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Abstract

This paper presents a novel allowable deformation prediction

model of surrounding rock based on support vector machine

(SVM). The engineering rock mass classification is subdivided

based on the national standards Standard for Engineering Clas-

sification of Rock Masses in order to get more accurate physical-

mechanical parameters. Using the developed parameters, 100

sets of multi-factors and multi-levels orthogonal experiments are

designed, which are simulated with two-dimensional numerical

models established based on ABAQUS. 100 groups of learning

samples and 9 samples of random inspection are obtained. The

prediction model has been established from the study of learning

samples based on LibSVM. Using this model, 9 samples of ran-

dom inspection and 9 engineering examples are predicted and

the prediction accuracy is good compared with their actual val-

ues. It is indicated that this model can meet the initial support

design requirements of underground caverns well. The novel

model has the advantages of convenience, rapidity, and reliabil-

ity.
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1 Introduction

Deformation of surrounding rock has always been a key prob-

lem during the construction of underground caverns. In the

recent years, many studies focusing on time series prediction

have been carried out to study the deformation prediction of sur-

rounding rock [1–3]. By studying the laws of surrounding rock

deformation changes with time on a measuring point of a cross-

section in underground caverns, the deformation of surround-

ing rock is predicted in future. However, the study on maxi-

mum deformation of surrounding rock of underground caverns

has gained less attention. Li [4] studied the general relationship

between displacement and surrounding rock classification using

the typical analogy analysis method on the basis of the collected

59 engineering projects. Yang [5] proposed an empirical for-

mula to predict the deformation of surrounding rock, which was

based on rock quality index value, cavern depth and size. How-

ever, most of the engineering projects in these research based

on had been made initial support. The support type and tec-

tonic stress field are different for each project. Meanwhile, the

mechanics parameters of surrounding rock with the same clas-

sification differ greatly. Despite under the same conditions of

rock classification, cavern buried depth and size, there is still

great difference for surrounding rock deformation, about nearly

10 times. Furthermore, the representativeness of selected engi-

neering projects has greater influence on the research results.

The maximum deformation of surrounding rock under the

premise of no support and failure is defined as allowable de-

formation of surrounding rock. In other words, allowable de-

formation is the maximum displacement just before failure. At

present, no enough studies on allowable deformation of sur-

rounding rock has been carried out. Determination of allowable

deformation is beneficial to choose the right support time and to

ascertain reasonable reserved deformation value (between pri-

mary support and secondary lining). Moreover, it has important

reference significance for the initial supporting design of under-

ground caverns. Therefore, it is very essential to achieve the al-

lowable deformation of surrounding rock quickly, conveniently,

and accurately before support design.

Support vector machine (SVM) is a new general machine
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learning method, which was proposed by Vapnik in the 1990s

based on structural risk minimization principle of statistical

learning theory [6, 7]. It has achieved widespread application

because of its good learning promotion and nonlinear mapping

ability [8–10]. In order to overcome the influence of support-

ing type, tectonic stress, rock mass classification and measure-

ment error, we introduced a novel allowable deformation predic-

tion model for surrounding rock of underground caverns based

on SVM. 100 groups of orthogonal experiment models was es-

tablished and the numerical simulation experiments were con-

ducted to obtain 100 learning samples so that the SVM predic-

tion model of allowable deformation was established.

2 SVM prediction model

2.1 Influence factors of allowable deformation

The main influence factors of allowable deformation of sur-

rounding rock include the size of caverns, the quality of sur-

rounding rock, the space position and the construction factor.

This research is based on the following assumptions:

1 Construction factor is not considered. In practical engineer-

ing, the construction factor is a human factor. It will not lead

to large deformation of surrounding rock, as long as construc-

tion is carried out according to the optimal construction plan

and control. Meanwhile, construction factor is difficult to

quantify.

2 Only the role of gravity stress field and its horizontal com-

ponent are considered. Large tectonic stress situation is not

considered especially under the condition of horizontal stress

greater than vertical stress. The spatial location of under-

ground caverns involves the ground pressure problem and

stress field. The tectonic stress has large uncertainty, and it

is difficult to express in functional form.

