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Abstract

A numerical procedure to compute the mean and covariance

matrix of the random response of stochastic structures modeled

by FE models is presented. With Gegenbauer polynomial ap-

proximation, the calculation of dynamic response of random

parameter system is transformed into an equivalent certainty

expansion order system’s response calculation. Non- station-

ary, non-white, non-zero mean, Gaussian distributed excitation

is represented by the well known Karhunen-Loeve (K-L) ex-

pansion. The Precise Integration Method is employed to ob-

tain the K-L decomposition of the non- stationary filtered white

noise random excitation. A accurate result is obtained by small

amount of K-L vectors with the vector characteristic of energy

concentration, especially for the small band-width excitation.

Correctness of the method is verified by the simulations. The ef-

fects to the response mean square value by different probability

density functions of random parameters with the same variable

coefficient are studied, and a conclusion is drawn that it is inap-

propriate to approximate other types of probability distribution

by normal distribution.
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1 Introduction

In practical engineering problems, not only the external exci-

tations such as wind loading, seismic waves etc., demonstrate

uncertainty, but also the structural parameters exhibit uncer-

tainty. The uncertainty of structural parameters may have a

strong influence on structural reliability. [1, 2], therefore it is

more reasonable to consider the variability of structural physi-

cal parameters in dynamic response analysis of structures.

The double random vibration analysis, i.e. the random vibra-

tion analysis of stochastic parameter structures subjected to ran-

dom excitation, attracts much interest in researchers. In current

literatures there are mainly three ways to tackle this problem.

The first is Monte Carlo simulation method [1]. This method is

robust and powerful in this aspect of structural analysis, but it

is very time-consuming. The second is stochastic finite element

method. Although the random eigen value problem, static anal-

ysis problem and structural stability problem, etc. can be solved

efficiently with this method [2], the stochastic finite method is

haunted by the notorious secular term in random dynamic re-

sponse analysis of structures. The third is orthogonal series ex-

pansion method [3–6] in which the structural response is ex-

panded as a set of orthogonal series and the corresponding nu-

merical characteristics are given as analytical solution. Li [6] de-

veloped an order expanded system method by applying sequen-

tial orthogonal expansion to deal with double random vibration

analysis. Some numerical examples indicate that orthogonal se-

ries expansion method avoids the secular term of perturbation

methods and does not have to assume the variability of structural

parameters to be small. However, the method is still very time-

consuming for large degree of freedom FE model. C.A. Schenk

and H.J. Pradlwarter [7–9] developed a method to deal with dy-

namic stochastic response of FE models under non-stationary

random excitation, non-zero mean, non-white, non-stationary

Gaussian distributed excitation is represented by the well known

K-L expansion. For the case where the stochastic loading is de-

scribed by a finite set of deterministic K-L vectors, which in fact

is considered in this paper, and to deal with double random vi-

bration analysis. Then, the classic vibration analysis method can

apply to the order-expanded equation, and the probabilistic in-
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formation of double random vibration problem can be obtained.

2 Method of analysis

2.1 Orthogonal polynomial expansion of double random vi-

bration system

The dynamic equilibrium equation of stochastic structural

system with n degrees of freedom can be written as [10]

MẌ + CẊ + KX = P (t) (1)

In which M, C and K are the values of mass, damping and

stiffness matrices, respectively. P (t) is a n x 1 random excitation

vector. Ẍ, Ẋ, X are n x 1 random acceleration, velocity and dis-

placement vectors, respectively, whose uncertainty arise from

both stochastic structural parameters and external excitation.

M = M0 +

Nm∑
j=1

ξ jM j (2)

C = C0 +

Nc∑
j=1

ξ jC j (3)

K = K0 +

Nk∑
j=1

ξ jK j (4)

In which M0, C0 and K0 are the expected value of mass,

damping and stiffness matrices, respectively. Mj, Cj and Kj are

the deviatoric components of mass, damping and stiffness matri-

ces. ξ j denotes the random variable. Nm, Nk, Nc are the number

of the random variables in mass, damping and stiffness matrices,

respectively.

In most of the practical engineering problems, it is rational

to assume that the variability of external excitation and the vari-

ability of stochastic structural parameters are statistically inde-

pendent of each other. According to the orthogonal polynomial

expansion method, the response vectors in Eq. (1) can be decom-

posed in probability sub-space spanned by random variables ξ j

as follows [10, 11]

X (ξ, ς, t) =

=

N1∑
l1=0

N2∑
l2=0

. . .

