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Abstract

The traffic flow analysis and the relevant vehicle distribution

(“free-moving” or “platooned” vehicles) on highway facilities

at uninterrupted flow has always had fundamental importance

in Highway Engineering, with special reference to topics like

traffic operations, car accidents, road safety and air pollution

emissions. In light of this, the study suggests a calculation algo-

rithm as a random test generator to simulate a steady state traf-

fic flow and to provide time headways. Thanks to the outcome

produced by numerical simulations, we analysed platoon distri-

butions within traffic flows in a steady-state regime and showed

the results of numerical analyses carried out by traffic random

process functions. The laws to determine “time headways” were

obtained by the Pearson type III generalized distribution.
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1 Introduction

The traffic flow composition and the relevant presence of ve-

hicle platoons is particularly interesting in traffic study, and

more generally in Highway Engineering, with reference to a

plethora of theoretical and practical applications. For instance,

as for “traffic operations” [1–4], it is well known how the pres-

ence of platoons can influence breakdown probability [5, 6].

Moreover, platoon analyses turned out to be important also in

the study of car accidents and road safety [7]. Such a very high

practical interest accounts for the numerous models developed

over the years. By way of an example, it is worth mentioning

the research conducted by Baras et al. [8], which also considers

facilities with interrupted flow – and the most recent studies by

Ramezani et al. [9] and Jiang et al. [10]. Still today, therefore,

the topic has a remarkable scientific and practical interest and

deserves in-depth analysis.

At first, this article briefly describes the Pearson type III dis-

tribution which represents a time headway probability model

(more specifically, a generalized mathematical model). The pe-

culiarity of the Pearson type III distribution is its capacity to

generate distribution families depending on the chosen model

parameters, which can be suited to a plethora of types of traffic

phenomena. In the course of this research, some of the above

formulations were used to analyse a vehicle distribution within

a traffic flow in steady-state conditions and notably to identify

the presence and composition of vehicle platoons. In order to

apply this analysis to a great number of observations, a spe-

cific algorithm was designed and calibrated according to em-

pirical surveys, suitable to randomly simulate a traffic flow and

to “identify” the essential characteristics of any present vehicle

platoon. The algorithm was implemented to generate realiza-

tions of the random function Q(t) (i.e. a traffic flow on a road

cross-section in function of time t) starting from input data. The

resulting random functions were properly studied and their main

characteristics (i.e. non-random functions: mathematical hope

and variance) were determined to confirm the steady state flow

hypothesis assumed for the development of this study.
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2 Time headway probability models

By time headway probability model is meant a probability

density function f (t), or equivalently a distribution function

F(t), which describes the random variable t “time interval be-

tween two instants when two consecutive vehicle passages occur

in the observed road cross-section”. In general, the distribution

form can vary considerably in function of the stream flow rate

in question.

As a matter of fact, when the flow rate has very low values

(minimum interaction between vehicles), we can hypothesize

that headways are distributed randomly.

When the flow increases, the interaction between vehicles in-

creases as well and thus their headways are no more distributed

randomly. At the extreme, that is when the flow rate is close to

full capacity, nearly all vehicles interact one another and nearly

all headways assume the same value.

If we consider the two extreme conditions of flow rate vari-

ation described above, intuitively we realize that for flow rate

close to full capacities time headway distribution can be well

represented by the normal distribution. On the contrary, for very

low flow rates the statistical distribution which better represents

such a situation is the negative exponential distribution [11].

However, the most frequent case - and consequently of great-

est theoretical and practical interest - is represented by the in-

termediate situation comprised between the two extreme condi-

tions described above where within the observed flow there are

vehicles moving freely and other vehicles interacting with one

another, thus developing a car-following process. In that case,

time headway distribution can be shown by a generalized math-

ematical model which, as we will see, is valid also for one of the

two extreme conditions previously described. In more detail, it

is the Pearson type III distribution, whose probability density

function is as follows:

f (t) =
λ

Γ (K)
[λ (t − α)]K−1 e−λ(t−α)

where:

λ is a parameter function of the mean headway and the suc-

cessive K and α;

K is a parameter, comprised between 0 and +∞, which influ-

ences the distribution form;

α is a parameter, comprised between 0 and +∞, which repre-

sents individual drivers’ minimum headway (in seconds);

Γ (K) is the Gamma function, equivalent to (K − 1)!.

