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Abstract

In the study a linear dynamical model suitable for metro-

applications is constructed and analysed in the framework of the

Winkler-foundation theory. The metro track is allocated within

the inner space of the tube of big diameter. The tube is consid-

ered as a beam on elastic and damped foundation. The track

itself consists also of two elastically supported beams, namely

the basement beam made of steel-reinforced concrete is situated

at the bottom of the tube and connected to the lower-inner sur-

face of the tube by an elastic and dissipative “carpet-pad”. The

concrete beam supports the rails through an elastic and dissi-

pative layer. The wheel loads acting on the rails are moving

horizontally along the track. The set of partial differential equa-

tions describing the vertical motion of the three-layer dynami-

cal system is composed and the method of solution in the case of

travelling wheel loads is elaborated.
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1 Introduction

The investigation into the dynamics of metro tracks is impor-

tant, first of all from the point of view of dimensioning the load

bearing structures of the track. The metro trains follow each

other at a very high frequency. The moving loads cause dynam-

ical load-variations that lead to cumulative damage of fatigue in

the structural components and (sometimes irregular) wear pro-

cess on the railheads. On the other hand, the different geometri-

cal rail irregularities and the inhomogenities in the rail support-

ing stiffness cause excited vibrations of the vehicles, giving rise

again to component fatigue and reduction in running comfort.

A third very important sphere of problems is the noise and vi-

bration generation caused by the metro traffic in the tube. The

dynamical analysis can respond the questions concerning the ad-

vantageous track constructions and materials to be applied. In

this paper a general purpose linear track/vehicle model is intro-

duced for metro applications.

2 The three-layer model

In Fig. 1 the structure of the “deep-led” metro track is plot-

ted. The tube containing the track in strict sense, is laid in the

tunnel bored into the soil, and is supported by the resultant ver-

tical distributed soil-pressure. The tube can be represented in

this sense as a beam on approximately linear Winkler’s founda-

tion. Within the tube mentioned, a longitudinally extended base-

ment (this long continuous concrete beam is sometimes called

“tread”) made of steel-reinforced concrete is allocated. The con-

nection of the concrete basement beam and the inner bottom

surface of the tube is realised by a “carpet-pad” having approx-

imately linear vertical stiffness and damping. The pair of rails

supporting the metro vehicles are connected with the concrete

basement beam through continuous linearly elastic and dissi-

pative supporting spots, which can also be modelled approxi-

mately by a continuous Winkler’s foundation. Thus, the elas-

tically/dissipative connected three beams is called a three-layer

model. In the Figure the three beams as three layers in question

can easily be recognised. The metro vehicle is rolling on the

rails along the axis of the tube. The vertical connection of the

supporting rails with the wheel-sets is realised by the linearized
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vertical Hertzian springs and dampers. The metro vehicle itself

is modelled by a finite dimension linear system. In the vertical

in-plane track model the vertical displacement of the rails (two

rails working in parallel) from the unloaded equilibrium position

is designated by z1 (x, t), the vertical displacement of the con-

crete basement from the unloaded equilibrium position is desig-

nated by z2 (x, t), and finally the vertical displacement tube from

its unloaded equilibrium position is z3 (x, t). The three bivariate

functions introduced above are the unknown function-triple, de-

scribing the motion state of the metro track by an appropriately

composed set of partial differential equations.

As a possible simplified alternative metro track model ver-

sion, consider the structure plotted in Fig. 2. The simple two-

layer model consists of the longitudinally extended and elas-

tically supported concrete basement, undergoing vertical dis-

placement z2 (x, t) relative to its unloaded equilibrium position,

and of the elastically supported pair of rails, which perform ver-

tical displacement z1 (x, t) also relative to its unloaded equilib-

rium position. The metro vehicle moving along the track model

is treated similarly as it has been described above in the frame-

work of the three-layer model.

3 Mathematical models

Our mathematical modelling system consists of the following

three simultaneous partial differential equations:

B1z1 = f − S 1 (z1 − z2) , (1)

B2z2 = S 1 (z1 − z2) − S 2 (z2 − z3) , (2)

B3z3 = S 2 (z2 − z3) − S 3z3, (3)

representing the track/vehicle system of a metro system. The

vehicles move on the elastically supported rails, which are lay-

ing on the elastically supported concrete tread, embedded elasti-

cally into a metro tube. The vertical wheel-tread forces mean

longitudinally moving load on the “upper layer”, namely on

the rails. In our investigation it is enough to consider a single

horizontally moving force f , represented by a travelling phasor.

For treating the interaction of the track with the whole vehicle

(4 wheel-sets) the principle of superposition can be applied due

to the linearity of the track/vehicle dynamical model used.

The partial differential equations above are governing the mo-

tion of the three idealized Bernoulli-Euler beams, i. e. that of the

rail, the concrete and the tube, respectively, where fourth-order

partial differential operators Bi and first-order partial differential

operators S i are defined by relations

Bi := IiEi∂
4
x + ρiAi∂

2
t ,

S i := ki∂t + si,
for i = 1, 2, 3, (4)

representing the beams and their supports, respectively.