NR∑
lR=0

Yl1,l2...lR (ς, t) Hl1 (ξ1) Hl2 (ξ2) . . .HlR (ξR)
(5)

Ẋ (ξ, ς, t) =

=

N1∑
l1=0

N2∑
l2=0

. . .

NR∑
lR=0

Ẏl1,l2...lR (ς, t) Hl1 (ξ1) Hl2 (ξ2) . . .HlR (ξR)
(6)

Ẍ (ξ, ς, t) =

=

N1∑
l1=0

N2∑
l2=0

. . .

NR∑
lR=0

Ÿl1,l2...lR (ς, t) Hl1 (ξ1) Hl2 (ξ2) . . .HlR (ξR)
(7)

In which, Yl1l2...lR (ς, t), Ẏl1l2...lR (ς, t) and Ÿl1l2...lR (ς, t) are n x 1

unknown random processes. ξ is random vector composed of

the independed random variable ξ j. ς is the random vector de-

notes the uncertainty of external excitation which is composed

of θ j ( j = 1,2. . . Na) and explained in further detail below. R

is the number of random variables of ξ j. Hl j

(
ξ j

)
is a set of

truncated orthogonal polynomials, whose types vary with the

probability density function of stochastic structural parameters.

Generally, Hermite polynomials are selected for Gaussian ran-

dom variables, Legendre polynomials for uniform random vari-

ables, Laguerre polynomials for exponential random variables,

Gegenbauer polynomials for λ - PDF random variables [12] etc.

The most important properties of the orthogonal polynomials

are their recurrence relationship and the orthogonality relation-

ship in inner product space defined by the expectation operation

with respect to random variables ξ j. The truncation number of

polynomials for every random varialbe is Ns (s = 1, 2, . . . , R),

the sum of combination of the polynomials is MR =
∏R

s=1 (Ns).

The order-expanded equations can be obtained by assembling

these equations of sum of polynomials, and its dimension is

N = MR × n [6]

AMŸ + ACẎ + AKY = F (t) (8)

Where,

Y =
[
YT

0...0,Y
T
0...1, . . . ,Y

T
0...NR

,YT
0...10,

YT
0...11, . . . ,Y

T
0...1NR

, . . . ,YT
N1N2...NR

]T
(9)

AM , AC and AK are N×N deterministic order-expanded mass,

damping and stiffness matrices, respectively. Ÿ, Ẏ and Y are un-

known generalized response vectors with randomness derived

from external excitation F (t), which is an order-expanded ran-

dom load vector composed of the vectors

F (t) =
[
P (t)T , 0T , . . . , 0T

]T
(10)

In which the superscript “T” represents the transposition of a

matrix. Except for the first n-dimension vector, the other com-

ponents of the generalized load vector are zero. The dynamic

response of Eq. (8) can be solved by means of any classic vi-

bration analysis methods, for the order-expanded matrices are

deterministic. Because the order of the equation has been ex-

panded, the method to reduce the computation load becomes a

key problem to solve the equation, especially for double random

vibration analysis.

2.2 Modeling of stochastic loading

The components of the vector of acceleration a(t) are fre-

quently modeled as statistically independent stochastic pro-

cesses defined as filtered white noise [8]. The force vector P (t)

then can be define as

P (t) = −M0Iaa (t) (11)
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Where Ia is a displacement transformation matrix

a(t) = Q f v (t) (12)

Where Q f denotes a constant matrix , the filter follows the

differential equation

v̇ (t) = A f v (t) + b f (t)ω (t) (13)

In which,v, A f and b f denote the state vector, the system ma-

trix and the distribution matrix of the filter. ω (t) denotes the

white noise random process defined as follows

E
(
ω (t)ωT (t + τ)

)
= 2πS0 (t) δ (τ) (14)

Where δ is the Dirac’s delta function, and S0 (t) = S0 is the

constant spectral density. Then, the covariance matrix Γvv (t)

can be obtained by the Lyapunov matrix differential equation

Γ̇vv (t) = A fΓvv (t) + Γvv (t) AT
f + b f (t) IbT

f (t) (15)

The covariance matrix Γvv (t1, t2) can be obtained by [9]

∂

∂t1
Γvv (t1, t2) = A fΓvv (t1, t2) (16)

In which Γvv (t2, t2) = Γvv (t2). Then, the covariance matrix

Γaa can be calculated by

Γaa (t1, t2) = E
[
Q f v (t1) vT (t2) QT

f

]
(17)

Precise integration [13] iterative schemes can be derived to

obtain Γvv (t1, t2). Because A f is a time-invariant matrix, its gen-

eral solution can be given as

Γvv (∆t + t0, t0) = exp
(
A f ∆t

)
Γvv (t0) (18)