Pearson type III distribution can be considered as a general-

ized mathematical model, in that it represents a family of distri-

butions which can be determined by assigning appropriate val-

ues to coefficients K and α.

Table 1 shows the probability laws which can be obtained

from the general form of the Pearson type III law. We note that

in a case (K = 1 and α= 1) we can also get the negative expo-

nential law (apart from the shifted negative exponential law for

K = 1 and α >0), thought as the most appropriate in the extreme

condition of a very low flow rate [11].

Tab. 1. Family of probability laws obtained by the Pearson type III law

Model K value α value

Pearson type III ≥0 ≥0

Gamma ≥0 0

Erlang 1, 2, 3, . . . 0

Negative exponential 1 0

Shifted negative exponential 1 >0

The family of distributions deriving from the complete form

of the Pearson type III law can graphically be plotted on the

plane (K, α) as illustrated in Fig. 1

Fig. 1. Pearson type III distribution family on the plane (K, α)

Every point on the plane of Fig. 1, and therefore each paired

value (K, α) defines a single Pearson type III distribution. For

the aims of this work, two models belonging to the Pearson type

III distribution family, negative exponential and Erlang distri-

bution laws, were chosen for the following reasons:

• simple closed-form expressions of cumulative probability

function and its inverse (as detailed below);

• frequent use of models chosen in theoretical and practical ap-

plications;

• use of such models that α= 0, in that this parameter does not

influence calculations developed in this work (please refer to

paragraphs below for further details on the subject).

In detail, Table 2 shows the expressions of probability density

function and probability cumulative function for the laws in this

study, together with the estimation of K and λ parameters.
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We denote the distribution mean value with t and the standard

deviation with s. By way of an example, Fig. 2 and Fig. 3 il-

lustrate the graphs on probability distributions and probability

density distributions for the laws in question.

In general, it is worth reminding that, if traffic counts are dis-

tributed according to a Poisson probability distribution, the time

headway is an exponential variable; and also, if traffic counts

are distributed with a generalized Poisson distribution, the time

headway will be an Erlang probability function [12].

These functions were applied in the study of the platoon dis-

tribution in a traffic stream, as detailed in the later paragraphs of

this article.

(a)

(b)

Fig. 2. Negative exponential: example of probability density function (a)

and probability cumulative function (b), with t = 5 sec

(a)

(b)

Fig. 3. Erlang: example of probability density function (a) and probability

cumulative function (b), with t = 5 sec and s = 3.9 sec

3 Platoon formation in a traffic stream

Denoting the flow observation period with T , if we divide the

period T in “n” equally long intervals, the flow is steady-state if

the process mean, represented by the sequence of the random

variables “numbers of vehicles driving along the road cross-

section considered in the successive time intervals”, is constant.

The constant of the mean in the process does not imply that

the headway of two successive vehicle passages chosen ran-

domly is equal to the mean headway of the steady state flow

in question (or, in other words, it is equal to the reciprocal of the

stream flow rate 1/Q (t)).

This is easily understood from Fig. 4, which shows a part of

an empirical survey of time headways observed in a steady state

traffic flow: on the abscissa axis there is the progressive number

of the observed vehicle, on the ordinate axis there is the n-th

time headway from the following vehicle, while the horizontal

red segment shows the mean headway value seen in the entire

observation interval T (meant as the reciprocal of flow rate).