Therefore, three influence factors are taken into considera-

tion, which are rock mass classification, cavern buried depth

and cavern size. The mapping relationship between allowable

deformation and three above influence factors is established.

2.2 Support vector machine prediction model

Support vector machine has a strict theoretic basis, and also

can solve the practical problems of small samples, nonlinearity,

high dimension and local minimum point. Meanwhile, it has

good learning promotion and nonlinear mapping ability. Sup-

port vectors in SVM are obtained by solving a convex quadratic

optimization problem, which can ensure that the local optimal

solution is the global optimal one. A brief introduction of sup-

port vector machine function fitting problem is introduced as

following [11]. SVM function fitting is to perform a regres-

sion of the samples in area by using support vector machine.

Thereby, the mapping function of the area is determined. Then

the values of unknown samples of this area are calculated ac-

cording to the fitting function.

1) For linear regression problem: It is known that D ={
(xi, yi), i = 1, · · · , k, xi ∈ Rk, yi ∈ R

}
. A function f (x) =

ω · x + b based on the training set D is identified to approximate

the unknown regression function, where ω and b are parameters

of the regression function. It is assumed that k training samples

in training set can be fitted by using linear function without error

under the precision ε, namely yi − ω · xi − b ≤ ε

ω · xi + b − yi ≤ ε
i = 1, . . . , k (1)

The regression estimation problem is defined as the risk min-

imization problem of a loss function. When using structural risk

minimization principle for risk minimization, the minimizing

functional for the optimal regression function is:

φ (ω, ξ) =
1

2
‖ω‖2 + C

k∑
i=1

(
ξi + ξ∗i

)
(2)

Where C is a constant called penalty coefficient, which con-

trols the degree of punishment when the sample beyond the error

ε; ξi and ξ∗
i

are relaxation factors which are introduced in view

of the acceptable fitting error. Now constraint condition is
yi − ω · xi − b ≤ ε + ξi

ω · xi + b − yi ≤ ε + ξ∗
i

ξi ≥ 0

ξ∗
i
≥ 0

i = 1, . . . , k (3)

For the quadratic optimization problem above, Lagrange mul-

tipliers (αi and α∗
i
) are introduced to construct the Lagrangian

functional, and the dual problem of the original problem is ob-

tained in the following condition:
k∑

i=1

(
αi − α

∗
i

)
= 0

0 ≤ αi, α
∗
i
≤ C,

i = 1, . . . , k (4)

To maximize the objective function

Max W (α, α∗) = −
1

2

k∑
i, j=1

(
αi − α

∗
i

) (
α j − α

∗
j

) (
xi·xj

)
+

+

k∑
i=1

(
αi − α

∗
i

)
yi −

k∑
i=1

(
αi + α∗i

)
ε

(5)

This is a typical convex quadratic optimization problem. By

solving this problem, the SVM fitting function is obtained:

f (x) =

k∑
i=1

(
αi − α

∗
i

)
(xi·x) + b (6)

where αi and α∗
i

are Lagrange multipliers. When αi and α∗
i

are not both zero, the sample is the support vector.

2) For nonlinear regression problem: Nonlinear mapping is

used to map the input vector into a high dimensional feature

space, in which the nonlinear problem can be solved by translat-

ing into a similar linear regression problem. Assuming that φ(x)
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is a nonlinear mapping, K(u, v) is a symmetric function which

satisfies the Mercer condition. Thus K(u, v) = φ(u) · φ(v) can

be obtained. K(u, v) is the kernel function. Kernel function is

used to avoid the problem of "dimension disaster" in the high

dimensional feature space. In addition, a kernel function of in-

put space is applied to replace the inner product form of higher

dimensional space. Thereby, the problem of high-dimensional

calculation is solved in a skillful way. Hence, the problem of

nonlinear regression optimization is translated into maximizing

the objective function subjected to (4) as:

Max W (α, α∗) = −
1

2

k∑
i, j=1

(
αi − α

∗
i

) (
α j − α

∗
j

)
K

(
xi, xj

)
+

k∑
i=1

(
αi − α

∗
i

)
yi −

k∑
i=1

(
αi + α∗i

)
ε

(7)

Where K is the kernel function. For a specific problem, the

determination of the appropriate kernel function is the most im-

portant part of nonlinear regression. In this case:

ω =

k∑
i=1

(
αi − α

∗
i

)
φ (xi) (8)

SVM fitting function can be expressed as:

f (x) =

k∑
i=1

(
αi − α

∗
i

)
K (x, xi) + b (9)

where αi and α∗
i

are Lagrange multipliers. When αi and α∗
i

are not both zero, the sample is the support vector.

