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Abstract

Durability and functionality of hot mix asphalts (HMA) de-

pend on air voids and their characteristics. The air void content

of asphalt core samples could be determined by direct and in-

direct methods. The direct methods are destructive since they

determine the air void content by decomposing the mix into its

individual components. They are usually accurate but time con-

suming and use hazardous solvents. Because of the environmen-

tal hazards and restrictions associated with the solvents other

analysis methods become really important. The computed X-ray

tomography (CT) makes it possible to create a complete 3D im-

age about the whole inner structure without any preparation or

chemical fixation of the specimen. This nondestructive struc-

ture testing has a great significance at the examination of road

pavement structures and could substitute a number of complex

laboratory test in a more accurate and robust way. This paper

demonstrates the CT method for determining the air void distri-

bution. It shows that the proposed method can determine the air

void content very accurately and gives a lot of additional infor-

mation about other features by showing the distribution of the

air void content along any arbitrary axis of the core sample.
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Hungary

e-mail: lubeva@web.de

Dávid Ambrus

Department of Highway and Railway Engineering, Budapest University of
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1 Computed Tomography

Computed tomography (CT) is one branch of diagnostic radi-

ology. Tomography is a Greek-originated word, meaning slice

image. Tomographic images or slices of the specimen are ob-

tained from a large series of two-dimensional X-ray images

taken in different direction. These cross-sectional images can

be combined into a three-dimensional image of the inside struc-

ture of the specimen [1].

Computed tomography applications have not been limited to

the fields of medicine [2–7]. CT produces a volume of data that

can be manipulated in order to demonstrate various bodily struc-

tures, therefore CT is used for nondestructive material analysis

as well.

In recent years, CT imaging has been increasingly extended

to the structural characterization of asphalt concrete [5,8,9], ce-

ment concrete [10, 11], and rock [12, 13]. It can be used to re-

construct the 3D structure of a sample for computer simulation

of the performance of the material under various loading and en-

vironmental conditions. Meanwhile the sample is still intact and

can be used for other nondestructive or destructive macro prop-

erty tests such as strength or modulus tests. Therefore CT is one

of the most effective tools to study the microstructure- macro

property relation [9]. In computed tomography X-rays from a

well collimated source refers to the cross-sectional imaging of

an object from either transmission or reflection data collected by

illuminating a slice of the object or patient from many different

directions.

The first commercially viable CT scanner was invented by

Godfrey N. Hounsfield and Allan M. Cormack, and the first pa-

tient brain scan was done in 1971. The modern CT scanners

contain two X-ray tubes and scan several slices during a spin

around the central axis. The scans and the necessary calcula-

tions take only a few minutes to accomplish.

The measurement is based on the radiodensity of materials.

Radiodensity refers to the relative inability of X-rays to pass

through a particular material. Radiodensity can be quantified

according to the Hounsfield scale, a principle which is central to

CT applications. On the Hounsfield scale distilled water has a

value of 0 Hounsfield units (HU), while air is specified as -1000
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HU. The Hounsfield scale ranges between -1024 and +3071.

The Hounsfield unit of a three-dimensional pixel is deter-

mined according to the following formula (Eq. (1)):

HU =
K · (µ − µwater)

µwater

(1)

where:

HU Hounsfield unit [-],

K constant of 1000 [-],

µ linear attenuation coefficient of the particular material

[1/m],

µwater linear attenuation coefficient of distilled water [1/m].

2 CT Application for Testing Asphalt

Asphalt mixture is a heterogeneous composite material com-

prised of coarse and fine aggregates, bitumen and voids. Ag-

gregates usually take up about 85% of the volume of asphalt

mixture and usually have different sizes, irregular shapes and

random locations. While bitumen is a typical viscous material

and its mechanical performances are very sensitive to the tem-

perature. Numerous researches [14–17] proved that mechanical

properties of the asphalt mixture are significantly affected by the

microstructure and some material parameters including bitumen

content, void content and gradation of aggregate particles. Sev-

eral studies analyzed the inner structure of the aggregate and the

asphalt mixture, however CT scanning is not commonly used

for testing asphalt material. The few studies based on CT im-

ages typically dealt with certain special problems such as per-

meability, frost-resistance or void structure. However these CT

examinations were based only on imagery, without comparison

to laboratory tests.

