hz.

The results of the sensitivity analysis carried out to find the

best combination of parameters for CBBO are reported in Tab. 4.

Once again, it can be seen from Tab. 4 that the minimum struc-

tural weight is obtained for NH = 30, c1 = 1c2 = 1 and

α = 0.05

In Tab. 5, the results obtained by the CBBO and BBO are

compared with those reported in the literature like NHGA [10],

PSO [11], CSS, enhanced CSS [29] and DPSO [12]. From this

table, it can be observed that CBBO significantly outperforms

other methods in terms of the values of best, mean and stan-

dard deviation, which shows its stability in reaching the optimal

weight of the structure during 20 independent runs. It is evident

from Tab. 5 that the structural weight and standard deviation of

20 independent runs for the CBBO are 360.29 kg and 0.67 kg,

respectively, which are much less than the other optimization al-

gorithms. Also, the natural frequencies obtained at the optimum

designs are presented in Tab. 6.

Fig. 9 compares the optimized layout with the initial configu-

ration of the structure.

The convergence diagrams of the best solution and the aver-

age of 20 independent runs are presented in Fig. 10. As seen,

the convergence rates of the best run and the average of 20 inde-

pendent runs are close together which represents smaller value

of the standard deviation.

Example 3. A 52-bar space truss

A 52-bar space truss shown in Fig. 11 is the third design

example. The Young’s modulus and material density of truss

members are 2.1× 1011 kg/m2 and 7800 kg/m3, respectively. A

non-structural mass of 50 kg are attached for all free nodes. As

seen in Tab. 7, the elements of the structure are categorized in

8 groups with respect to symmetry. The coordinates of all free

nodes are taken as design variables considering symmetry and

their position movements must not exceed ±2 m in x and z di-

rections. The lower and upper bounds for the cross-sectional ar-

eas are specified as 1 cm2 and 10 cm2, respectively. Therefore,

the optimization problem includes 13 design variables (5 shape

variables and 8 size variables). Furthermore, the structure is

subject to the first two frequency constraints as: ω1 ≤15.916 Hz,

ω2 ≥28.648 Hz.

Again, Tab. 8 presents the results of the sensitivity anal-

ysis carried out to find the best combination of parameters

for CBBO. The best optimal structural weight is obtained for

NH = 40, c1 = 2, c2 = 1 and α= 0.05.

The optimal nodal coordinates and cross-sectional areas ob-

tained by the CBBO, BBO and the other optimization methods

recently published in literature are reported in Tab. 9. It is quite

evident that CBBO gives the lightest design than all other tech-

niques in the literature based on Tab. 9. From Tab. 9, it can

be concluded that CBBO gives small mean weight as compared

to CSS [29], Enhanced CSS [29], CSS-BBBC [13] PSO [11],

NHGA [10] and Lin et al. [34], but slight large mean weight

when compared with the DPSO [12] method. However, it should

be noted that the CBBO produces much smaller overall standard

deviation than all other methods. Also, the natural frequencies

obtained at the optimum designs are presented in Tab. 10.

Tab. 11 compares the optimized shape with the initial layout

of the structure. In addition, the convergence characteristics of

the CBBO and BBO are shown in Tab. 12.

Example 4. A 120-bar dome truss

The fourth design example is the size optimization of a 120-

bar dome truss shown in Fig. 14. The members of the struc-

ture are divided into 7 groups using symmetry as shown in

Fig. 14. The minimum and maximum cross-sectional area for

each group of members is 1 cm2 and 129.3 cm2, respectively.

The Young’s modulus and material density of truss members

are 2.1× 1011 kg/m2 and 7971.810 kg/m3, respectively. Non-

structural masses are attached to all free nodes as follows:

3000 kg at node one, 500 kg at nodes 2 through 13 kg and 100 kg

at the rest of the nodes. Furthermore, the structure is subject to

the first two frequency constraints as: ω1 ≥9 Hz, ω2 ≥11 Hz.
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Tab. 3. Natural frequencies (Hz) evaluated at the optimized designs for the 10-bar planar truss.