Kernel function plays an important role in SVM. At present,

the most common kernel functions include:

1 Polynomial kernel function

K (x, y) =
[
(x, y) + 1

]q
(10)

2 RBF(radial basis function) kernel function

K (x, y) = exp

{
−
‖x − y‖2

σ2

}
(11)

3 Sigmoid kernel function

K (x, y) = tanh
[
φ (x·y) + a

]
(12)

There are many methods to solve quadratic optimization

problem of SVM algorithm. The most common methods are the

Chunking algorithm, Decomposition algorithm, the SMO algo-

rithm, and Interior point algorithm. Currently, the SMO algo-

rithm is widely applied in the actual problem.

The nonlinear relationship between influence factors and al-

lowable deformation of surrounding rock can be described as

y = S V M (x), where y is allowable deformation of surrounding

rock, x = (x1 x2 x3), and x1, x2, x3 are surrounding rock classi-

fication, cavern depth and cavern size, respectively. The fitting

function of the formula (9) is established through the learning

samples. The sketch of the SVM for regression is shown in

Fig. 1.

Fig. 1. Schematic representation of the SVM for regression

In the actual projects, most of the underground caverns will

be primarily supported immediately after excavation. The de-

formation data of surrounding rock without a support is quite

smaller. Therefore, the deformation of surrounding rock is

greatly influenced by the support type.

Allowable deformation prediction of surrounding rock with-

out support was investigated based on the following three steps:

Step 1: The engineering rock mass classification was subdi-

vided based on the national standards Standard for Engineer-

ing Classification of Rock Masses (GB50218-94). Meanwhile,

more accurate mechanics parameters of surrounding rock were

obtained;

Step 2: According to the theory of orthogonal experimental

design and genetic algorithm, 100 sets of multi-factors mixed

with multi-levels orthogonal experiment were designed. These

100 sets of orthogonal experiment based on the mechanics pa-

rameters of surrounding rock, 100 groups of learning sam-

ples and 9 samples of random inspection were simulated using

ABAQUS. As a result, nonlinear relationship between influence

factors and allowable deformation were achieved.

Step 3: The SVM prediction model of allowable deformation

was established by investigating of the learning samples based

on LibSVM. Moreover, the 9 samples of random inspection and

9 engineering examples were predicted and compared with their

actual values.

3 Rock mass quality classification

Physical-mechanical parameters of rock mass reflect the sta-

bility and quality of rock. These parameters are closely re-

lated to hardness degree of rock and rock mass integrity which

determine the rock mass basic quality. The national stan-

dards Standard for Engineering Classification of Rock Masses

(GB50218-94) provides the suggested values of rock mass

physical-mechanical parameters at all grades through probabil-

ity analysis and comprehensive comparison, which is based on

many statistical results of experimental data in terms of rock

mass quality grade [12]. Rock mass quality classification and
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Tab. 1. Rock mass quality classification and physical-mechanical parameters

Basic quality grade
Gravity The peak shear strength

Deformation

modulus Poisson ratio ν
Rock mass basic

density (kN/m3)
Internal friction

angle ϕ / (°)
Cohesion C / MPa E / GPa quality index (BQ)

I > 26.5 > 60 > 2.1 > 33 < 0.2 > 550

II 60 ~ 50 2.1 ~ 1.5 33 ~ 20 0.2 ~ 0.25 550 ~ 451

III 25.4 ~ 24.5 50 ~ 39 1.5 ~ 0.7 20 ~ 6 0.25 ~ 0.3 450 ~ 351

IV 24.5 ~ 22.5 39 ~ 27 0.7 ~ 0.2 6 ~ 1.3 0.3 ~ 0.35 350 ~ 251

V < 22.5 < 27 < 0.2 < 1.3 > 0.35 ≤ 250

Tab. 2. Refinement of rock mass quality classification and physical-mechanical parameters

