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Abstract

The effect of the construction of the 4th subway line of Bu-

dapest (Metro4) on the potential surfaces of the gravity field has

been investigated from the aspects of monitoring vertical defor-

mation. In the study mass loss due to the excavation of the two

tunnels and of the stations has been considered. Practically, the

effect of the mass loss on leveling measurements was determined

at a level 1 m above the ground, roughly simulating common in-

strument heights. The indirect effect of the actual deformations

of the physical surface on the leveling was not considered, so in

the investigation a rigid Earth has been assumed. In the study,

different arrangements of the leveling lines and of the excava-

tions were examined, furthermore, the steepness of the leveling

line and the density of the leveling points were analyzed. Ac-

cording to the results, under certain arrangements of the level-

ing line, the effect can reach the 0.05 mm order of magnitude,

which is equivalent to the accuracy of the precise leveling.
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Department of Geodesy and Surveying, Budapest University of Technology and
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1 Introduction

Temporal variations of gravity field are of central interest in

geodesy and geophysics, since it reflects the mass redistributions

on the surface and within the planet Earth, providing a unique

tool for investigating its interior [14], [8]. Nowadays there is

an urge of such analyses in global and regional scales due to

the obvious signs of a climate change [11]. The state-of-the-

art gravity satellites turn to be very efficient tools for that [9],

[16], [12], [10]. As the knowledge of the temporal gravity in

global and regional scales improves notably, there is a demand

for the local gravity variations as well, since satellites are in-

sensitive for the temporal varying gravity in local scales. Thus,

it can only be determined independently by terrestrial measure-

ment techniques e.g. [3] to provide the short frequency part of

the spatial wavelength spectrum [15].

In the present study temporal variation of a local gravity fea-

ture due to a technogenic mass redistribution effect is modeled

and analyzed. In case of a huge industrial project, notable redis-

tribution of soil occurs due to the earthworks. It does affect the

gravity field [1]. As so, it also has an effect on the local hori-

zontal and vertical directions. As surveying instruments are set

up with respect to the horizontal or vertical, it does affect the ac-

companying surveying measurements. In the present study cer-

tain geodetic aspects of an actual surveying engineering applica-

tion is considered. The excavation of various layers of soil dur-

ing the construction of the new subway line of Budapest, Metro4

is investigated from the aspect of its effect on the simultaneously

performed vertical deformation measurements.

2 Theoretical Background and Formulation

2.1 The classical formulae of modelling

In case of excavating tunnels, deformations on the surface are

expected to be accompanied. Furthermore, the removal of a no-

table amount of soil changes the structure of the gravity field

too. Therefore, observed height variation, dH consists of two

components [1], [13]:

dh = dH + dN (1)
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where dh refers to the actual surface deformation, and dN is

change of the geoid undulation due to the mass loss. (Generally,

in this study the differential symbol, d refers to change in time

and not in space.) The change of the geoid undulation does af-

fect the height measurements, but has no effect on the neighbor-

ing structures, buildings. Such a height difference involved to

the geometrical leveling is rather the consequence of theoretical

looseness than actual vertical displacement, thus the confusion

of the two should be avoided.

Change of the geoid undulation by time, dN in Eq. (1) is usu-

ally interpreted as (cf. [2] and [17]):

dN =
R

4πg

∫ ∫
dg · S (ψ) dσ +

R

4πg

∫ ∫
2g

R
dh · S (ψ) dσ

(2)

The terms on the right hand side of Eq. (2) refers to two inde-

pendent sources of mass variations:

1 deformation of the equipotential surface due to the mass loss

corresponding to the tunnelling,

2 deformation of the equipotential surface due to the actual ver-

tical displacement of the physical surface.

For every infinitely small area, dσ = cosϕ dϕ dλ the spherical

distance from the point of interest, P is computed as

cosψ = cosθ cosθP + sinθ sinθP cos(λ − λP) (3)

Eq. (2) describes the temporal variation of geoid undulation as

a function of that of the gravity anomaly, dg, weighted by the

Stokes function, S (ψ). Considering a mass anomaly model, dm

as known input data, Eq. (2) can be solved by using the Newto-

nian gravitational law,

dg = k

∫
dm

r2
(4)

A more direct approach to obtain temporal variations of geoid

undulation from a mass variation model is to derive geoid un-

dulation variations from Newtonian potential using the Bruns’

equation.

dN =
1

γ̃
k

∫
dm

r
(5)

In Eq. (5) γ̃ refers to the mean normal gravity between the point

and the reference ellipsoid along the plumb line. Note that

Eq. (5) is analogue with the first term of the right hand side of

Eq. (2).