Fig. 4. Time headways observed in a steady state flow

In the example of Fig. 4, concerning 25 vehicles in transit,

we observed headways ranging between 0.5 and 7 seconds; the

mean headway value t in the entire observation interval T is

equal to about 2.1 seconds. This observation directly leads to

point out that, as is well-known, in traffic flow there may be ve-

hicles moving with long headways from the preceding and the

following vehicles or, alternatively, vehicles which present re-

duced headways from either the preceding or the following ve-

hicles or both. In light of this, a platoon can be defined [13]

as the set of vehicles which all - with the only exception of the

last in the file - have a lower time headway than the mean head-

way t, whose number N is higher than or equal to 2 and passing

one behind the other on observational road cross-sections. With

reference to the case shown in Fig. 4, we can note that:

• vehicles (2, 3, 4, 5, 6) form a platoon. In fact, for vehicles 2,

3, 4 and 5 the headway from the successive vehicle is lower

than the mean headway (observations are made below the red

line) while vehicle 6 represents the last member of the pla-

toon, given that the headway from the successive vehicle 7

turns out to be higher than the mean one;

• similarly, also sets (7,8), (11, 12, 13), (15, 16), (18, 19) and
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Tab. 2. Probability density and cumulative functions for negative exponential and Erlang models

Model Parameter estimation Probability density Probability distribution

Negative exponential λ = 1

t
f (t) = λe−λt F (t) = 1 − e−λt

Erlang
K = t

s f (t) = λ
(K−1)!

[λt]k−1 e−λt F (t) = 1 − e−λt ∑n=k−1
n=0

(λt)n

n!λ = k

t

(20, 21, 22) form platoons;

• the remaining vehicles do not drive in platoons.

This study analyses some characteristics of platoon distributions

within a steady-state traffic flow.

In order to analyse quite a sufficient number of data, which

can hardly be collected from in situ surveys, an appropriate al-

gorithm was created to randomly generate tests which simulate

a steady state-regime flow and provide the generated vehicles

with time headways.

The experiments carried out with this algorithm then allowed

to study the platoon distribution.

4 Random test generation algorithm

For the aims of the research we created an algorithm to ran-

domly generate tests which simulate a steady state-regime flow

and provide the generated vehicles with time headway values.

Such a tool offers the obvious advantage of randomly generat-

ing tests with reduced waste of resources (a common program-

ming language was used) compared to measurement campaigns

on operational roads.

It can be employed to study some phenomena linked to time

headway distribution and, more in general, to traffic processes.

The use of the algorithm led to the following conclusions which

need, in any case, to be validated by empirical data from in situ

surveys. In order to implement the algorithm, these are the input

data:

• mean and variance of time headway distribution;

• time headway distribution law (Erlang and negative exponen-

tial distributions were applied);

• total length of the observational interval T (assumed as fol-

lows: T = 900 sec = 15 min).

The algorithm follows two essential steps:

• generation of a random number, between 0 and 1, which rep-

resents the F (ti) value;

• calculation of i-th vehicle time headway by means of the in-

verse function of the probability distribution: F−1 (ti)→ ti.

The repetition of the procedure just described allows to de-

termine the headways of all the vehicles forming the simulated

traffic stream, of a total length T .

Therefore, the algorithm counts vehicle platoons and the ve-

hicle number forming them as well as provide the values of other

parameters specified below. The time headway in the model is

obtained by the closed-form expressions of the inverse probabil-

ity distribution functions. To this end, it is necessary to point out

that:

• For the negative exponential distribution, the inverse function

is as such:

t = −
ln (1 − F (t))

λ
(1)

• In order to get the inverse Erlang distribution function, we ini-

tially applied Lambert W function, defined by the expression:

z = W (z) · eW(z) (2)

which is, in general, valid for any complex number z. In fact,

if for simplicity we assume K = 2 with simple algebraic steps

applied to the probability distribution function, we obtain the

following expression:

e−λt (λt + 1) = 1 − F (t) (3)

