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Abstract

When sliding occurs due to over-braking of a vehicle, intense

heat is generated at the rail-wheel interface due the rolling-

sliding motion. Sliding means a moving frictional heat source.

The resulting “flash” temperature greatly influences the course

of proceedings on the contact patch. A thorough analysis of the

wheel/rail contact requires a FEM-based model which is able to

follow the thermo-mechanical processes in close neighborhood

of the contact area. In order to validate whether the mesh in the

FE model is sufficiently refined, analytical solutions were set up.

After having performed the initial thermal finite element analy-

sis, an analytical solution was developed for the same load case.

The FE mesh was refined based on a comparison of the FE and

analytical results. The effects of FE mesh size on the computa-

tional results were investigated. In certain cases, the analytical

formulae derived were found to be more effective than FEM.
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1 Introduction

The proper rail/wheel contact conditions are of paramount im-

portance for ensuring the safe operation of railways. The contact

transfers the vertical load of the weight of the rolling stock. The

load-bearing capacity of the mating parts of the contact strongly

depends on characteristics such as Hertzian stress, creep, fa-

tigue, friction etc. Instantaneous heat input and temperature rise

also occurs – the flash. This appears in several applications and

promoted the development of tribology. The first step was made

by Blok [1] identifying the effect as a root cause of scuffing on

gear wheels. The related questions have remained subjects of

discussion and research ever since. Blok himself wrote about

further development and generalization of the theory [2], and

the effect of distribution of heat generated by friction was ana-

lyzed by Tanvir [3]. Abdel-Aal studied the temperature depen-

dence of thermal conductivity [4]. Ertz and Knothe studied the

analytical versus numerical approaches of temperature develop-

ment [5]. There are analyses concerning high- and low-speed

applications, Sutter and Ranc, based on measurements [6] and

Kalin[7], respectively. Even recently, a quite new approach was

proposed by Smith and Arnell focusing on contact of asperities

[8]. An advanced wheel/rail contact model was presented by

Tomberger et al. [9] in which the analytical solution of the flash

temperature is implemented based on the method published by

Ertz [10]. A further field of interest is the better grounding of

experiments aimed to obtain tribologic parameters e.g. pin-on-

disc [11]. A recent paper of Li et al. assessed thermal dam-

age as the most important failure mode of wheel and rail [12].

Frictional heat arising from wheel sliding can cause martensite

formation on the rail-head [13, 14], and also on the wheel [15].

The presence of hardened martensitic spots can lead to damage

such as spalling on the rail surface [14] or the wheel surface

[16]. The heat generation model had been further improved in-

cluding plastic deformation work by Fischer et al. [17]. The

thermal problem itself has to be integrated into the various ge-

ometries of the mating bodies and this is even more important

if the subsequent damage e.g. thermal fatigue is analyzed. This

may be realized by a suitable finite element model which is able

to reflect the rapid thermal process, see Peng et al [18]. The ef-
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fects of heat convection and radiation on the flash temperature

are neglibible in comparison with the effect of heat conduction,

as was previously concluded by Lewis and Dwyer-Joyce [19].

In this paper, the effect of sudden short heat input, the tem-

perature distribution and its change with time as the “heat pack”

expands into the bulk of the bodies is analyzed. The geometry of

the wheel profile contacting the rail is described in detail by an

FE model. There, the transition from the starting “half-space”

model to the real-dimension contacting bodies is followed. This

“heat pack expansion” is an elementary constituent part of the

real contact of moving surfaces. Different analytical methods

have been tested in the past to solve the partial differential equa-

tion of heat conduction in solid bodies [20], but not all of them

proved to be in good agreement with experimental results. The

analytical solution of the heat transport problem is obtained by

using the same method as in [21]. The heat conduction in the

steel wheel is prominent in the radial direction [22].

The commercial finite element tool Patran was used to pre-

and post-process the simulations [23], while solver Marc was

applied for performing the numerical simulations [24]. There,

the (varying) heat source marches on along the respective bod-

ies, leaving a heat trace behind, like a torch or a comet. The full

history could be reconstructed by a convolution-like procedure

later. The significance of the results is that the necessary require-

ments (such as mesh density, model boundaries) are worked out

for a finite element model capable of simulating the flash tem-

perature and its diffusion into the rail or the wheel.

2 Finite Element model construction

The initial numerical model worked with here is shown in

Fig. 1. A solid wheel with a highly worn profile was modelled.