Quality grade
Gravity density

(kN/m3)
The peak shear strength

Deformation

modulus E /GPa
Poisson ratio ν

Rock mass basic

quality index (BQ)

Internal friction

angle ϕ / (°)
Cohesion C / MPa

2 26.5 60 2.1 33 0.2 550 ~ 517

2.33 56.7 1.9 28.7 0.217 516 ~ 483

2.67 26.5 53.3 1.7 24.3 0.233 484 ~ 451

3 24.95 50 1.5 20 0.25 450 ~ 417

3.33 24.95 46.4 1.23 15.4 0.267 416 ~ 383

3.67 24.95 42.6 0.97 10.6 0.283 384 ~ 351

4 23.5 39 0.7 6 0.3 350 ~ 317

4.33 23.5 35 0.53 4.4 0.317 316 ~ 283

4.67 23.5 31 0.37 2.7 0.333 283 ~ 251

5 22.5 27 0.2 1.3 0.35 ≤ 250

physical-mechanical parameters are shown in Table 1.

The range of values of physical-mechanical parameters is tab-

ulated in Table 1 for the same grade of surrounding rock. Dif-

ferent mechanical parameters in the same grade of surrounding

rock will lead to a great difference of surrounding rock defor-

mation when cavern buried depth and cavern size are fixed. The

numerical calculation results of surrounding rock deformation

have a close relationship to the selection of mechanical param-

eters, but the influence of each parameter on deformation is dif-

ferent [13]. The research showed that the sensitivities of these

parameters affecting deformation in a descending order are the

deformation modulus, the internal friction angle, the Poisson

ratio, and the cohesion. Especially, the sensitivities of defor-

mation modulus and internal friction angle are comparatively

higher than another two parameters [14]. Deformation modulus

is the controlling factor which affects the deformation of sur-

rounding rock.

The engineering rock mass classification is subdivided ac-

cording to rock mass basic quality index (BQ) in order to obtain

the allowable deformation more accurately on the basis of sur-

rounding rock grade in preliminary design, as shown in Table 2.

In the actual projects, surrounding rock of grade II, III, and IV

is common. The previous researches showed that rock mass ba-

sic quality index (BQ) and physical-mechanical parameters gen-

erally meet the linear relationship [15]. Therefore, each grade

of surrounding rock was subdivided into three sub-state on the

basis of subdivision of rock mass basic quality index (BQ) into

three ranges. Also, for grade II, III, and IV rocks, the value of

parameters (deformation modulus, internal friction angle, pois-

son ratio, cohesion) was divided into three equal parts. Then

the parameter value on equal diversion point was defined as the

representative value of each sub-classification. Since the gravity

density has little influence on deformation, the average value of

the original gravity density of each surrounding rock grade was

used as the representative value of each sub-classification. In

this way, the number of quality grade becomes 10, so the clas-

sification relative to original standard is more detailed. Mean-

while, the selection of physical-mechanical parameters of sur-

rounding rock is more reliable, which is beneficial to improve

the accuracy of deformation studies.

Currently, classification indexes and grading-standards

among various international rock mass classification methods

greatly differ. Bieniawski [16] proposed the RMR classification

of rock mass mechanics, which has been widely applied. Xu

et al. [17] studied the relationship between BQ and RMR, and

suggested a modified empirical formula as follows:

BQ = 170 ln
15 + 0.24RMR

5.7 − 0.06RMR
(13)

Relationship between BQ and RMR can be obtained by

Eq. (1). For foreign rock mass engineering, the new classi-

fication can be determined according to value range of BQ in

Table 2, and the corresponding physical-mechanical parameters

will be acquired. The successful experience of foreign engineer-
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ing design based on rock mass classification provides insights

in the design and investigations. Allowable deformation of the

foreign underground caverns can also be predicted at the same

time.