Expression Eq. (3) can be solved in a closed form by applying

the W function as defined in Eq. (2). Such an algorithm min-

imizes calculus operations and the iteration number of compu-

tational processes which need to be performed by a computer,

thus reducing the cycle execution times. Some tests were per-

formed to verify the goodness and strength of the model. To

this end, a sensitivity analysis was performed, carried out by

varying input parameter values of the model within the respec-

tive variability ranges as usually observed in reality; the results

obtained from the algorithm varied in a reasonable range. More-

over, a comparison was made between time headways observed

in some measurement campaigns on operational roads [14–16]

and those obtained from the model, in which simulation input

data were the flows observed in measurement campaigns as well

as other empirical data.

5 Traffic flow simulations and result analysis

As previously said the model was designed to generate tests

for studying the number distribution of platooned vehicles

within a traffic flow. We considered a constant flow rate (steady

state flow hypothesis) in a 15-min observation period and got

time headways for each test. The results of some tests are shown

in Fig. 5. On these graphs the abscissa axis denotes the progres-

sive number of the fictitious vehicle passage while the ordinate

axis indicates the time headway value expressed in seconds; ev-

ery point is then the graphical representation of the test con-

ducted by random generation.
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The red horizontal line represents the headway mean value

equal to the reciprocal of flow rate. Four scenarios with increas-

ing flow rates (720, 1020, 1320, 1620 veh/h) were analyzed and

10 random tests were generated for each scenario. In order to

carry out this simulation we hypothesis that the headway dis-

tribution may be expressed by means of a negative exponential

and/or an Erlang function. Eighty experiments were generated

in all. Then, the number of vehicles driving in platoons as de-

fined in paragraph 3 was analyzed for each test. The results are

illustrated in the histogram of Fig. 6 where the columns rep-

resent the number of the platooned vehicles in question; the

column height represents the absolute number of the observa-

tions made. Vehicles do not drive in platoons (first column) in

around 50 times, while two-vehicle platoons are observed about

35 times; moreover, the number of the platooned vehicles is

equal to 376. As a matter of fact, this is an evidence of a gen-

eral nature, in the sense that in all the performed tests (including

those with a lower flow) the number of free-moving vehicles was

always inferior to the number of platooned vehicles. The main

characteristics of the distributions obtained in the 80 simulated

tests are summed up in the following tables. The characteristics

are mean, variance and their ratio.

The tests are grouped in classes on the basis of the mean flow

rate; Table 3, Table 4, Table 5 and Table 6 show the results from

both the time headway distributions (negative exponential and

Erlang). In all cases the number mean of platoon-forming ve-

hicles is maintained on values ranging between around 2 and

3 but no correlation is visible between the flow rate value and

the mean itself. Similarly, the variance ranges between around

2 and 7 except for some isolated tests and the mean/variance

ratio is always lower than 1.25. Fig. 7 and Fig. 8 show mean

and variance values and their ratio in function of the flow rate Q

for time headway negative exponential and Erlang distributions

respectively.

In Table 7 some results obtained by the comparison are shown

(for the sake of simplicity, only five comparisons are shown).

The flow rate mean value is the same between the results ob-

tained from measurement campaigns on operational roads and

those obtained from the model; in fact, the flow rate mean val-

ues are the input data for the model. It is also possible to see that

results obtained from the application of the model are similar to

those obtained from measurement campaigns: in particular, pla-

toon number means show a deviation less than 7%; variances

show bigger deviations (in almost all cases less than 16%).

However, the comparison of the parameters particularly in-

teresting for the purpose of this study (such as flow mean and

variance, platoon number mean and variance) pointed out de-

viations compatible with the random nature of the processes in

question.