The wheel rim considered was radially thinned so that the row

itself had a reduced thermal resistance compared to a new wheel

rim. It was assumed that after applying a short-duration ther-

mal load on the running surface, the ever evolving heat affected

contact zone would reach the side boundaries of the wheel row

geometry sooner in case of a radially thinned rim, than in case of

a new, radially thicker rim. A thermal FE model applicable for

the case of an extremely thinned wheel rim is predictably also

usable for cases with new, or less worn wheels.

The mesh was made mostly of 8-node ‘hexahedron’ elements,

with the element size increasing progressively with the distance

from the wheel/rail contact region. The minimal edge length of

0.9 mm (perpendicularly to the tread surface) was applied in the

proximity of the heat input area – the location where the largest

temperature gradients were expected.

A steel railway wheel/rail contact was considered for the sim-

ulation with the following material constants:

Density: ρ= 7833 kg/m3

Specific heat: c = 465 J/kgK

Heat conduction coefficient: λ= 54 W/mK

Heat diffusion coefficient: κ= 1.482·10−5 m2/s

The wheel/rail contact area was roughly approximated by

a 6 x 8 mm quad instead of the elliptical area to suit FEM:

(2a) x (2b) = 0.006 x 0.008 = 48·10−6 m2. The duration of the

heat input was T = 0.06 s. The thermal power applied and di-

rected into the wheel rim was 1 W, therefore, the energy den-

sity (directed orthogonally on the surface spanned by x-y axes,

along the z-axis) was qz = 208 333 W/m2. A cardinal question of

FEM calculations is whether the mesh is as dense as necessary

and sufficient. Refining the mesh beyond necessity is an use-

less computational effort, moreover, it may permit gross error

and compromise even the reality. Therefore, a parallel analyti-

cal study was advisable in order to validate the FEM results. The

thermal shock on a relatively small surface is a highly local phe-

nomenon. While the heat input expands all around, after some

time, a growing but limited volume of the wheel mass becomes

affected. The process can be approximated by a thermal shock

applied perpendicularly on a half space. The details of the actual

wheel row geometry only come into the scope after some time,

as the heat flow reaches these details (limiting surfaces etc.) and

a tangible increase in temperature appears there.

3 Numerical results and analytic approach

3.1 Thermal shock process modelled by FEM

In the first set of simulations, a heat input was applied on the

wheel which was considered to be uniformly distributed over the

wheel/rail contact surface. This rectangular form contact area

(6 x 8 mm) was very small compared to the size of the wheel

rim. A parameter study was performed in order to investigate

the effect of heat convection to the environment. Thus, the sim-

ulation was repeated with two different heat convection coeffi-

cient values (of 5.6 W/m2K and 450 W/m2K) and then a third

simulation was carried out with the heat convection coefficient

set to zero. After evaluating the temperature results of the three

simulations, the temperature values of the three cases were prac-

tically the same, with a relative difference of less than 0.5%.

The heat loss by convection was therefore neglected in further

simulations. The spatial- and temporal variation of wheel tem-

perature is illustrated in a series of instantaneous temperature

distribution snapshots (see Fig. 2 - 6).

After the thermal shock, a quasi spherical temperature field

evolves, as it is shown in Fig. 2 - 4. The maximum value of the

instantaneous temperature decreases rapidly with the increasing

radius of the sphere. In the early stage of the thermal process,

the heat was conducted in a space which was assumed to be ho-

mogenous from the point of view of heat propagation. The phe-

nomena can be treated as a half-space problem until the bound-

ary surface of the wheel fully contains the thermal hemisphere.

According to the numerical results, the shape of the solid body

becomes important about 30 seconds after the end of the ther-

mal shock, when the temperature field reaches the flange (see

Fig. 5). From this moment on, a half-space heat conduction

model would be no longer applicable for the wheel. However,

the intensity of temperature by this time has already decreased

Per. Pol. Civil Eng.268 László Sábitz / Ferenc Kolonits



Fig. 1. Finite element model of a railway wheel-set

Fig. 2. Temperature distribution in the wheel 0.257 s after the end of heat input, the maximum surface temperature is 4.45·10−2 °C (initial temperature: 0 °C)

Fig. 3. Temperature distribution in the wheel 1.31 s after heat input, the maximum surface temperature is 8.46·10−3 °C (initial temperature: 0 °C)
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Fig. 4. Temperature distribution in the wheel 15 s after heat input, the maximum temperature is 3.06·10−4 °C (initial temperature: 0 °C)

Fig. 5. Temperature distribution in the wheel 33.7 s after heat input, the maximum temperature is 9.38·10−5 °C (initial temperature: 0 °C)

Fig. 6. Temperature distribution in the wheel 114 s after heat input, the maximum temperature is 2.16·10−5 °C (initial temperature: 0 °C)
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to approximately zero (the maximal temperatures in Fig. 5 and

Fig. 6 are in the order of 10−5 °C).