In the followings a single height difference between stations A

and B with repeated levelling measurements performed at time

t and t1 is considered (c.f. Fig. 1). Temporal variation of geoid

undulation between the two stations can be defined as the differ-

ence of the temporal changes in each point

dNAB = dNB(t1 − t0) − dNA(t1 − t0) (6)

The measured vertical displacement is interpreted as temporal

change of the height difference

dHAB = HAB (t1) − HAB (t0) (7)

Fig. 1. Visualization of the apperent vertical displacements due to the tem-

poral variation of gravity field

Then the relationship between change of geoid undulation and

observed vertical displacement can be derived from equations

above as follows (c.f. equation 212.5 of [1], on page 31):

dHAB = −dNAB −
g̃B (t1) − g̃B (t0)

g̃B (t1)
HAB (t0) . (8)

In Eq. (8) g̃B refers to the mean gravity between levels of A and

B along the plumb line through point B. This is approximately

equal to the gravity at the half of the HAB height difference.

2.2 Elaborating the formulation

In the present case, height of the benchmarks on the test re-

gion is available after the tunneling, after the excavation has

been performed. However, according to [1], HAB (t0) in Eq. (8)

refers to the original height difference, before the deformation

takes place. As so, a modified version of Eq. (8) is derived:

dHAB = −dNAB −
g̃B (t1) − g̃B (t0)

g̃B (t1)
(HAB (t1) + dNAB) (9)

For details of the derivation see [5].

In the present study effect of the excavation on the level sur-

faces was estimated based on equations Eq. (5) - Eq. (9)). The

integral of equation Eq. (5) was approximated by a summation

over mass elements. A preceding study has already been pre-

sented by [4], where the non-deformational effects due to the

tunneling were investigated in a regular grid, and not along lev-

eling lines as it is to be presented here. In this study the effect of

the actual surface deformation on the gravity field, i.e. second

term of the right hand side of Eq. (2) has been neglected. The

effect due to actual surface deformations has been analyzed and

discussed by [6].

3 Data and Calculations

The calculations have made use of the following available

data:

1 longitudinal sections and cross sections of the tunnels pro-

vided by the DBR Metro Project Directorate

2 soil density along the tunnels provided by the Geovil Ltd

3 gravity anomaly data in the vicinity of the tunnels provided

by the Hungarian Geological and Geophysical Institute
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4 horizontal trace of the leveling lines provided by the Consor-

tium of the Soldata Ltd and Hungeod Ltd

The top view of the tunnels and the location of the surrounding

gravimetric data are displayed on Fig. 2. The used coordinates

are the local stereographic coordinates (BÖV, equivalent to Bu-

dapest Municipal Projection system).

Fig. 2. The tunnel (solid black line interrupted at the stations) and the gravi-

metric points (grey stars) with main structures of Budapest in the background.

The axis are local stereographic coordinates in m.

First a 3D geometry model of the tunnels and of the stations

was determined based on the longitudinal sections. The corre-

sponding mass model of the excavated soil has been derived by

using the soil density data, and the effect of the excavation on

geoid undulation was determined by Eq. (5). The resolution of

the mass model was 30 cm, i.e. the masses were concentrated

into cubes with 30 cm long edges. Then the adequate formulas

of rectangular prisms (c.f. [7]) were simplified to simple point

masses, and Eq. (5) was used. The accuracy loss due to this sim-

plification was verified by [4], and it was found to cause negli-

gible difference. In case of the stations, the exact rectangular

prism formula was used. The mass removals due to excavation

in the tunnels and in the stations were added, and the result is

considered to be an estimate of the effect of the excavation with-

out any displacements assumed to occur.

Subsequently, gravity value was interpolated from the neigh-

boring gravity data to each point of evaluation, and for every

single height differences of the leveling line the effect of the tun-

neling on the every single height measurements was determined

by Eq. (8).

The effect of the excavation was evaluated at the points of ac-

tual vertical control leveling lines on the south-east part of the

subway line, c.f. Fig. 3 (note that the interruptions of the tun-

nels refer to the presence of stations). To the known heights of

the benchmarks 1 m has been added to simulate a typical instru-

ment height. Altogether there were 40 leveling lines involved in

the analysis. Among them, only some typical features are to be

presented in the following section.

4 Results

Generally, the effect of the excavation on the measurements

along the leveling lines is varying between 0 and 0.01 mm.

Though it does not seem to be much, it is important to note

that effect of this theoretical error is in the same magnitude than

that of the precision of the precise level instruments. As so, it is

detected in the measurements. Furthermore, it could be detected

that under certain conditions it accumulates along the leveling

line. The accumulation of the error depends on the orientation

of the line, the distance of the instrument and the staff, and the

height difference.

4.1 Dependence on the relative orientation

The orientation of the leveling line relatively to the orienta-

tion of the tunnels makes notable impact on the result. The two

extremes of the orientation is when the tunnel and the leveling

line are parallel to each other and when they are perpendicularly

cross each other. There was no good example for the perpen-

dicular crossing (c.f. Fig. 3), but as an example, a nice example

for that is adopted from [4] on a different part of the same sub-

way line. The perpendicular crossing with very short distances

between the instrument and the staff is displayed in Fig. 4. The

figure shows the longitudinal section of the leveling line. The

ordinate is the distance from the midpoint of the two tunnels,

and the abscissa is the estimated error in µm. The horizontal

location of the tunnels is displayed by the two circles close to

the zero value of the ordinate. From the figure at the crossing a

sudden change of sign can obviously be detected. Due to that,

when the line is processed, the different sign of the error neutral-

izes the effect. So practically the closure error is compensated.