In asphalt mixes, particle shape significantly influences the

initial compaction and subsequent performance [18, 19]. Bessa,

Castelo Branco and Soares [20] studied the inner structure and

grain shape of different aggregates and gradations. The goal

of the research was the determination of contact points, seg-

regation potential and grain orientation, which is very difficult

by traditional methods. The research showed that digital image

processing methods gave more complex and robust results than

traditional laboratory tests [21–23].

The examination of permeability of asphalt pavements has

been a great challenge for a long time. Moisture damage in as-

phalt decreases the stiffness and strength of the mixture which

ultimately leads to failure of asphalt pavements. Moisture dam-

age affects the performance and durability of asphalt mixtures

due to a loss of cohesion in the binder or failure of adhesion be-

tween binder and aggregate, and ultimately this affects the struc-

tural performance of the mixture [24–26]. Al-Omari et al. [27]

were the first to prove the correlation between the permeability

estimated based on CT images and the laboratory tests. Gru-

ber et al. [28] made similar research, they examined the void

structure and permeability of porous asphalts by superimpos-

ing the numeric simulation of flow over the three-dimensional

microstructure. The research showed that there was no correla-

tion between permeability and porosity, and flow inside the void

structure is strongly anisotropic.

3 Research Methodology

In this research core samples of asphalt road pavements were

examined by usual laboratory methods and by CT. The void con-

tent significantly influences the durability and the performance

of pavement structures. The goal of the research was to deter-

mine the air void content and distribution of these core samples

by both methods and to compare the results. The research in-

vestigated if the air void content and distribution could be deter-

mined accurately in a nondestructive way.

Three core samples were examined in this research. The core

samples were taken from reinforced sections of asphalt road

pavements. In case of two samples the upper 2 cm of the origi-

nal asphalt pavement was removed and two new asphalt courses

were built for reinforcement. At the third sample the origi-

nal asphalt courses were fully removed to the top of the base

course and three new asphalt courses were laid. The core sam-

ples contain the new and the original pavement courses to the

base course.

The evaluation of the CT scanning was based on the

Hounsfield units and image analysis.

The research hypotheses were the following:

• CT images are suitable to determine the border of asphalt

courses,

• CT images make possible to analyze the structure, air void

content and distrubution of the courses in detail.

4 Laboratory Tests

The core samples were cut at the borders of the courses. The

width of cutting blade was 14 mm, so 7 mm of material were

lost at both sides of the borders. This loss of material was im-

portant from the point of view of air void content, because the

CT images showed that the bulk density of asphalt is lower at

the borders of courses.

The air void contents of the courses were determined by sol-

vent extraction method according to the European standards.

After cutting the bulk densities of courses were determined.

Then the courses were extracted by solvent, and the density was

measured again, now without the voids. Based on these two val-

ues the mean air void contents of the courses were determined

according to the following formula (Eq. (2)):

Vm =

(
1 −
ρtS S D

ρmv

)
· 100 (2)

where:

Vm air void content,

ρtS S D bulk density with voids,

ρmv density without voids.
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Tab. 1. Results of Laboratory Tests for Determining Air Void Content

Sample identifier Type of course Course thickness Air void content

Sample Nr. 3

AC 16 wearing (F) 42 mm 5.1%

AC 22 binding (F) 75 mm 5.7%

AC 22 base (F) 78 mm 5.7%

Sample Nr. 5
AC 16 wearing (F) 72 mm 5.0%

AC 32 base (F) 88 mm 5.9%

Sample Nr. 9
AC 16 wearing (F) 60 mm 3.8%

AC 32 binding (F) 94 mm 3.9%

The results of the laboratory tests for determining air void

content are summarized in Table 1.