3.2 Temperature distribution after a shock into a half space

In order to obtain an overall picture of the temperature prop-

agation procedure, let us apply a formula quoted by Carslaw

and Jaeger [21] describing the history initiated by injecting a qz

power density through a circular surface spot of radius a into

a half-space, during time T . For a continuous input in interval

[0,t], the growth of temperature under the center of the spot at

depth z is

ϑ (z, t) =
2qz
√
κt

λ

ier f c

(
z

2
√
κt

)
− ier f c

 √z2 + a2

2
√
κt

 . (1)

In Eq. (1), ier f c is the integral of the complementary error

function [21]. If the input is terminated at time T , the tempera-

ture growth which should have been produced by continuing the

heating after that limit shall be subtracted,

ϑ (z, t)t≥T = ϑ (z, t − T ) − ϑ (z, t) . (2)

As a characteristic/reference value for the over-all tempera-

ture distribution, the temperature in the surface center and at

time T (as heating has just been finished) can be considered.

Eq. (1) comes from Eq. (5), page 264 of ref. [21], with some

nomenclature change. If z = 0, the ier f c can be determined in

closed formula, the result will be

ΘT =
2qz
√
κT

λ

{
1
√
π
.

[
1 − exp

(
−

a2

4κT

)]
+

+
a

2
√
κT

er f c

(
a

2
√
κT

)}
.

(3)

If the 6 x 8 mm heated spot is to be substituted by an equiva-

lent circular one, then a = 0.0039088 m. The reference tempera-

ture according to (3) will be ΘT = 0.4101 K/(1 W). The heating-

up yields steadily growing temperatures, computable by Eqs. (1)

and (3). More attention has to be given to the aftermath, the re-

sponse of the half-space to the thermal excitation. Fig. 7 shows

the temperature development with time from T + 0.5 µs. . . 0.5 s

and along distance 0.5 µm. . . 5 mm. The projection onto the ba-

sis plane x-y shows that the “heat pack” fed into the half-space

gets dispersed rather fast. The details around the start can be vi-

sualized better using a log scale (Fig. 8). The results are related

to heat flow input of 1 Watt, later the reference will be omitted.

3.3 Relation of FEM to analytical results

Temperatures at the center of the heated spot computed by

FEM and by analytical formulae are shown in Fig. 9, and for a

longer time with log scale in Fig. 10.

The curves up to 0.6 s are similar but the approximation is

very poor. Thereafter, the values lay nearer to each other. How-

ever, this is the range where the temperatures have already fallen

below a tenth of the reference temperature. Fig. 10 embraces

a longer, time-span of about a day on a logarithmic scale. It

shows either that these minuscule values are equal or that both

are becoming submerged in numerical noise. Some additional

information might be drawn, however, if the temperature scale

is also logarithmic (Fig. 11).

According to the curves in Fig. 11, they are of similar char-

acter roughly up to log t = 1.6, t = 39.8 s, where they diverge.

The “similar” means here a relative difference of ± 30% which

could surely be reduced by a refined mesh. The apparent turning

point, however, has to be interpreted otherwise. At locations suf-

ficiently distant from the hot spot, the evolution of temperatures

does not depend on the distribution details of the heat input. The

distance is sufficient if the size of the hot spot is negligible re-

lated to it – a thermal interpretation of Saint-Venant’s principle,

well-known from mechanics. The relation of the central tem-

peratures to those at distance x is about exp
(
−x2/(4κt)

)
. With

that, one might compute at what a distance a non-negligible,

say 10%, temperature growth appears in 39.8 s. The result is

0.0737 m. The thickness of the wheel rim around the hot spot

is around 60 -70 mm. This means that the heat flow reaches the

boundaries of the object and the process should not be mod-

eled further by an unlimited half-space. The analytical formula

under-estimates the heat dissipated, while the FEM rightly indi-

cates higher temperatures.

3.4 Refining the mesh at the heat input

In order to bring the results of the two approaches nearer to

each other, let the details of heat input be investigated. The FEM

does not compute the central temperature of the hot spot exactly.

The result is a kind of average over the affected elements. Fol-

lowing this, the analytical approximation of the temperature dis-

tribution of the hot spot is evaluated and is shown in Fig. 12.