4 Numerical simulation experiment

4.1 Orthogonal design

In the actual projects, rock mass quality of —grade V sur-

rounding rock is worse. Deformation of caverns develops as

soon as the excavation is carried out and becomes larger if pri-

mary support is not made immediately after excavation. Quality

grade was divided into 10 categories as shown in Table 2. Cav-

ern depth was considered up to 500 m and cavern radius was

controlled from 1.5 m to 6 m. The cavern depth and radius of

V grade surrounding rock range to the large value which ulti-

mately lead to the failure. Therefore, V-grade surrounding rock

was not considered in this study. The orthogonal factor level of

numerical simulation experiment is shown in Table 3.

Tab. 3. Orthogonal factor level table

Factor Experiment level

Quality grade Cavern depth / m Cavern radius / m

1 2 50 1.5

2 2.33 100 2

3 2.67 150 2.5

4 3 200 3

5 3.33 250 3.5

6 3.67 300 4

7 4 350 4.5

8 4.33 400 5

9 4.67 450 5.5

10 / 500 6

According to Table 3, 900 groups of experiment were to be

carried out if test was conducted comprehensively. Therefore,

the scale would be very large. Fortunately, orthogonal experi-

ment design method is an effective method which makes scien-

tific arrangement and solves the problem of multi-factors exper-

iment using "orthogonal table".

As the levels of each factor were large and unequal in sim-

ulation experiment design, standard orthogonal table would not

meet the requirements. Yang et al. [18] solved the large-scale

multi-factors mixed with multi-levels experiment design prob-

lem, which, however, did not agree to the standard orthogonal

table based on orthogonal design theory, taking genetic algo-

rithms as optimization algorithms. A reasonable experimental

scheme was proposed in this paper. In this study, 100 groups of

experiments were designed as the numerical simulation experi-

ment scheme using the above method, and were sorted accord-

ing to the quality grade of surrounding rock. Due to limitations

of space, 20 of them are listed as representative in Table 4.

4.2 Numerical simulation

Two-dimensional numerical model was established for nu-

merical calculation based on ABAQUS [19]. The surrounding

rock ranging about 3 to 5 times the tunnel diameter from the

center of the excavation scope was affected by the tunnel exca-

vation [20]. In order to eliminate the influence of the boundary

effect on the calculation results, the calculation range was deter-

mined. The left, right and down boundaries were more than six

times of cavern diameter from the cavern boundary. It is noted

that the upper boundary was at the actual distance to the surface.

And the boundary from the center of tunnel was 80 m. The left

and right boundaries were set to horizontal restraint. The bottom

boundary was set to vertical restraint while the upper boundary

was free surface. A total of 100 groups of orthogonal experiment

models and 9 experiment models of random inspection were es-

tablished. The 9 samples of random inspection were randomly

selected. The representative numerical model is shown in Fig. 2.

Fig. 2. Representative numerical model

In the calculation process, Mohr-Coulomb failure criterion

was adopted. The lateral pressure coefficient was ν / (1 - ν), and

dilatancy angle was half of the internal friction angle [21]. Other

physical-mechanical parameters were selected in accordance to

Table 2. Gravity stress of rock mass was exerted to the entire

model.

4.3 Numerical simulation results

In the numerical simulation experiment, the allowable de-

formation is the maximum displacement of caverns just before

failure. 100 groups of numerical simulation experiments were

carried out using the above models. As a result, 100 groups

of allowable deformation of surrounding rock of underground

caverns were obtained and thus, the learning samples of SVM

prediction model were obtained. Due to limitations of space,

20 of them are listed as representative in Table 5. Meanwhile,

cavern depth range was considered within 500 m and cavern ra-
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Tab. 4. Representative orthogonal experimental scheme

Experiment No. Quality grade
Cavern depth

(m)

Cavern radius

(m)
Experiment No. Quality grade

Cavern depth

(m)

Cavern radius

(m)

5 2 250 3 55 3.33 100 5.5

10 2 400 1.5 60 3.67 400 4.5

15 2.33 200 4.5 65 3.67 300 3.5

20 2.33 300 6 70 4 250 3.5

25 2.67 350 1.5 75 4 450 5.5

30 2.67 500 4 80 4.33 150 2.5

35 3 250 3 85 4.33 50 2

40 3 500 3.5 90 4.67 250 2.5

45 3.33 300 4 95 4.67 50 2.5

50 3.33 350 2.5 100 4.67 450 4

dius ranged from 1.5 m to 6 m. The cavern depth and cavern

radius were selected randomly based on these criteria according

to grade quality. 9 groups of random numerical simulation ex-

periments were carried out in total, and the experiment results

were taken as inspection samples.