5 Testing by Computed Tomography

The CT tests were made by a Siemens Somatom 16 device

at the Diagnostic and Oncoradiology Institute of Kaposvar Uni-

versity in Hungary. The thickness of slices was 1.2 mm and the

pixel spacing was 0.39 mm. The CT slices were processed by

automated algorithms in Matlab environment using predefined

parameters without any user interaction. The segmentation of

aggregates, air voids and binding materials was performed with

thresholding [29], but additional filters and corrections were

necessary to reduce noise and beam hardening [30, 31] effects.

The method is using Fast Fourier Transformation [32] to de-

tect dense structures (e.g. aggregates) inside rare materials (e.g.

binding mortar). The algorithms process the CT slices succes-

sively one at a time. The result of the process are tabular formed

statistics (per slice and globally) and segmented images as well.

The aggregate particles, the bitumen-mortar and the air voids

separate clear on the CT images (Fig. 1). The aggregate and

pores distribution can be given in 3D (Fig. 2).

The volume percent of aggregate, bitumen mortar and pores

are demonstrated in Fig. 3. The high or low values from ag-

gregate or bitumen mortar content could be explained with the

structure of asphalt. The courses of the core samples could be

identified on the CT images, the borders of the courses could

be determined with mm accuracy by the air void distribution. It

could be seen in Fig. 3 that the air void content changes dramat-

ically at the borders of courses. This fact makes it possible to

distinguish the courses from each other and to conduct distinct

analysis by courses.

After the CT image processing the distribution of the air void

content and distribution along the slices was determined. Re-

sults are shown along the vertical axis of the core sample (Fig. 4,

Fig. 5). The air void content changes at the borders significantly

and visibly. The aggregate distribution is not homogenous inside

the courses. The fluctuation of aggregate and air void content in-

side the courses could be explained by compaction problems.

In Fig. 6 are demonstrated the air void distributions in all

courses. The air void distribution in the courses 2 and 3 are

similar, in the course 1 the diameters of air void are bigger as in

the courses 2 and 3.

The air void content were determined as the average value of

slices taken along the vertical axis of the core sample. Table 2

summarizes the results. It should be noted, that the air void

contents and distribution at the borders differ significantly from

the ones inside the courses.

Sample Nr. 5 (Fig. 3) shows some interesting features. After

milling the original wearing course became thinner than 1 cm.

The air void starts to change at the border, and this change is

continuous to air void content of the original wearing course.

There is no abrupt changes of air void as at the other borders of

courses. This fact may imply the good connection between the

courses. Consequently the determination of the borders between

courses of similar densities may be difficult in case of good con-

nection; the border will be less evident.

At this sample the air void content increases abruptly inside

the original binding course. Its reason is worth to analyze in

further researches, it is probably caused by inadequate spreading

and compaction.

6 Comparison of the Results of Laboratory and CT

Tests

Table 3 compares the air void contents measured in labora-

tory or calculated from CT tests. The results show minimal dif-

ferences, so the proposed CT method is as accurate as the direct

methods for determining the air void content. For calibrating

the method the cutting sections of the laboratory method were

identified on the CT slices, and the air void content was deter-

mined by omitting these slices. Based on the results the pro-

posed method is accurate and could be used as a substitute for

the standard laboratory methods.

Based on the distribution of air void contents it could be stated

that the location of cutting significantly affects the measured and

the calculated air void content. Thus at the laboratory methods

the precise cutting is very important. The CT method can handle

this problem easily, the air void content of the cutting width can

be taken into account as well. But the significantly different

values of the cutting width affect the results. It should be noted

here that the CT methods could be easily fitted to the laboratory

test by omitting the values of the cutting width.