ϑ (ξ, t) =
aqz

λ

∫ ∞

0

J0 (uξ) J1(u) er f

(
u

√
κt

a

)
du

u
. (4)

In Eq. (4), J0 and J1 stand for the Bessel functions of first

kind (0 order and 1st order [21]). At T = 0.06 s, the FEM gives

0.2962 K. The analytic maximum is 0.4101 K. The integral aver-

age over the hot spot is 0.3484 K. The simple arithmetic average

with central value and border ones is 0.2971 K.

Taking a refined picture into consideration, the gap between

the results given by the two methods will be closed. In order

to show this effect “in vivo”, a refined FEM model has been set

up. This refers only to a half-space, beyond that the present ana-

lytic approach becomes invalid. The refined FE model contained

0.16 x 0.16 x 0.16 mm cubic elements in the heat input area. This

means that the contact patch length was 37.5 times of the ele-

ment size, while the contact width was 50 times of the element

edge length. The higher mesh density provided more accurate

results than the model introduced in Fig. 1. Taking advantage of

the symmetry of the contact area, only one quarter of the ‘half-

space’ was represented, with the element size increasing with
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Fig. 7. Temperature distribution in space/time, respectively

Fig. 8. Temperature distribution as of Fig. 7, on log-log scale
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Fig. 9. Time variation of temperature, FEM vs. analytic results

Fig. 10. Temperatures shown on a logarithmic time scale
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Fig. 11. Temperature vs. time using log-log scale

Fig. 12. Temperature distribution of the hot spot at time T
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distance from the heat input. The temperature fields of the new

model, at time t = 0.06 s and t = 0.172 s are shown in Figs. 13

and 14, respectively.

After t = 0.172 s, in Fig. 14, one may see that the field affected

by the thermal shock reaches a region where the finite elements

are distorted. Until this point, the temperature of the center of

the heat input area determined by the FE solver shows a good

agreement with the analytical solution. Comparing the results

in Fig. 15, one can see that they fit satisfactorily to 0.16 s. Af-

ter that, FEM yields a slightly higher value, probably because

the heat flow partially leaves the fine meshed volume, but this

section is quite irrelevant from the point of view of the present

investigation.

3.5 General remarks on mesh sensitivity

The previous procedures, calculations and results realize an

approach to a more general problem of FEM calculations, i.e.

how to build the mesh for them. An analytic method, although

it may be theoretically exact, cannot follow complicated geome-

tries and varying (e.g. material) parameters. The FE mesh must

be dense enough, but not too much, to have enough resolution

for these local variations, and at the same time avoid unneces-

sary detail. The critical limits are the size of the system matrix

(due to time and storage consumption) and its conditioning or

definiteness (its tendency to heap up numerical errors – mea-

sured by ratio of its extreme eigenvalues). FEs of uniform size,

although simple, may give an oversized matrix, the condition-

ing of which gets worse with its size. It is more prudent to fit

the mesh size to the guessed gradient of variations of the field

under study, applying larger elements where variations are fad-

ing away. These elements disturb the norm relations of matrix

rows/columns and its conditioning. At the same time, however,

the over-all size will diminish with healthy consequences. These

two effects are contrary and only a multi-pass procedure may al-

low iterative development as above. There are several proposals

to develop a task-oriented mesh automatically, with error esti-

mation, but without qualified success.

4 Conclusions

FEM results can be validated by analytical formulae consid-

ering a heat shock and the resulting temperature distribution in a

half-space. Whether this approach satisfactorily covers the pro-

cess evolution depends on the size of the object. In the case

investigated here, if the heat flow had exceeded the boundaries

of the model, the temperature would have fallen to a technically

negligible level. It must be kept in mind that all computations

refer to a stationary heat source.

If an approximation of the effect of a moving heat source is

required, a numerically performed convolution process has to

be continued with the introduced elementary steps, where the

integrating algorithm must be prudently chosen.

A remark concerning further applications has to be made.

Under the present conditions, the velocity of the heat source

is v = 2b/T = 0.008/0.06 = 0.133 m/s. This is apt for the con-

dition of an over - braked wheel which is sliding but still ro-

tating. According to Blok’s fundamental results, the principal

setup of temperature flow depends on the relation of the con-

vective and conductive heat flow (Pèclet-number), Pe = vb/κ. If

this is greater than 20 (or a lower value by other authors), the

principal direction of heat flow is inwards into the mass, and

the components parallel to the surface may be neglected. Now,

Pe = 0.133 [m/s] x 0.004 [m] / 1.482.10−5 [m2/s] = 35.9 and the

velocity of the heat source is extremely low. This fact deserves

attention.