Case 1 Case 2

Fre-

quency

No.

Gran-

dhi and

Ven-

kayya

[2]

Seda-

ghati et

al. [3]

Wang

et al.

[5]

Lin-

gyun et

al. [10]

Kaveh

and

Zol-

ghadr

[12]

Present work
Gomes

[11]
Kaveh and Zolghadr [13] Present work

NHPGA DPSO BBO CBBO PSO CSS

En-

hanced

CSS

CSS-

BBBC
BBO CBBO

1 7.059 6.992 7.011 7.008 7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.001 7.000

2 15.895 17.599 17.302 18.148 16.187 16.473 16.179 17.786 17.442 16.238 16.119 16.945 16.166

3 20.425 19.973 20.001 20.000 20.000 20.042 20.004 20.000 20.031 20.000 20.075 20.040 20.001

4 20.425 19.977 20.100 20.508 20.021 20.585 20.091 20.063 20.208 20.361 20.457 20.435 20.012

5 20.425
28.

173
30.869 27.797 28.470 28.396 28.558 27.776 28.261 28.121 29.149 28.399 28.644

6 30.189 31.029 32.666 31.281 29.243 29.312 29.078 30.939 31.139 28.610 29.761 30.881 28.998

7 54.286 47.628 48.282 48.304 48.769 49.883 48.516 47.297 47.704 48.390 47.950 46.282 48.396

8 56.546 52.292 52.306 53.306 51.389 53.031 51.074 52.286 52.420 52.291 51.215 52.699 50.896

Fig. 7. Comparative convergence behaviors of the standard BBO and CBBO algorithms for 10-bar planar truss.

Fig. 8. Schematic of the simply-supported planar 37-bar truss.
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Tab. 4. Results of sensitivity analysis for best combination of the parameters of CBBO for the 37-bar planar truss problem.

Parameters Weight (kg)

Case NH c1 c2 α Best Mean Std Worst

1 20 1 1 0.05 360.85 362.02 1.00 364.49

2 20 2 1 0.05 361.86 364.21 2.13 368.79

3 20 1 2 0.05 361.91 363.79 2.24 369.49

4 30 1 1 0.05 360.29 361.11 0.48 362.21

5 30 2 1 0.05 361.63 362.73 0.95 364.57

6 30 1 2 0.05 361.44 363.56 2.44 367.47

7 40 1 1 0.05 360.44 361.15 0.33 361.64

8 40 2 1 0.05 361.05 362.74 1.06 364.32

9 40 1 2 0.05 361.83 362.77 1.32 366.32

10 20 1 1 0.5 361.70 363.60 1.46 367.03

11 20 2 1 0.5 364.58 367.51 1.68 370.28

12 20 1 2 0.5 363.70 366.65 2.20 369.97

13 30 1 1 0.5 361.24 363.10 1.10 364.90

14 30 2 1 0.5 363.01 365.23 1.63 368.18

15 30 1 2 0.5 363.94 366.21 2.60 372.83

16 40 1 1 0.5 362.30 363.16 0.42 363.70

17 40 2 1 0.5 361.70 364.16 1.67 367.04

18 40 1 2 0.5 362.95 365.98 1.95 369.28

Tab. 5. Optimized designs for the 37-bar planar truss problem; optimal nodal coordinates (Yi (m)) and cross- sectional areas Ai (cm2).