In which, Γvv (t0)can be obtained by solving of Eq. (15). The

transfer matrix T

T = exp
(
A f ∆t

)
(19)

In which, ∆t is the time step size, and set a extremely small

time interval τ

τ = ∆t/m (20)

Where, m is an arbitrary integer. It is suggested to select

m = 2N , in this paper, N = 20, m = 1048576. Because τ is ex-

tremely small time interval, its transfer matrix can be obtained

by truncated Taylor expansion with high precision.

exp
(
A f τ

)
≈ I +

(
A f τ

)
+

(
A f τ

)2

2
+

(
A f τ

)3

3!
(21)

Let Ta equal

Ta =
(
A f τ

)
+

(
A f τ

)2

2
+

(
A f τ

)3

3!
(22)

The follow instruction is executed for N = 20 times

Ta = 2Ta + Ta × Ta (23)

T can be obtained by the summation

T = I + Ta (24)

Γvv (t1, t2) can be obtained by the follow equation and its sym-

metry characteristic:

Γvv (t2 + (k + 1) · ∆t, t2) = T · Γvv (t2 + k · ∆t, t2) (25)

Γaa (t1, t2) can be obtained by Eq. (17).

The K_L expansion [14] is quite often used for modelling of

stochastic loading process in recent years. A discrete, Gaussian,

second-order stochastic process Aa can be obtained after dis-

cretization of the corresponding continuous stochastic process

a (t) with respect to time.

Aa =
(
a (t1) , . . . , a

(
tNa

))T
(26)

Where, Na denote the number of discrete time. Its K_L ex-

pansion

Aa = µa +

Na∑
j=1

θ j

√
λ jψ j ≡ A(0)

a +

Na∑
j=1

θ jA
( j)
a (27)

Where µa denote the mean vector of Aa. The K_L vectors

A
( j)
a are determined by solving the algebraic eigen problem. A

(0)
a

denote the mean function.

ΓAψ j = λ jψ j (28)

A
( j)
a =

√
λ jψ j (29)

Where ΓA is the covariance matrix of the discrete random pro-

cess Aa, and can be obtained by Eq. (16) after discretization the

corresponding continuous stochastic process a (t) with respect

to time. The Gaussian random variable θ j is defined as

θ j =
1√
λ j

AT
aψ j (30)

The eigenvalues λ j decrease rather quickly with the increas-

ing of j [9], and this characteristic is used in this paper to reduce

the computation workload by truncation

Ãa ≈ µa +

ma∑
j=1

θ j

√
λ jψ j (ma < Na) (31)

The covariance of Aa in any two discrete time t1 and t2 can be

given by

ΓA (t1, t2) =

Na∑
j=1

A
( j)
a (t1) A

( j)
a (t2) (32)

Random structural dynamic response analysis under random excitation 2952014 58 3



In particular, the variance can be obtain by

ΓA (t1) = σ2
A (t1) =

Na∑
j=1

A
( j)2

a (t1) (33)

The absolute mean square error by truncation is

ε = E

[(
Ãa − Aa

)2
]

= E


 Na∑

j=ma+1

A
( j)
a


2 =

Na∑
j=ma+1

λ j (34)

The mean square relative error is

σ =
ε

E
[
A2

a

] =

∑Na

j=ma+1
λ j

µ2
a +

∑Na

j=ma+1
λ j

(35)

In this paper, the loading process is a non-stationary, Gaus-

sian filtered noise process. Its power spectral density Gaa (ω),

corresponding to the revised Kanai-Tajimi filter described, ap-

proaches to zero for ω → 0. This behaviour describes an earth-

quake acceleration in more realistic way than traditionally used

Kanai-Tajimi filter, because for the latter one finite displace-

ments do exist after the excitation process has vanished, see e.g.

[15]. In Eqs. (12), (13), it is assumed that

Qf =
[

Ω2
1g

0 −Ω2
2g
−2ζ2gΩ2g

]
(36)

A f =


0 1 0 0

−Ω2
1g
−2ζ1gΩ1g 0 0

0 0 0 1

Ω2
1g

2ζ1gΩ1g −Ω2
2g
−2ξ2gΩ2g

 (37)

b f =


0

e (t)

0

0

 (38)

Where the time modulation function e (t) is assumed to be

e (t) =
e−at − e−bt

max
(
e−at − e−bt

) (39)

A time span of 0,20 s is integrated with a time step ∆t = 0.01 s

yielding a size 2001 x 1 for discrete stochastic process Aa

and 2001 x 2001 for ΓA. In Eqs. (33) - (36), the values

Ω1g = 15 rad / s, ζ1g = 0.8, Ω2g =0.3 rad / s, ζ2g = 0.995, and the

white noise intensity 2πS0 = 0.18 m2 / s3 are used for the filter

system matrix. The first 1000 eigenvalues of covariance matrix

ΓA are shown in Fig. 1 in a semi-logarithmic (base 10) scale,

and the eigenvectors Ψj (t) ( j = 50, 100, 200) of the covariance

matrix ΓA are shown in Fig. 2.