5 Allowable deformation prediction of surrounding

rock based on SVM

5.1 Allowable deformation prediction of surrounding rock

Many commercial packs of software are available currently

for the calculation of SVM. In this paper, the calculation was

carried out based on LibSVM [22]. RBF kernel function was

selected as the kernel function of calculation model which had a

good fitting and generalization capability. SMO algorithm was

used to solve the quadratic optimization problem. The key pa-

rameters of SVM model were penalty coefficient C and RBF

kernel function parameter σ2.

In order to eliminate the influence of large difference of val-

ues and inconsistent dimension among three influence factors,

all factors were normalized to the interval [0, 1] before sample

learning. The learning process was actually the process of find-

ing the optimal model parameters C and σ2. Parameter selection

has much influence on the prediction results. Cross-validation

method was used to select the parameters C and σ2. Firstly,

the range of value of parameters C and σ2 was determined.

Secondly, the chosen parameter was combined and the learning

samples were trained. Finally, the optimal parameters of SVM

model were obtained. The optimal model parameters obtained

after calculation are C = 94 and σ2 = 0.5.

Then, 100 learning samples were trained using the optimal

model parameter C and σ2. The b value of 20.122 and 74 groups

of support vector were obtained from the trained results. The

values of Lagrange multipliers of 74 groups of support vector

are shown in Table 6.

At this point, the SVM prediction model of surrounding rock

was established. The allowable rock deformation could be pre-

dicted from Eq. (9) and Fig. 1.

The 9 samples of random assessment were anticipated by uti-

lizing the established SVM prediction model as demonstrated

in Table 7. The comparison of numerical simulation values and

prediction values by SVM is presented in Fig. 3. It can be seen

from Table 7 and Fig. 3, the maximum relative error of the SVM

prediction is 8.8%. The error is small and the SVM prediction

model has a decent prediction effect. Therefore, SVM can be

used to predict the allowable deformation of surrounding rock

with high accuracy and great applicability.

Fig. 3. Comparison of numerical simulation values and prediction values by

SVM

5.2 Engineering example verification

The study demonstrates that SVM has good relevance in al-

lowable deformation for surrounding rock of underground cav-

erns. Since the learning samples were obtained by numerical

simulation experiment, it is not clear whether the SVM predic-

tion model can be utilized to predict the allowable deformation

for surrounding rock of actual underground caverns well. There-

fore, engineering examples were selected to validate the SVM

prediction model. The underground caverns which have smaller

tectonic stress (particularly horizontal stress) and no primary

support were selected as engineering examples the extent that

this would be possible. In total, nine engineering examples were

selected for validation [4].

For the nine engineering examples, rock mass classification

was subdivided according to rock mass basic quality index (BQ)

as shown in Table 2. If BQ was not obtained, rock mass clas-
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Tab. 5. Representative experimental results

Experiment No.
Allowable

deformation (mm)
Experiment No.

Allowable

deformation (mm)