Design

variable

Wang et

al. [5]

Lingyun

et al. [10]

Gomes

[11]
Kaveh and Zolghadr [12,29] Present work

NHGA PSO CSS
Enhanced

CSS
DPSO BBO CBBO

Y3,Y19 1.2086 1.1998 0.9637 0.8726 1.0289 0.9482 0.94404 0.9794

Y5,Y17 1.5788 1.6553 1.3978 1.2129 1.3868 1.3439 1.25010 1.3411

Y7,Y15 1.6719 1.9652 1.5929 1.3826 1.5893 1.5043 1.39930 1.5403

Y9,Y13 1.7703 2.0737 1.8812 1.4706 1.6405 1.6350 1.54140 1.6861

Y11 1.8502 2.3050 2.0856 1.5683 1.6835 1.7182 1.56390 1.7661

A1, A27 3.2508 2.8932 2.6797 2.9082 3.4484 2.6208 3.82130 2.6334

A2, A26 1.2364 1.1201 1.1568 1.0212 1.5045 1.0397 1.01400 1.0787

A3, A24 1.0000 1.0000 2.3476 1.0363 1.0039 1.0464 1.83660 1.0000

A4, A25 2.5386 1.8655 1.7182 3.9147 2.5533 2.7163 2.92040 2.5520

A5, A23 1.3714 1.5962 1.2751 1.0025 1.0868 1.0252 1.09570 1.1357

A6, A21 1.3681 1.2642 1.4819 1.2167 1.3382 1.5081 1.13920 1.2483

A7, A22 2.4290 1.8254 4.685 2.7146 3.1626 2.3750 3.25890 3.1168

A8, A20 1.6522 2.0009 1.1246 1.2663 2.2664 1.4498 1.42990 1.4849

A9, A18 1.8257 1.9526 2.1214 1.2668 1.4499 1.51360 1.4634

A10, A19 2.3022 1.9705 3.86 4.0274 1.7518 2.5327 4.01820 2.4885

A11, A17 1.3103 1.8294 2.9817 1.3364 2.7789 1.2358 2.67270 1.2502

A12, A15 1.4067 1.2358 1.2021 1.0548 1.4209 1.3528 1.18160 1.3661

A13, A16 2.1896 1.4049 1.2563 2.8116 1.0100 2.9144 2.40820 2.1451

A14 1.0000 1.0000 3.3276 1.1702 2.2919 1.0085 1.22720 1.0000

Weight

(kg)
366.5 368.84 377.20 362.84 362.38 360.40 369.10 360.29

Mean

weight

(kg)

N/A 378.8259 381.2 366.77 365.75 362.21 377.40 361.33

Standard

deviation

(kg)

N/A 9.0325 4.26 3.742 3.461 1.68 7.35 0.67
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Tab. 6. Natural frequencies (Hz) evaluated at the optimized designs for the simply supported 37-bar planar truss.

Frequency

No.

Wang et

al. [5]

Lingyun

et al. [10]

Gomes

[11]
Kaveh and Zolghadr [12,29] Present work

NHGA PSO CSS
Enhanced

CSS
DPSO BBO CBBO

1 20.0850 20.0013 20.0001 20.0000 20.0028 20.0194 20.3110 20.029

2 42.0743 40.0305 40.0003 40.0693 40.0155 40.0113 42.8990 40.013

3 62.9383 60.0000 60.0001 60.6982 61.2798 60.0082 62.1780 60.028

4 74.4539 73.0444 73.0440 75.7339 78.1100 76.9896 79.0920 76.811

5 90.0576 89.8244 89.8240 97.6137 98.4100 97.2222 103.0100 96.862

Fig. 9. Comparison of the optimized shape with the initial configuration of the simply-supported planar 37-bar truss.

Fig. 10. Comparison of convergence diagrams of standard BBO and CBBO algorithms for the simply-supported planar 37-bar truss.
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Fig. 11. Schematic of the initial layout of the spatial 52-bar space truss: (a) Top view (b) Side view.

Fig. 12. Comparison of the optimized shape with the initial configuration of the 52-bar space truss.

Tab. 7. Element grouping adopted in the 52-bar space truss problem.