It can be seen from Fig. 1, the eigenvalues λ j decrease very

quickly for increasing index j. The lower order eigenvectors are

acting localized, too. For K_L vectors, their contribution to the

overall response is negligible and could be omitted with increas-

ing index j. This would increase the computational efficiency of

the proposed method by truncation of K_L vectors.

Fig. 1. The first 1000 Eigenvalues of ΓA

Fig. 2. Eigenvectors Ψ j (t) of the covariance matrix ΓA ( j = 50, 100, 200)

3 Dynamic response analysis of random structures

3.1 Method for response analysis

The external force loading vector in this paper, is presented

by the K - L representation as stated above. In accordance to

Eqs. (8) - (10)

P (t) ≈ P(0) (t) +

ma∑
j=1

θ jP
( j) (t) ≡

≡ −M0Ia

A(0)
a (t) +

ma∑
j=1

θ jA
( j)
a (t)


(40)

Where, P(0) (t) and P( j) (t) denote the mean function and the

j-th K - L vector of random force P (t), respectively. Ia is a dis-

placement transformation matrix [9]. M0 is the structural mass

matrix defined in Eq. (48). ma denotes the truncated quantity of

K - L vectors, and it depends on the accuracy requirement refer-

ring to the error Eqs. (33) - (34).

According to linear superposition principle, the response

must have the same form as Eq. (40) [7]

Y (t) ≈ Y(0) (t) +

ma∑
j=1

θ jY
( j) (t) (41)

Where Y(0) (t) and Y( j) (t) denote the mean function and the

j-th K - L vector of displacement response, respectively. This

can be done by solving Eq. (8) for every deterministic excita-

tion K - L vector P( j) (t) with any deterministic linear structure

dynamic analysis algorithm. After the K - L vectors of displace-

ment response are obtain, the covariance matrix of displacement
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response can be obtained by

ΓYY (t1, t2) =

ma∑
j=1

Y( j) (t1) · Y( j) (t2) (42)

In particular

ΓYY (t1) = σ2
Y (t1) =

ma∑
j=1

Y( j)2

(t1) (43)

The probabilitic information of original structural response

can be obtained in terms of the response of order-expanded sys-

tem by utilizing the orthogonality relationship of orthogonal

polynomials Hl j

(
ξ j

)
. Taking the displacement response as an

example, the expected vector is:

E
[
X (ξ, ς, t)

]
= E

[
YT

0...0 (ς, t)
]

(44)

E
[
X (ξ, ς, t1) X (ξ, ς, t2)T

]
=

= E

 N1∑
l1=0

N2∑
l2=0

. . .

NR∑
lR=0

Yl1l2...lR (ς, t1) Yl1l2...lR (ς, t2)T

 (45)

3.2 3 DOFs shear wall

In the following, the non-stationary stochastic response of a 3

DOFs shear wall with stochastic structural parameter, see Fig. 3,

will be analysed in order to demonstrate the feasibility of the

proposed procedure.

Fig. 3. 3 DOFs shear wall model

The dynamic equilibrium equation of stochastic structural

system can be written as

Mẍ + Cẋ + Kx = −Mua (t) (46)

In which, M, C and K are the values of mass, damping and

stiffness matrices, respectively. Considering the mass matrices

has stochastic parameter.

m3 = m′3

(
1 + µξ1 + vξ2

1

)
(47)

The form of M in Eq. (46) is

M = M0 + ξ1M1 + ξ2
1M2 (48)

M0 =


m1 0 0

0 m2 0

0 0 m′
3

 ,
M1 =


0 0 0

0 0 0

0 0 µm′
3

 ,
M2 =


0 0 0

0 0 0

0 0 vm′
3



(49)

C =


c1 + c2 −c2 0

−c2 c2 + c3 −c3

0 −c3 c3

 ,
K =


k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3


(50)

u = [1, 1, 1]T , x = [x1, x2, x3]T (51)

ξ1 denotes the λ - PDF independent random variables as stated

in [12], λ= 2.5, and the variability coefficient is 0.187. In the

Gegenbauer polynomial approximation, we took Gλ
0

(ξ1) up to

Gλ
3

(ξ1) as the orthogonal polynomial basis. Probability distri-

bution function of ξ1 is shown in Fig. 4 as the curve of normal

distribution. a (t) is fixed by Eq. (36) - (39). Other parameters

are taken as: µ= 0.5, ν= 0.25, m1 = m2 = m′
3

= 1.75 x 104 kg,

k1 = k2 = k3 = 3.5 x 107 N / m, c1 = c2 = c3 = 1.25 x 105 N s / m.