The heat distribution in railway wheels and rails generated

by the sliding contact of the wheel on rail is a highly localized

effect. The required finite element size and model boundaries

were worked out for the wheel/rail contact case discussed. Since

the Pèclet-number is typically higher than 20, an analytical so-

lution of the 1-dimensional heat conduction process into a half

space is an effective method for computing the flash temper-

ature. Simulation of the peak temperature by FEM gave cor-

rect results only after significant refinement of the mesh, with

an element size being 50 times smaller than the contact patch

width. The refined model was extended to a size equal to ap-

proximately 6 times the size of the contact area in all directions.

The FE and analytical results showed good correlation when the

simulation used mostly uniform cubic elements. When distorted

quad elements were used, the accuracy of the solution started to

decrease, but the sudden temperature decrease made the error

insignificant.

The highly localized nature of the heating up initiates sec-

ondary effects worth of consideration. The thermal gradients

around would be also high, which indicate high thermal stresses.

There will appear also a high local thermal expansion zone em-

bedded in a low temperature environment. The wart-like mod-

ification of surface leads to changes in contact geometry. The

studies presented here may render an initial point for pursue

these topics.
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Fig. 13. Temperature distribution in the refined FE model at t = 0.06 s (end of heat input), the maximum temperature is: 4.06·10−1 °C

Fig. 14. Temperature distribution in the refined FE model at t = 0.172 s, the maximum temperature is: 1.16·10−1 °C.
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Fig. 15. A refined FEM model vs. analytic results

Finite element and analytical computation of flash temperature 2772014 58 3



References

1 Blok H, Theoretical study of temperature rise at surfaces of actual contacts

under oiliness lubricating conditions, In: Proc. Gen. Discuss. Lubricat., Inst.

Mech. Eng.; London, UK, 1937, pp. 222–235.

2 Blok H, The flash temperature concept, Wear, 6, (1963), 483–494, DOI

10.1016/0043-1648(63)90283-7.

3 Tanvir MA, Temperature rise due to slip between wheel and rail – an

analytical solution for Hertzian contact, Wear, 61, (1980), 295–308, DOI

10.1016/0043-1648(80)90293-8.

4 Abdel-Aal HA, A remark on the flash temperature theory, International Com-

munications in Heat and Mass Transfer, 24(2), (1997), 241–250.

5 Ertz M, Knothe K, A comparison of analytical and numerical methods for

the calculation of temperatures in wheel/rail contact, Wear, 253, (2002), 498–

508.

6 Sutter G, Ranc N, Flash temperature measurement during dry fric-

tion process at high sliding speed, Wear, 268, (2010), 1237–1242, DOI

10.1016/j.wear.2010.01.019.

7 Kalin M, Influence of flash temperatures on the tribological behaviour in low-

speed sliding: a review, Materials Science and Engineering A, 374, (2004),

390–397, DOI 10.1016/j.msea.2004.03.031 .

8 Smith EH, Arnell RD, A New Approach to the Calculation of Flash Temper-

atures in Dry, Sliding Contacts, Tribology Letters, 52(3), (2013), 407–414,

DOI 10.1007/s11249-013-0224-9.

9 Tomberger C, Dietmaier P, Sextro W, Six K, Friction in wheel-rail con-

tact: A model comprising interfacial fluids, surface roughness and tempera-

ture, Wear, 271, (2011), 2–12, DOI 10.1016/j.wear.2010.10.025.

10 Erzt M, Temperatur, Materialbeanspruchung und Kraftschluss im Rad-

Schiene-Kontakt, Dissertation, TU Berlin, 2003.

11 Kolonits F, Simplified thermal model of a pin-on-disc experiment, In:

Zobory I (ed.), Proceedings of the 13th Mini Conference on Vehicle Sys-

tem Dynamics, Identification and Anomalies; Budapest, Hungary, 2014.

12 Li W., Wen ZF, Jin XS, Wu L, Numerical analysis of rolling-sliding contact

with the frictional heat in rail, Chinese Journal of Mechanical Engineering,

27, (2012), 41–49, DOI 10.3901/CJME.2014.01.041 .