Group number Elements

1 1, 2, 3, 4

2 5, 6, 7, 8

3 9, 10, 11, 12, 13, 14, 15, 16

4 17, 18, 19, 20

5 21, 22, 23, 24, 25, 26, 27, 28

6 29, 30, 31, 32, 33, 34, 35, 36

7 37, 38, 39, 40, 41, 42, 43, 44

8 45, 46, 47, 48, 49, 50, 51, 52
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Fig. 13. Comparison of convergence curves of standard BBO and CBBO algorithms for the 52-bar space truss.

Tab. 8. Results of sensitivity analysis carried out to find the best combination of the parameters of CBBO for the 52-bar space truss problem.

Parameters Weight (kg)

Case NH c1 c2 α Best Mean Std Worst

1 20 1 1 0.05 198.94 220.12 15.67 239.46

2 20 2 1 0.05 195.65 229.46 50.14 330.67

3 20 1 2 0.05 199.37 230.76 37.65 313.78

4 30 1 1 0.05 204.63 227.75 34.15 316.42

5 30 2 1 0.05 194.90 208.03 10.20 226.01

6 30 1 2 0.05 196.49 206.97 13.50 242.73

7 40 1 1 0.05 204.11 219.72 17.06 254.88

8 40 2 1 0.05 194.09 199.83 4.06 206.53

9 40 1 2 0.05 194.73 201.93 12.11 235.25

10 20 1 1 0.5 206.21 244.34 55.23 393.03

11 20 2 1 0.5 200.85 225.81 28.16 289.23

12 20 1 2 0.5 205.36 240.00 42.64 329.92

13 30 1 1 0.5 205.13 228.69 28.67 305.79

14 30 2 1 0.5 199.90 216.39 26.79 291.87

15 30 1 2 0.5 198.79 213.17 19.13 265.7

16 40 1 1 0.5 199.70 210.01 11.35 238.10

17 40 2 1 0.5 201.89 210.85 8.65 232.41

18 40 1 2 0.5 199.38 211.31 9.73 232.11
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Tab. 9. Optimized designs obtained for the 52-bar space truss problem ; optimal nodal coordinates and cross-sectional areas.

Design variable
Lin et

al. [30]

Lingyun

et al.

[10]

Gomes

[11]
Kaveh and Zolghadr [12,13,29] Present work

NHGA PSO CSS
Enhanced

CSS

CSS-

BBBC
DPSO BBO CBBO

ZA(m) 4.3201 5.8851 5.5344 5.2716 6.1590 5.3310 6.1123 5.4611 5.8162

XB(m) 1.3153 1.7623 2.0885 1.5909 2.2609 2.1340 2.2343 1.5177 2.3525

ZB(m) 4.1740 4.4091 3.9283 3.7093 3.9154 3.7190 3.8321 4.0582 3.7684

XF (m) 2.9169 3.4406 4.0255 3.5595 4.0836 3.9350 4.0316 3.5204 4.0484

ZF (m) 3.2676 3.1874 2.4575 2.5757 2.5106 2.5000 2.5036 2.7484 2.5000

A1(cm2) 1.0000 1.0004 0.3696 1.0464 1.0335 1.0000 1.0001 1.5196 1.0000

A2(cm2) 1.3300 2.1417 4.1912 1.7295 1.0960 1.3056 1.1397 1.1760 1.0000

A3(cm2) 1.5800 1.4858 1.5123 1.6507 1.2449 1.4230 1.2263 1.1046 1.1836

A4(cm2) 1.0000 1.4018 1.5620 1.5059 1.2358 1.3851 1.3335 1.5884 1.5035

A5(cm2) 1.7100 1.9116 1.9154 1.7210 1.4078 1.4226 1.4161 1.0948 1.3967

A6(cm2) 1.5400 1.0109 1.1315 1.0020 1.0022 1.0000 1.0001 1.1219 1.0000

A7(cm2) 2.6500 1.4693 1.8233 1.7415 1.6024 1.5562 1.5750 2.5201 1.5787

A8(cm2) 2.8700 2.1411 1.0904 1.2555 1.4596 1.4485 1.4357 1.8206 1.4103

Weight (kg) 298.00 236.050 228.380 205.237 197.337 197.309 195.351 232.36 194.09

Mean weight (kg) N/A 274.164 234.3 213.101 205.617 N/A 198.71 294.48 201.27

Standard deviation (kg) N/A 37.462 5.22 7.391 6.924 N/A 13.85 39.76 4.93

Tab. 10. Natural frequencies (Hz) evaluated at the optimal designs for the 52-bar space truss.