After assembling order-expanded system as Eq. (8), the re-

sponse mean square of the 3rd floor (m3) is obtained by the pro-

posed procedure with number of 40, 60, 80, 120 K - L vectors,

as shown in Fig. 5. Monte Carlo random simulation method is

used to verify the feasibility of the proposed procedure.

Fig. 4. Two probability density functions with the same variation coefficient

In Fig. 5, it is possible to verify the error due to truncation of

the K - L expansion. The responses of m3 with different num-

ber of the K - L expansion are obtained and compared with the
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Fig. 5. The mean square curve of m3 with different K_L numbers

result obtained by Monte Carlo method (1000 times). Accord-

ing to these results, 80 K - L vectors are sufficient to obtain a

good result for the 3 DOFs system over the time span [0,9] s.

The maximum of the response is captured very well, and it is

important for structure reliability analysis.

Mean square value calculated by the proposed method with

160 K_L vectors is shown in Fig. 6, and ‘monte’ stands for the

result calculated by Monte Carlo method (1000 times). It ver-

ifies the feasibility of the proposed procedure, and the error is

rather small, when the number of K_L vector is more than 160.

Fig. 6. Mean square value with ma = 160

In the following, another set of parameters are fixed as

µ= 0.602, ν= q, 0, λ1 = 4.2. The PDF of m3 is shown in Fig. 4 as

the abnormal distribution curve, while the variability coefficient

is still set as 0.187.

The mean square values of response of the 3 floors are shown

in Fig. 7. It is shown that the magnitude of deviation of the 2

results calculated by different random structural parameters are

cannot be ignored, especially at the peak of the mean square

values, the relative error at peak of m3 is up to 18%. There-

fore, wrong result may be obtained by treating all the random

structure PDF as normal distribution in some situations.

3.3 9 DOFs shear wall

A shear wall subjected to a non-stationary seismic excitation

defined by Eq. (36) - (39) is shown in Fig. 8. The size param-

eters are given as: width W = 1.0 m, height H = 20.0 m, thick-

ness T H = 0.25 m. The type of 8-node planar isoparametric el-

ement is selected for the 10 partitioned two-dimensional finite

elements of the structure, and the sum of freedom is 106. The

mean values of the structural parameters are given as: poison

Fig. 7. Mean square values calculated with 2 different probability density

functions.

ratio µ0 = 0.167, elasticity modulus E0 = 2.0 x 104, mass density

ρ0 = 2.5 x 103 kg / m3, damping ratio 0.05. The uncertainty of

the elasticity modulus E is described as λ - PDF random vari-

able and the probability density functions as shown in Fig. 4

with solidline as stated above and the variability coefficient is

still 0.187. A 3-order polynomial approximation is used for the

random variables. Number of 10, 30, 50, 80 K L vectors is used

to obtain the displacement variance σ (t) of the top floor, Monte

Carlo random simulation (1000 times) is employed to verify the

feasibility, and 1000 times random simulation is done to get the

displacement variance.

Fig. 8. The dimension and element meshes of shear wall

The result is shown in Fig. 9. According to the result, 80 K -

L vectors are sufficient to obtain a good result for this 9 DOFs

system. The same as the above simulation, the accuracy near

the peak value is good, and only 30 K - L vectors can get a rather

good result of the peek value. It is important for structural reli-

ability calculation. If the number of K - L vectors less than 10,

the result is not desirable.
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Fig. 9. Comparison of σ (t) for different number of K_L

4 Conclusions

The presented development and the simulation work allow to

draw the following conclusions:

• The proposed method is well adapted for the calculation of

the non-stationary stochastic response of stochastic structure,

and it avoids the problem of secular term appears in method

of perturbation.

• Non-white, non-zero mean, non-stationary Gaussian dis-

tributed excitation is represented by the well known K - L

expansion, which allows to describe any type of non-white

Gaussian excitation, and by employing K - L orthogonal de-

composition and stochastic structure orthogonal decomposi-

tion, an increase in efficiency is desirable.

• The procedure allows the use of well known deterministic in-

tegration algorithm for the solution of the expanded dynamic

equation; hence the application of compound stochastic anal-

ysis in the engineering practice is greatly enhanced.
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