5 1.54 55 2.16

10 1.20 60 11.31

15 2.14 65 5.98

20 4.44 70 8.50

25 1.39 75 32.89

30 5.59 80 4.45

35 2.30 85 1.20

40 5.47 90 15.88

45 4.81 95 2.43

50 3.42 100 114.81

Tab. 6. Values of Lagrange multipliers of SVM prediction model

No. α α∗ No. α α∗ No. α α∗ No. α α∗ No. α α∗

1 94.000 0.000 16 0.000 20.433 31 0.000 18.003 46 0.000 28.570 61 0.000 94.000

2 0.000 8.857 17 4.078 0.000 32 76.262 0.000 47 94.000 0.000 62 70.908 0.000

3 0.000 0.927 18 42.596 0.000 33 54.542 0.000 48 38.688 0.000 63 0.000 94.000

4 94.000 0.000 19 0.000 94.000 34 0.000 47.437 49 0.000 94.000 64 54.156 0.000

5 0.000 0.872 20 94.000 0.000 35 0.000 17.140 50 94.000 0.000 65 94.000 0.000

6 0.000 61.553 21 0.000 94.000 36 0.000 94.000 51 39.143 0.000 66 94.000 0.000

7 0.000 8.164 22 94.000 0.000 37 31.325 0.000 52 10.295 0.000 67 94.000 0.000

8 41.439 0.000 23 94.000 0.000 38 42.379 0.000 53 0.000 94.000 68 39.363 0.000

9 1.233 0.000 24 0.000 93.409 39 94.000 0.000 54 0.000 94.000 69 0.000 73.266

10 36.894 0.000 25 94.000 0.000 40 94.000 0.000 55 0.000 94.000 70 94.000 0.000

11 0.000 22.154 26 35.037 0.000 41 0.000 94.000 56 0.000 81.111 71 0.000 73.784

12 20.883 0.000 27 0.000 41.761 42 0.000 8.001 57 0.000 39.606 72 94.000 0.000

13 13.741 0.000 28 0.000 93.776 43 0.000 94.000 58 0.000 94.000 73 87.391 0.000

14 0.000 14.046 29 94.000 0.000 44 0.000 94.000 59 0.000 94.000 74 94.000 0.000

15 0.000 94.000 30 94.000 0.000 45 10.773 0.000 60 0.000 94.000

sification was subdivided according to the sequences of sensi-

tivity to deformation, being the deformation modulus, the in-

ternal friction angle, the Poisson ratio, and the cohesion in a

decreasing order. An equivalent radius of a quarter of the ag-

gregate of height and span was used to represent actual size of

caverns for the non-circular caverns in engineering applications.

Cavern buried depth, quality grade and cavern radius that had

been changed over were substituted into the SVM prediction

model as influence factors. Allowable deformation of surround-

ing rock was predicted as presented in Table 8. The correlation

of measured values and prediction values by SVM was demon-

strated in Fig. 4. It can be seen from Table 8 and Fig. 4 that the

prediction values of allowable deformation by SVM concurred

well with the measured values for the nine engineering exam-

ples. The maximum relative error is 20%. Since the engineering

measured values are influenced by the inevitable tectonic stress

and measurement error, it is believed that predictions can meet

the engineering prerequisites well for the preliminary design of

underground caverns.

Fig. 4. Comparison of measured values and prediction values by SVM

6 Application research in engineering

In the preliminary design of underground caverns, if BQ and

detailed physical-mechanical parameters of surrounding rock

are not obtained, allowable deformation can be predicted ac-

cording to geological characteristics of rock mass in the engi-

neering area. Initially, the basic quality grade in which the rock

mass belongs to in the National Standards on the basis of ac-

tual geological conditions is figured out. Then, according to
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Tab. 7. Prediction test for allowable deformation of surrounding rock

Experiment No. Quality grade Cavern depth (m) Cavern radius (m)
Experiment

Deformation (mm)

Prediction

Deformation (mm)
Relative error/ %

1 2 380 4.8 3.90 3.89 0.26

2 2.33 420 5.4 5.57 5.28 5.21

3 2.67 390 3.6 3.88 4.1 5.67

4 3 310 4.2 4.09 3.73 8.80

5 3.33 420 4.8 8.26 8.98 8.72

6 3.67 230 5.2 7.07 7.08 0.14

7 4 220 3.2 6.51 6.44 1.08

8 4.33 180 2.8 6.52 7.04 7.98

9 4.67 130 2.3 6.23 5.94 4.65

Tab. 8. Engineering examples showing an allowable deformation prediction for surrounding rock

No. Engineering name
Quality

grade

Cavern

depth (m)

Cavern

radius (m)

Measured

deformation

(mm)

Prediction

deformation

(mm)

Relative

error (%)