Frequency

No.

Lin et al.

[32]

Lingyun et

al. [10]
Gomes [11] Kaveh and Zolghadr [12,13,29] Present work

NHGA PSO CSS
Enhanced

CSS
CSS-BBBC DPSO BBO CBBO

1 15.2196 12.8051 12.751 9.246 11.849 12.987 11.3150 9.3486 12.796

2 29.2837 28.6489 28.649 28.648 28.649 28.648 28.6480 28.6540 28.649

3 29.2837 28.6489 28.649 28.699 28.659 28.679 28.6480 28.6610 28.649

4 31.6847 29.5398 28.803 28.735 28.718 28.713 28.6500 28.6610 28.656

5 33.1547 30.2443 29.230 29.223 29.192 30.262 28.6880 29.5260 29.663

Tab. 11. Optimized designs (cm2) obtained for the 120-bar dome truss problem.

Element

group
Kaveh and Zolghadr [13,15] Present work

CSS CSS-BBBC PSO DPSO BBO CBBO

1 21.710 17.478 23.494 19.6070 19.9850 19.8120

2 40.862 49.076 32.976 41.2900 34.8660 38.9570

3 9.048 12.365 11.492 11.1360 16.8660 10.1770

4 19.673 21.979 24.839 21.0250 21.9560 21.1170

5 8.336 11.190 9.964 10.0600 15.1220 10.2610

6 16.120 12.590 12.039 12.7580 9.8383 12.4840

7 18.976 13.585 14.249 15.4140 16.5440 14.9530

Weight (kg) 9204.51 9046.34 9171.93 8890.48 9427.18 8727.40

Mean weight

(kg)
N/A N/A 9251.84 8895.99 9763.32 8769.40

Standard

deviation

(kg)

N/A N/A 89.38 4.26 674.77 37.52
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Tab. 12. Natural frequencies (Hz) evaluated at the optimized designs for the 120-bar dome truss.

Frequency

number
Kaveh and Zolghadr [12,13] Present work

CSS CSS-BBBC PSO DPSO BBO CBBO

1 9.002 9.000 9.0000 9.0001 9.0331 9.0006

2 11.002 11.007 11.0000 11.0007 11.0732 11.0020

3 11.006 11.018 11.0052 11.0053 11.0732 11.0020

4 11.015 11.026 11.0134 11.0129 11.1359 11.0160

5 11.045 11.048 11.0428 11.0471 11.2118 11.0860

Fig. 14. Schematic of the 120-bar dome truss.
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Once again, the results of the sensitivity analysis carried out to

find the best combination of parameters for CBBO are reported

in Tab. 13. In this design example, it can be seen from Tab. 13

that the lowest structural weight is obtained for NH = 40, c1 =

1c2 = 1 and α = 0.05

The optimization results obtained by the standard BBO and

CBBO are presented in Tab. 11 and are compared with those

of the CSS [15], CSS-BBBC [15], PSO [13] and DPSO [13]

approaches. It is quite evident that CBBO significantly out-

performs other algorithms in terms of minimum weight, mean

and standard deviation. On the other hand, the mean gained

by the CBBO is also better than the best weights obtained by

other methods as provided in Tab. 11. It means that the CBBO

algorithm obtained better design and lightest weight in all 20 in-

dependent runs. In addition, the natural frequencies obtained at

the optimum designs are presented in Tab. 12.