The results of CT analysis also show that more accurate re-

sults can be obtained by CT than by laboratory tests. In the con-

tact zones between different asphalt courses the air void content

is significantly higher. The CT method shows the distribution of

air void content values along the vertical axis of the core sample.
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(a) (b)

Fig. 1. The aggregates outlined with white (a), and the air voids outlined with black (b) on a cross section

(a) (b) (c)

Fig. 2. The 3D image of aggregates (a) and pores (c) distribution, as well as their superimposing (b) in ImageJ software

Tab. 2. Results of CT Tests for Determining Air Void Content

Sample identifier Type of course Course thickness Air void content

Sample Nr. 3

AC 16 wearing (F) 29 mm 5.3%

AC 22 binding (F) 82 mm 5.2%

AC 22 base (F) 73 mm 4.9%

Sample Nr. 5
AC 16 wearing (F) 150 mm 4.5%

AC 32 base (F) 66 mm 4.4%

Sample Nr. 9
AC 16 wearing (F) 59 mm 3.9%

AC 32 binding (F) 84 mm 5.5%
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Fig. 3. Borders between courses

Fig. 4. Sample Nr. 5: Distribution of aggregates, bithumen mortar and air void contents along the vertical axis

Fig. 5. Sample Nr. 9: Distribution of aggregates, bithumen mortar and air void contents along the vertical axis
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Fig. 6. Sample Nr. 3: Distribution of air void in all courses. It shows the

frequency of pores with different area size (in mm2) in each CT image on a semi

logarithmic scale. The colorbar shows the vertical location of the cross-section.

The air void content is not homogenous even inside the courses,

which may be explained by the compaction.

The CT method can show if the surface of the road was un-

even before laying the course. In this case the air void content

changes along a wider interval (Fig. 3).

7 Conclusions

A lot of useful information could be gained about the struc-

tural features of road pavements by CT based method. The air

void content on the rand of courses were significantly different,

so the method can distinguish the courses and is suitable for the

analysis of the characteristics of pavement structures by courses.

On the CT images the aggregate particles, the bitumen mortar

and the air voids separates well, so the method is suitable for

other structural analysis, such as the determination of bitumen

mortar content.

The air void content significantly influences the durability and

the performance of pavement structures. The goal of the re-

search was to determine the air void content of these core sam-

ples by both methods and to compare the results. The research

investigated if the air void content could be determined accu-

rately in a nondestructive way.

Three core samples taken from reinforced sections of asphalt

roads were examined in the research. The evaluation of the CT

scanning was based on image analysis. The CT slices were pro-

cessed by automated algorithms in Matlab environment using

predefined parameters without any user interaction. The seg-

mentation of aggregates, air voids and binding materials was

performed with thresholding. The algorithms process the CT

slices successively one at a time. The result of the process are

tabular formed statistics (per slice and globally) and segmented

images as well.

The research has proven the two hypotheses regarding the

suitability for asphalt intercourse border determination and the

possibility to analyze the sample structure.

The CT and the laboratory tests gave the same result, which

rise the question, whether the CT technology can replace the

time and cost-consuming laboratory method. The more environ-

ment respect of the CT method is also advantageous in contrast

to the standard laboratory tests.

The results of CT analysis also show that more accurate re-

sults can be obtained by CT than by laboratory tests. In the con-

tact zones between different asphalt courses the air void content

is significantly higher. The CT method displays that the air void

content is not homogenous even inside the courses, which may

be explained by the compaction. The CT method exposes the

building problems and inhomogeneities as well.

The analyses based on CT tests have a lot of additional advan-

tages, further application possibilities. The CT method is able to

show the constructional problems and inhomogeneity (that has

a great impact to frost-resistance and durability), to give infor-

mation about the extent of cooperation between courses. The

structural analyses made by CT give not only one value but a

distribution of values, so the characteristics of any given part

could be examined, which has a great methodological advance

at structural analyses.

The proposed CT method is therefore suitable to examine the
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Tab. 3. Comparison of Results of Laboratory and of CT Tests

Sample identifier
Air void content,

laboratory
Air void content, CT Difference

Sample Nr. 3

5.1% 4.9% 4%

5.7% 5.2% 9%

5.7% 5.3% 7%

Sample Nr. 5
5.0% 4.5% 10%

5.9% 4.4% 25%

Sample Nr. 9
3.8% 3.9% 3%

3.9% 5.5% 38%

structural characteristics of asphalt mixtures and road pavements

with great accuracy, and the method is promising for innovative

future implementation possibilities.
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