13 Steenbergen MJMM, Rail Surface Layer Modification under Train Oper-

ation, Second International Conference on Railway Technology: Research,

Development and Maintenance, In: Pombo J (ed.), Proceedings of the Sec-

ond International Conference on Railway Technology: Research, Develop-

ment and Maintenance, Civil-Comp Press; Stirlingshire, UK, 2014, p. Paper

107, DOI 10.4203/ccp.104.107.

14 Sábitz L, Zobory I, On Simulating the Thermal Conditions of Martensite

Formation on Railway Wheel Treads, Second International Conference on

Railway Technology: Research, Development and Maintenance, In: Pombo

J (ed.), Proceedings of the Second International Conference on Railway

Technology: Research, Development and Maintenance, Civil-Comp Press;

Stirlingshire, UK, 2014, p. Paper 105, DOI 10.4203/ccp.104.105.

15 Goryacheva IG, Zakharov SM, Torskaya EV, Rolling Contact Fatigue

and Wear of Wheel/Rail Simulation: Wheel Thermomechanical Defects in the

Russian Railway, Second International Conference on Railway Technology:

Research, Development and Maintenance, In: Pombo J (ed.), Proceedings

of the Second International Conference on Railway Technology: Research,

Development and Maintenance, Civil-Comp Press; Stirlingshire, UK, 2014,

p. Paper 103, DOI 10.4203/ccp.104.103.

16 Day D, Harder RF, Costello M, An overview of freight vehicle wheel

spalling, 5th International Conference on Railway Bogies and Running

Gears, In: Zobory I (ed.), Proceedings of the 5th International Conference

on Railway Bogies and Running Gears, Department of Railway Vehicles,

BUTE; Budapest, Hungary, 2001, pp. 229–238.

17 Fischer FD, Daves W, Werner EA, On the temperature in the wheel-rail

rolling contact, Fatigue and Fracture of Engineering Materials and Struc-

tures, 26, (2003), 999–1006, DOI 10.1046/j.1460-2695.2003.00700.x.

18 Peng D, Jones R, Constable T, A study into crack growth in a railway

wheel under thermal stop brake loading spectrum, Engineering Failure Anal-

ysis, 25, (2012), 280–290, DOI 10.1016/j.engfailanal.2012.05.018.

19 Lewis R, Dwyer-Joyce RS, Wear mechanisms and transitions in rail-

way wheel steels, Proceedings of the Institution of Mechanical Engineers

Part J: Journal of Engineering Tribology, 218, (2004), 467–478, DOI

10.1243/1350650042794815.

20 Windarta, Bin Sudin M, Baharom MB, Prediction of Contact Temper-

ature on Interaction between Rail and Wheel Materials Using Pin-on-

Disc Method, Journal of Applied Sciences, 12, (2012), 2424–2429, DOI

10.3923/jas.2012.2424.2429.

21 Carslaw HS, Jaeger JC, Conduction of heat in solids, 2nd, Clarendon

Press; Oxford, UK, 1959.

22 Gallardo-Hernandez EA, Lewis R, Dwyer-Joyce RS, Temperature in a

twin-disc wheel/rail contact simulation, Tribology International, 39, (2006),

1653–1663, DOI 10.1016/j.triboint.2006.01.028.

23 PATRAN 2008 User’s Guide, MSC Software Corporation, 2008.

24 MARC 2008 User’s Guide, MSC Software Corporation, 2008.

Per. Pol. Civil Eng.278 László Sábitz / Ferenc Kolonits

http://doi.org/10.1016/0043-1648(63)90283-7
http://doi.org/10.1016/0043-1648(80)90293-8
http://doi.org/10.1016/j.wear.2010.01.019
http://doi.org/10.1016/j.msea.2004.03.031 
http://doi.org/10.1007/s11249-013-0224-9
http://doi.org/10.1016/j.wear.2010.10.025
http://doi.org/10.3901/CJME.2014.01.041 
http://doi.org/10.4203/ccp.104.107
http://doi.org/10.4203/ccp.104.105
http://doi.org/10.4203/ccp.104.103
http://doi.org/10.1046/j.1460-2695.2003.00700.x
http://doi.org/10.1016/j.engfailanal.2012.05.018
http://doi.org/10.1243/1350650042794815
http://doi.org/10.3923/jas.2012.2424.2429
http://doi.org/10.1016/j.triboint.2006.01.028

	Introduction
	Finite Element model construction
	Numerical results and analytic approach
	Thermal shock process modelled by FEM
	Temperature distribution after a shock into a half space
	Relation of FEM to analytical results
	Refining the mesh at the heat input
	General remarks on mesh sensitivity

	Conclusions