(a)

(b)

Fig. 5. Examples of results from test generation

Fig. 6. Example of number distribution of platooned vehicles

Fig. 7. Characteristics of the platoon number distribution (blue: mean; red:

variance; green: mean/variance ratio) according to time headway exponential

negative distribution
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Tab. 3. Characteristics of number distributions of platoons per Qtheoretical = 720 veh/h

Negative exponential Erlang

Test Q [veh/h]
Distribution characteristics

Q [veh/h]
Distribution characteristics

Mean Variance
mean/

variance
Mean Variance

mean/

variance

1 664 2.515 3.023 0.832 728 2.395 1.975 1.212

2 684 2.631 3.768 0.698 716 2.452 2.279 1.076

3 684 2.552 2.281 1.119 688 2.457 3.440 0.714

4 752 2.575 3.942 0.653 728 2.600 3.316 0.784

5 788 2.855 3.361 0.849 728 2.304 2.881 0.800

6 728 2.800 3.694 0.758 728 2.193 3.158 0.694

7 748 2.922 6.041 0.484 716 2.325 3.433 0.677

8 636 2.524 3.673 0.687 684 2.443 2.366 1.032

9 772 2.644 5.205 0.508 688 2.493 2.930 0.851

10 796 2.726 5.368 0.508 752 2.611 3.649 0.715

Mean 725 2.674 4.036 0.710 716 2.427 2.943 0.856

Tab. 4. Characteristics of number distributions of platoons per Qtheoretical = 1020 veh/h

Negative exponential Erlang

Test Q [veh/h]
Distribution characteristics

Q [veh/h]
Distribution characteristics

Mean Variance
mean/

variance
Mean Variance

mean/

variance

1 1088 2.804 6.534 0.429 1068 2.363 3.126 0.756

2 1076 2.514 3.780 0.665 936 2.629 4.918 0.535

3 1004 2.437 4.582 0.532 1072 2.552 3.807 0.670

4 1068 2.934 6.018 0.488 1028 2.677 5.210 0.514

5 1136 2.679 4.353 0.615 1076 2.280 2.801 0.814

6 1120 2.667 4.647 0.574 988 2.714 4.495 0.604

7 1144 2.724 4.548 0.599 1072 2.552 3.807 0.670

8 1028 2.793 6.034 0.463 1028 2.677 5.210 0.514

9 1076 2.690 4.438 0.606 1076 2.280 2.801 0.814

10 980 2.663 3.632 0.733 988 2.714 4.495 0.604

Mean 1072 2.691 4.857 0.570 1033 2.544 4.067 0.649

Tab. 5. Characteristics of number distributions of platoons per Qtheoretical = 1320 veh/h

Negative exponential Erlang

Test Q [veh/h]
Distribution characteristics

Q [veh/h]
Distribution characteristics

Mean Variance
mean/

variance
Mean Variance

mean/

variance

1 1380 2.518 4.781 0.527 1332 2.431 3.615 0.672

2 1468 2.659 3.817 0.697 1404 2.294 2.775 0.827

3 1272 2.789 4.911 0.568 1368 2.591 3.938 0.658

4 1324 2.586 5.111 0.506 1352 2.522 4.296 0.587

5 1380 2.782 4.822 0.577 1332 2.562 3.597 0.712

6 1384 2.813 6.711 0.419 1336 2.420 2.158 1.122

7 1308 3.028 5.560 0.545 1260 2.582 3.254 0.794

8 1260 2.716 3.701 0.734 1352 2.397 3.198 0.750

9 1312 2.645 5.710 0.463 1316 2.301 3.381 0.681

10 1260 2.692 3.198 0.842 1240 2.480 2.542 0.976

Mean 1335 2.723 4.832 0.588 1329 2.458 3.275 0.778
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Tab. 6. Characteristics of number distributions of platoons per Qtheoretical = 1620 veh/h