Here Ii, Ei, ρi and Ai are the usual parameters of the cor-

responding Bernoulli-Euler beams. Furthermore si and ki

are the stiffness and damping coefficients of the underlying

visco-elastic Winkler supports, respectively, for integers i =

1, 2, 3. The units of measure of the latters are [si] = N/m2 and

[ki] = Ns/m2.

The damped oscillatory load is moving along the rail at a con-

stant velocity v, and the loading force acting along the rail has

the form

f := f0 ewtδ (x − vt) , w ∈ C, (5)

with δ standing for Dirac’s δ-distribution.

Symbols f0 and w above denote the amplitude and the com-

plex frequency of the loading force, respectively, with the latter

moving along the rail at a constant velocity v corresponding to

beam operator B1.

The system of partial differential equations has to satisfy three

boundary conditions:

lim
x→±∞

z1 (x, t) = lim
x→±∞

z2 (x, t) = lim
x→±∞

z3 (x, t) = 0. (6)

A rearrangement of the partial differential equations above re-

sults in a new form of our partial differential equations as

D1z1 = f + S 1z2, (7)

D2z2 = S 1z1 + S 2z3, (8)

D3z3 = S 2z2, (9)

where the fourth-order partial differential operators on the

left-hand side are defined by relations

D1 := B1 + S 1, (10)

D2 := B2 + S 1 + S 2, (11)

D3 := B3 + S 2 + S 3. (12)

From the system of partial differential equations above one

can conclude the relations

D1D2D3z1 =

= D2D3 f + S 1D3 (S 1z1 + S 2z3) =

= D2D3 f + S 2
1D3z1 + S 1S 2

2z2 =

= D2D3 f + S 2
1D3z1 + S 2

2 (D1z1 − f ) =

=
(
D2D3 − S 2

2

)
f +

(
S 2

1D3 + S 2
2D1

)
z1,

(13)

and, finally, a partial differential equation of order 12

(
DD1 − S 2

1D3

)
z1 = D f (14)

can be obtained with the help of the introduction of a new

8th-order partial differential operator D, defined by formula

D := D2D3 − S 2
2. (15)

Excitation D f on the right-hand side of partial differential

equation (
DD1 − S 2

1D3

)
z1 = D f (16)
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Fig. 1. Three-layer model with three beams

Fig. 2. Two-layer model with two beams

is a linear combination of the derivatives of Dirac’s δ-

distribution, multiplied by a phasor factor ewt.

4 Solution of the system equations

We are looking for the solution to the problem in the usual

form [1, 2]:

z1 (x, t) = ewtu (ξ) , (17)

introducing relative horizontal displacement ξ := x−vt as a new

independent variable instead of longitudinal variable x.

Applying the “Ansatz” (test function) above, we conclude to

a linear ordinary differential equation of form

12∑
i=0

aiu
(i) =

8∑
i=0

c jδ
( j), (18)

with constant coefficients, which has a particular solution in

the form of a linear combination as

u (ξ) =

8∑
i=0

c jU
( j)(ξ)H (ξ) . (19)

Here function U stands for the solution to the corresponding

homogeneous equation

12∑
i=0

aiu
(i) =

8∑
i=0

c jδ
( j), (20)

satisfying initial conditions for U and its derivatives as fol-

lows:

U ( j)(0) = 0,

UXI(0) = 1/a12.
j = 0, 1, . . . , 10, (21)

Characteristic equation

P (λ) =

12∑
i=0

aiλ
i = 0 (22)

of the ordinary differential equation above has 12 roots, where

(under certain conditions) the first six roots λ1, λ2, . . . , λ6 are

placed in the left half-plane of the complex plane C, while the

next six roots λ7, λ8, . . . , λ12 lay in the right half-plane.

The investigation of the critical frequencies is still an open

problem.

This way, cf. [1–4], one is able to satisfy the boundary con-

dition corresponding to variable z1, and obtain solution function

z1in the form

z1 (x, t) =

=

12∑
i=1

σi

P′ (λi)

8∑
j=0

c jλ
j

i
ewt+λi(x−vt)H (σi (x − vt)) ,

(23)

where σi = −sgn (Re (λi)) holds.
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Symbol P′, in the above solution function z1, stands for the

derivative of characteristic polynomial P of the ordinary differ-

ential equation
12∑
i=0

aiu
(i) =

8∑
i=0

c jδ
( j),

while H denotes Heaviside’s unit jump function.

The other two solution functions z2(x, t) and z3(x, t) can be

given by the consecutive solution of the following two first-order

ordinary differential equation problem:

S 1z2 = D1z1 − f ,

S 2z3 = D2z2 − S 1z1,

by taking the boundary conditions corresponding to variables

z2 and z3, respectively, into consideration.

5 Conclusions

In the study of the dynamics of the three-layer track we have

dealt with three coupled beam equations on Winkler’s founda-

tions, one of them loaded by a vertical phasor excitation moving

longitudinally at a constant travelling velocity. The solution to

the above problem is elaborated in the paper on the basis of a

certain operator analysis and by using a proper moving phasor

“Ansatz”. Using the roots of the deduced characteristic equation

and Heaviside’s unit jump function we are able to express the

displacement of the rails (the upper layer) as a response to the

moving excitation in a closed-form fashion. For the determina-

tion of the displacement functions for the medium and the lower

(outer) layers a consecutive solution method is proposed in the

paper.
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