The convergence behaviors of the best solution and the aver-

age of 20 independent runs are presented in Fig. 15. As it can

be seen from Fig. 15 that the best result is obtained after 120

iterations and it is clear that the performance of the proposed

algorithm confirms the validity of the developed approach.

Example 5. A 200-bar planar truss

The last design example is the size optimization of a 200-

bar planar truss shown in Fig. 16. The Young’s modulus is

2.1× 1011 kg/m2 and the material density of truss members is

7860 kg/m3 The minimum permitted cross-sectional area for the

truss members is taken as 0.1 cm2 A non-structural mass of

100 kg are attached for all free nodes. Furthermore, the structure

is subject to the first three frequency constraints as: ω1 ≥5 Hz,

ω2 ≥10 Hz, ω3 ≥15 Hz. The members of the structure are di-

vided into 29 groups as shown in Tab. 14. Hence, the opti-

mization problem includes 19 design variables and it is rela-

tively high dimensional optimization problem. Kaveh and Zol-

ghadr [12] used this design example to size optimization with

frequency constraints.

Another sensitivity analysis is carried out to find the best com-

bination of internal parameters of the CBBO. In this design ex-

ample, six cases of parameter settings are considered with the

number of fifty habitats (NH = 50), due to high dimensionality

of the optimization problem. From Tab. 15 it can be observed

that the lightest structural weight for this structure is obtained

by NH = 50, c1 = 1, c2 = 1 and α = 0.05

Tab. 16 summarizes the optimal results obtained by both the

standard BBO and CBBO algorithms. The results are compared

with those CSS [12] and CSS-BBBC [12] approaches. Once

again, it is evident that CBBO yields lighter structural weight

than CSS [12] and CSS-BBBC [12]. The weight obtained by

CBBO is 35.65 kg lighter than the weight found by CSS-BBBC

[12], which is relatively considerable.

The natural frequencies evaluated at optimum designs are

given in Tab. 17.

In Fig. 17, the convergence behaviors of the average of 20 in-

dependent runs and the best run for CBBO are compared with

original BBO. Once again, it can be seen that CBBO can im-

prove the performance of the original BBO and obtain the light-

est weight.
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Tab. 13. Results of sensitivity analysis carried out to find the best combination of the parameters of CBBO for the 120-bar dome truss problem.

Parameters Weight (kg)

Case NH c1 c2 α Best Mean Std Worst

1 20 1 1 0.05 8747.60 8810.30 45.04 8860.90

2 20 2 1 0.05 8752.00 8835.50 89.03 9037.70

3 20 1 2 0.05 8776.90 8896.60 116.69 9145.10

4 30 1 1 0.05 8734.80 8767.50 25.08 8812.20

5 30 2 1 0.05 8759.90 8838.70 61.43 8960.00

6 30 1 2 0.05 8745.80 8873.10 86.30 8994.50

7 40 1 1 0.05 8727.40 8767.70 41.00 8847.60

8 40 2 1 0.05 8735.90 8853.50 109.81 9085.40

9 40 1 2 0.05 8781.30 8866.3 71.26 8976.30

10 20 1 1 0.5 8852.40 8988.20 143.15 9255.50

11 20 2 1 0.5 8969.10 9224.60 192.49 9686.30

12 20 1 2 0.5 8927.40 9256.90 333.18 9934.40

13 30 1 1 0.5 8826.70 8918.70 67.95 9038.90

14 30 2 1 0.5 8819.00 8955.80 119.15 9218.90

15 30 1 2 0.5 8841.90 9136.00 280.52 9655.90

16 40 1 1 0.5 8807.70 8861.20 54.23 9005.70

17 40 2 1 0.5 8773.70 9030.00 134.72 9205.30

18 40 1 2 0.5 8867.50 8976.10 175.45 9416.60

Fig. 15. Comparison of convergence diagrams of standard BBO and CBBO algorithms for the 120-bar dome truss.
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Fig. 16. Schematic of the 200-bar planar truss.