Negative exponential Erlang

Test Q [veh/h]
Distribution characteristics

Q [veh/h]
Distribution characteristics

Mean Variance
mean/

variance
Mean Variance

mean/

variance

1 1704 2.840 4.525 0.628 1640 2.563 4.386 0.584

2 1556 2.720 3.682 0.739 1644 2.553 3.611 0.707

3 1532 2.697 3.745 0.720 1620 2.396 2.074 1.155

4 1692 2.548 4.273 0.596 1600 2.597 3.419 0.760

5 1568 2.649 3.740 0.708 1596 2.229 2.885 0.773

6 1636 2.709 3.955 0.685 1580 2.453 3.137 0.782

7 1488 2.884 5.525 0.522 1632 2.534 3.975 0.637

8 1560 2.889 6.682 0.432 1524 2.540 3.525 0.721

9 1624 2.553 3.654 0.699 1604 2.475 3.916 0.632

10 1580 2.669 3.611 0.739 1560 2.422 2.920 0.829

Mean 1594 2.716 4.339 0.647 1600 2.476 3.385 0.758

Tab. 7. Comparison between results obtained from the model and from measurement campaigns on operational roads

Observed value

Results from

measurement

campaigns

Results from

application of the

model

Percent deviation

Test 1

Flow rate mean

[veh/20 sec]
2.389 2.389 -

Flow rate variance 5.830 4.927 -15.49%

Platoon number

mean [veh]
3.024 2.876 -4.89%

Platoon number

variance
6.348 7.323 15.36%

Test 2

Flow rate mean

[veh/20 sec]
2.878 2.878 -

Flow rate variance 7.899 6.944 -12.09%

Platoon number

mean [veh]
2.981 2.793 -6.31%

Platoon number

variance
5.328 4.992 -6.31%

Test 3

Flow rate mean

[veh/20 sec]
2.111 2.111 -

Flow rate variance 3.600 3.356 -6.78%

Platoon number

mean [veh]
2.376 2.498 5.13%

Platoon number

variance
5.927 6.782 14.43%

Test 4

Flow rate mean

[veh/20 sec]
1.550 1.550 -

Flow rate variance 3.110 3.593 15.53%

Platoon number

mean [veh]
2.668 2.753 3.19%

Platoon number

variance
4.680 4.901 4.72%

Test 5

Flow rate mean

[veh/20 sec]
1.083 1.083 -

Flow rate variance 0.762 1.004 31.76%

Platoon number

mean [veh]
1.982 2.096 5.75%

Platoon number

variance
3.925 4.703 19.82%
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Fig. 8. Characteristics of the platoon number distribution (blue: mean; red:

variance; green: mean/variance ratio) according to time headway Erlang distri-

bution

6 Generation of traffic process realizations

The algorithm can also generate realizations of the random

function Q (t) “traffic flow Q on a road cross-section in function

of time t”. In general, a random function is defined as a function

which, after a proof, can take a concrete form; this form is called

random variable realization. Unlike ordinary random variables,

random functions represent sizes which vary continuously dur-

ing the proof [17].

In this case the random function independent variable is as

usual represented by the time t. Here, the random variable Q (t)

is a continuous function in the sample interval.

A realization cannot strictly be represented in a continuous

form, but rather through discrete values with sufficiently close

time intervals which can guarantee a very precise image of its

variations. It is goes without saying that a random function real-

ization becomes a (discrete) random variable for a set t value.

Therefore, the random variable Q (t) realizations were repre-

sented by means of the values which are assumed by such a

variable in set time instants t, corresponding to instants where a

single vehicle passage is simulated.

More in detail, for time instant t = t∗ the flow Q (t∗) was ob-

tained by means of time headways generated by the algorithm as

follows: Q (t∗) is equal to the number n (t∗) of vehicles passing

from instant 0 to instant t∗, divided by time t∗:

Q (t∗) =
n (t∗)

t∗
(4)

seen that

t∗ =

n∑
i=0

ti (5)

with ti : time headway of i-th vehicle.

In other words, t∗ is the sum of time headways of n vehicles

in question.

This procedure allowed to obtain the realization families for

all the tests carried out by using the calculus algorithm, with

regard to the same classes indicated in paragraph 5 (that is to

say, with flow rates equal approximately to 720, 1020, 1320,

1620 veh/h).