On the other hand, in cases, when the leveling line runs par-

allel to the tunnels, the error effect becomes similar for every

single height differences. Thus the error is accumulating along

the line. For such an example in Fig. 5 and Fig. 6 the line no.

34 is presented. Fig. 5 shows the horizontal arrangement of the

line, which is parallel to the tunnels, passing through at the up-

per left corner. The abscissa and the ordinate refer to the BÖV

coordinates in meter. On Fig. 6 the error estimate is shown along

with the longitudinal section of the leveling line. The zero or-

dinate refers to the starting point. The error on the abscissa is

displayed in µm.

As it can be seen, the error has consequently the same sign,

affecting all the measurements in the same extent. On Fig. 6 also

the back and forth errors are displayed. It is obvious that this er-

ror cannot be eliminated by averaging back- and forth measure-

ments. As so, in such a case the error remains in the adjusted

heights even in case of a thorough processing.

4.2 Dependence on the height difference

In the cases of the tested leveling lines, with the exception of

line no.14, the height difference between the first and the last

point is only 1-2 m. The last section of the line no. 14 climbs up

to a hill, resulting in a 13 m height difference along the line, cf.

Fig. 7 and Fig. 8. On Fig. 7 and Fig. 8 the axes are the same as

in the case of Fig. 5 and Fig. 6, respectively.

According to Fig. 8, the dependence of the error on the height
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Fig. 3. The location of the vertical control lines (thin lines) with respect to the tunnels (thick parallel lines).

Fig. 4. An example on the effect of perpendicularly crossing the tunnels.
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Fig. 5. Top view of the levelling line no. 34. dashed line: leveling line.

symbol ’o’: place of staff, symbol ’x’: assumed place of the instrument. The

two tunnels are marked by thin lines on the upper left part of the figure.

difference is obvious. Where the steep part comes, the error

suddenly increases with an order of magnitude. The result is

not surprising at all, as in Eq. (9) height difference appears as a

multiplier.

Fig. 6. The estimated error for every single height differences along level-

ling line no. 34 in µm. The error along the back- and forth levelling is deter-

mined independently, then the mean error was derived. At the bottom staff- and

instrument places are shown in the same manner as in Fig. 5.

4.3 Dependence on instrument-staff distance

Oddly, the dependence of the error on the distance of the level

instrument and the leveling staff cannot be demonstrated from

real measured data, like in the present case. Although it is obvi-

ous: measuring with short distances means a finer resolution of

the level surfaces, than long ones. Thus with shorter distances

the error can be decreased.

The reason it could not be demonstrated is a very practical

one: in case of an actual work, short distances are used only in

case of large height differences. So it is used for steep fields,

such as line no 14 on Fig. 6. However, in this case the unlike

effect of the height difference suppresses the effect of the short

distances.

5 Conclusions

Basically, the effect of the excavation on the measurements

along the leveling lines was found to have theoretical impor-

tance in most cases. Still, in such cases, when the leveling line

Fig. 7. Top view of the levelling line no. 14. dashed line: leveling line.

symbol ’o’: place of staff, symbol ’x’: assumed place of the instrument. The

two tunnels are marked by thin lines on the bottom of the figure.

Fig. 8. The estimated error for every single height differences along levelling

line no. 34 demonstrating a very steep levelling line at its final section. The error

along the back- and forth levelling is determined independently, then the mean

error was derived. At the bottom staff- and instrument places are shown in the

same manner as in Fig. 7.
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was running parallel to the tunnels, the cumulative error reached

the precision of precise leveling. Even though precise leveling

measurements are subsequently processed, dropping the random

errors out, in case of parallel orientation the error remains in the

adjusted results and becomes systematic.

Further relevance of the study is that Metro4 is just a subway

line. There are several other constructions resulting in huge ex-

cavations, removal of notable masses. It is important to keep in

mind that redistribution of mass does affect the gravity field. In

case of a large construction there is always a demand for sur-

veying control measurements in order to detect actual deforma-

tions. Thus it is worth to conclude that surveying control mea-

surements are infected by the temporal variation of the gravity

field as well, and that the two cannot be separated from the mea-

surement, only by theoretical considerations. It remains the case

as long surveying methods make use of the gravity field for ad-

justing the direction of the horizontal and the vertical.

Finally, it is worth to note that this study was considering ap-

parent deformations only. In reality, there are always real de-

formations as well. The actual deformations occur much closer

to the instrument than the tunnels are, it is just 1-1.5 m below

the instrument. These deformations also have their impact on

the gravity field. It means that real deformations have two ef-

fects on the control measurements: a direct effect, as they are

the deformations to be detected, and an indirect effect, as they

alter the gravity field. Even though these close-to-instrument

deformations can be small in magnitude, as the gravity vanishes

with square distance, they can affect the measurements in larger

extent. As a complementary research to the present study, it is

essential to quantify the magnitude of the indirect effect of real

deformations.
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