Fig. 17. Comparison of convergence curves of standard BBO and CBBO algorithms for the 200-bar planar truss.
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Tab. 14. Elements grouping adopted in the 200-bar planar truss.

Group number Members Group number Members

1 1, 2, 3, 4 15 102, 105, 108, 111, 114

2 5, 8, 11, 14, 17 16

82, 83, 85, 86, 88, 89, 91,

92, 103, 104, 106, 107,

109, 110, 112, 113

3 19, 20, 21, 22, 23, 24 17 115, 116, 117, 118

4
18, 25, 56, 63, 94, 101,

132, 139, 170, 177
18 119, 122, 125, 128, 131

5 26, 29, 32, 35, 38 19
133, 134, 135, 136, 137,

138

6

6, 7, 9, 10, 12, 13, 15, 16,

27, 28, 30, 31, 33, 34, 36,

37

20 140, 143, 146, 149, 152

7 39, 40, 41, 42 21

120, 121, 123, 124, 126,

127, 129, 130, 141, 142,

144, 145, 147, 148, 150,

151

8 43, 46, 49, 52, 55 22 153, 154, 155, 156

9 57, 58, 59, 60, 61, 62 23 157, 160, 163, 166, 169

10 64, 67, 70, 73, 76 24
171, 172, 173, 174, 175,

176

11

44, 45, 47, 48, 50, 51, 53,

54, 65, 66, 68, 69, 71, 72,

74, 75

25 178, 181, 184, 187, 190

12 77, 78, 79, 80 26

158, 159, 161, 162, 164,

165, 167, 168, 179, 180,

182, 183, 185, 186, 188,

189

13 81, 84, 87, 90, 93 27 191, 192, 193, 194

14 95, 96, 97, 98, 99, 100 28 195, 197, 198, 200

29 196, 199
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Tab. 15. Results of sensitivity analysis carried out to find the best combination of the parameters of CBBO for the 200-bar planar truss problem.

Parameters Weight (kg)

Case NH c1 c2 α Best Mean Std Worst

1 20 1 1 0.05 2583.60 3196.40 445.68 3839.50

2 20 2 1 0.05 2693.80 2976.40 216.92 3395.90

3 20 1 2 0.05 2764.70 2950.70 165.56 3251.80

4 30 1 1 0.05 2449.50 2571.00 98.16 2773.70

5 30 2 1 0.05 2421.60 2756.90 174.62 3019.10

6 30 1 2 0.05 2492.10 2753.10 225.90 3146.00

7 40 1 1 0.05 2365.20 2449.10 66.19 2574.40

8 40 2 1 0.05 2518.00 2663.90 98.50 2835.80

9 40 1 2 0.05 2405.30 2551.40 119.05 2744.60

10 50 1 1 0.05 2262.96 2364.10 86.54 2569.40

11 50 2 1 0.05 2421.60 2574.70 98.26 2709.80

12 50 1 2 0.05 2355.00 2496.60 66.06 2562.10

13 20 1 1 0.15 2717.60 3194.00 261.42 3682.80

14 20 2 1 0.15 3139.60 3760.10 423.68 4600.30

15 20 1 2 0.15 3052.90 3578.60 250.38 3887.90

16 30 1 1 0.15 2628.30 2844.20 128.58 3043.80

17 30 2 1 0.15 3277.10 3495.40 180.70 3817.20

18 30 1 2 0.15 3017.90 3314.80 240.64 3676.20

19 40 1 1 0.15 2502.50 2799.40 219.12 3166.70

20 40 2 1 0.15 2902.10 3433.20 331.16 3910.30

21 40 1 2 0.15 2900.10 3282.70 185.51 3552.80

22 50 1 1 0.15 2599.90 2693.40 84.50 2891.50

23 50 2 1 0.15 2893.10 3096.30 159.98 3321.70

24 50 1 2 0.15 2706.80 3137.00 254.49 3582.40
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Tab. 16. Optimized designs (cm2) obtained for the 200-bar planar truss problem.