The graphical representation of some realization families is

shown in Fig. 9 and Fig. 10 for time headways consistent with

the negative exponential and Erlang distributions respectively.

We observed that in all realizations the functions stabilized

around the mean flow rate value, previously set as input datum

in the calculus algorithm, after a first time interval in which the

flow rate Q oscillated between very high values and values close

to zero.

This can be explained by the fact that in the first part of the ob-

servation interval the reduced number of passing vehicles could

not be considered as representative of the phenomenon yet. On

the other hand, when time t (and therefore, the observed vehicle

number) increased, the sample turned out to be more represen-

tative and consequently the observed flow rate value tended to

the mean value. Finally, we also estimated the mathematical

hope (meant as the non random function which is equal to the

mathematical hope of the corresponding random function sec-

tion for each value of the argument t) and the variance (meant

as the non random function whose value is equal to the variance

of the corresponding random function section for each t) for the

realization families.

The values observed for these characteristic functions (math-

ematical hope and variance), obtained in a discrete form for

points with set intervals ∆t confirmed what expected on the ba-

sis of the steady state flow hypothesis, or in other words that the

mathematical hope is very close to a constant function with a

value equal to the mean flow rate and variance is, in all cases,

a decreasing monotonous function. The latter observation espe-

cially indicates the reduction in the dispersion of random func-

tion realizations with regard to the mean when time t (and there-

fore the number of passing vehicle) increases.

7 Conclusions

This research provides a further scientific contribution to the

platoon size distribution analysis in steady-state flow conditions

and on highway facilities with uninterrupted flow, based on the

generalized probability law (Pearson type III law) and on its de-

rived laws after properly assigning coefficient values in its for-

mula.

Notably, we examined and applied two derived laws, the neg-

ative exponential and Erlang distributions, both used to calcu-

late the time headway between vehicles of a set traffic flow. We

then analysed vehicle platoon distribution within a traffic stream.

For the purpose of this study, consistently with the convention

followed in numerous scientific studies, by “platoon” we meant

the set of vehicles – with the exception of the last in the file

– presenting vehicle headways lower than the mean headway t,

whose number N is higher than or equal to 2 and transiting one

after the other along the observational road cross-section.

In order to analyse quite a sufficient number of data, which

can hardly be collected from empirical traffic surveys, we de-

signed an appropriate algorithm to randomly generate tests

which simulate a steady state-regime flow and provide the gen-

erated vehicle with time headways. We tested such an algo-

rithm to verify its reliability and strength by comparing the out-
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Fig. 9. Examples of families of random variable Q(t) realizations – headways with a negative exponential distribution
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Fig. 10. Examples of families of random variable Q(t) realizations – headways with Erlang distribution
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put with the empirical data observed during some measurement

campaigns of time headways on Italian roads into operation. Re-

sults obtained from some of the tests carried out are shown.

Then, we used the algorithm to generate an adequate number

of tests and to analyse platooned vehicle distribution and number

within a traffic stream in a steady state regime.

The results of several tests allow to reach the conclusion that

the platoon-forming vehicle number mean assumes a value rang-

ing between 2 and 3 in any case. Moreover, there is no correla-

tion between the flow rate value and the mean itself. Similar ob-

servation can be made for variance which is comprised between

2 and 7 except for some tests and for the ratio mean/variance

always lower than 1.25.

The algorithm can also generate realizations of the random

function Q(t) “traffic flow Q on a road cross-section in function

of time t”. We calculated the mathematical hope and variance

for families of realizations. The values obtained for the charac-

teristic functions (mathematical hope and variance) in a discrete

manner (at set time intervals) confirmed what expected on the

basis of the flow stationarity hypothesis: the mathematical hope

assumes values close to a constant function with a value equal to

the mean flow rate and, in any case, the variance is a decreasing

monotonous function. With direct reference to variance, when

time t increases (and consequently the passing vehicle number),

the dispersion of random function realizations is more reduced

than the mean.
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