Element group Kaveh and Zolghadr [12] Present work

CSS CSS-BBBC BBO CBBO

1 1.2439 0.2934 2.1211 0.43194

2 1.1438 0.5561 2.8942 0.42188

3 0.3769 0.2952 2.7893 0.12477

4 0.1494 0.1970 0.9380 0.19263

5 0.4835 0.8340 2.0888 0.69798

6 0.8103 0.6455 0.7550 0.99892

7 0.4364 0.1770 0.1889 0.23163

8 1.4554 1.4796 1.2664 1.29230

9 1.0103 0.4497 0.1524 0.10000

10 2.1382 1.4556 1.4054 2.06910

11 0.8583 1.2238 3.0896 1.11570

12 1.2718 0.2739 1.6398 0.21684

13 3.0807 1.9174 6.1505 2.59770

14 0.2677 0.1170 0.4268 0.10000

15 4.2403 3.5535 3.9541 2.32330

16 2.0098 1.3360 2.0265 1.58000

17 1.5956 0.6289 2.5121 0.10000

18 6.2338 4.8335 3.1521 6.78920

19 2.5793 0.6062 2.4011 0.10000

20 3.0520 5.4393 7.4375 6.67190

21 1.8121 1.8435 1.7242 2.03730

22 1.2986 1.8435 6.1541 0.29086

23 5.8810 8.1759 5.0404 9.83100

24 0.2324 0.3209 0.8897 0.60194

25 7.7536 10.9800 7.7439 10.05500

26 2.6871 2.9489 8.9341 4.13750

27 12.5094 10.5243 9.4718 9.40200

28 29.5704 20.4271 26.8170 17.71800

29 8.2910 19.0983 20.6050 15.40400

Weight (kg) 2559.86 2298.61 3403.22 2262.96

Mean weight (kg) N/A N/A 4054.20 2370.90

Standard deviation

(kg)
N/A N/A 435.08 78.94

Tab. 17. Natural frequencies (Hz) evaluated at the optimized designs for the 200-bar planar truss.

Frequency No. Kaveh and Zolghadr [12] Present work

CSS CSS-BBBC BBO CBBO

1 5.000 5.010 5.000 5.001

2 15.961 12.911 16.212 13.569

3 16.407 15.416 17.987 15.270

4 20.748 17.033 24.947 17.190

5 21.903 21.426 26.301 21.694

6 26.995 21.613 29.881 23.723
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5 Concluding remarks

This paper introduces a new optimization algorithm for

size and shape optimization of truss structures with natural

frequency constraints called the CBBO, which combines the

biogeography-based optimization and the Chaos theory. In this

approach, the new chaotic migration and mutation operators are

proposed to enhance the performance of standard BBO algo-

rithm. Both such migration and the mutation operators can help

to keep the diversity of whole population on a higher level to

avoid habitat’s trapping into local optima.

The performance of the proposed algorithm is evaluated using

a set of five well-known truss design examples. In each design

example, sensitivity analysis was performed for internal param-

eters (NH , c1, c2 and α) of the CBBO algorithm to investigate

how the CBBO is affected by these parameters and the best com-

bination of them obtained. The results of the sensitivity analysis

demonstrate that, for most design examples, the lowest struc-

tural weight is obtained for c1 = 1, c2 = 1 and α = 0.05.

The numerical results show the efficiency and capabilities of

the CBBO in finding the lightest structural weight For all design

examples, the structural weights obtained by CBBO are rela-

tively lighter weights than those previously reported in the liter-

ature (except for Case 1 of first design example). Moreover, it is

demonstrated that the standard deviation of optimized weights

obtained by the proposed algorithm is less than other methods.

It means that CBBO can provide higher quality and more robust

designs.
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