1 Xiaolangdi experimental cavity 4.33 57.5 5.338 4.9 5.78 17.9

2 Diversion tunnel from Fuerjiang J2 2 78 1.95 0.32 0.26 18.8

3 Lubuge experimental cavity 0 + 25.18 2 175 1.9 0.55 0.46 16.4

4 Leigongjian tunnel 1984 + 150.85 3.67 110 5.3 3 3.16 5.3

5 Xishimen primary crusher chamber 3.67 206 5.738 6 7.2 20

6 Hebi No.4 Mine 4.33 350 1.775 10.26 8.74 14.8

7 Xiaoguanzhuang air-return roadway 4.67 450 1.675 17.8 15.47 13.1

8 Xiaoguanzhuang transportation tunnel 4.67 550 1.675 19.3 17.72 8.2

9 Bayilin tunnel 9 + 749 3.33 114 4.3 1.76 1.96 11.4

the qualitative characteristics of rock mass, the quality of the

rock mass is chosen whether it is in great, reasonable or poor

condition in the basic quality grade corresponding to the three

sub-classifications in Table 2. Once the quality grade is deter-

mined, allowable deformation of surrounding rock for proposed

underground caverns can be predicted by using the established

SVM prediction model. The results can provide reference for

preliminary design of underground caverns, even for project site

selection.

Because of the larger range of cavern depth and radius in this

study, the caverns in V-grade surrounding rock have large defor-

mation or even might have reached failure. Thus, V-grade sur-

rounding rock was not considered. For the V-grade surrounding

rock, we can contract the range of cavern depth and cavern ra-

dius. Then, the learning samples for V-grade surrounding rock

can be obtained by numerical simulation experiment emulating

the research method of this study. The SVM prediction model

for V-grade surrounding rock will be established finally.

However, for the large-span deep caverns, the value range of

cavern depth and cavern radius in this study is not sufficient.

Geostress situation in the engineering area where the location

of these caverns is complex and uncertain, the influence of tec-

tonic stress must be considered for the learning samples used to

establish the SVM prediction model. Therefore, the prediction

model in this study is not suitable for the large-span deep cav-

erns. Further research is required in the following work for this

case.

In conclusion, for the general underground caverns whose

buried depth is less than 500 m and cavity diameter is less than

12 m. When they have smaller tectonic stress, the SVM predic-

tion model that had been created in this study has a good ap-

plicability. Once the quality grade of surrounding rock, cavern

buried depth and cavern radius were determined, the allowable

deformation would be obtained quickly and conveniently based

on the SVM prediction model. In the meantime, the prediction

accuracy is high and the maximum relative error is 20%. It is

believed that predictions can meet the engineering requirements

well so that the support design can be outlined in the preliminary

design stage of underground caverns.

7 Conclusions

Following conclusions can be drawn from this study:

1 The engineering rock mass classification was subdivided

based on the national standards, Standard for Engineering

Classification of Rock Masses (GB50218-94). According to

the new classification, the selection of physical-mechanical

parameters of surrounding rock is more reliable, which is

beneficial to improve the accuracy of deformation prediction.

According to the new classification, the selection of physical-

mechanical parameters of surrounding rock was more reli-

able, which proved to be advantageous in enhancing the ac-

curacy of deformation prediction.
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2 Two-dimensional numerical models were established based

on ABAQUS to simulate 100 sets of multi-factors and multi-

levels orthogonal experiments in which the more accurate

physical-mechanical parameters of surrounding rock were

utilized. Thereafter, 100 groups of learning samples and 9

samples of random inspection were obtained. These samples

ultimately overcome the influence of supporting type, tectonic

stress, rock mass classification and measurement error.

3 The SVM prediction model of allowable deformation was es-

tablished. The optimal model parameter C was 94 and σ2 was

0.5. The 9 samples of random inspection were predicted by

using the SVM prediction model created in this study. Then

the prediction results were compared with the experiment val-

ues. The results demonstrated that the prediction accuracy

was high. The maximum relative error of the SVM prediction

was 8.8%. The SVM prediction model created in this study

had the advantages of comfort, rate, and reliability.

4 Allowable deformation of surrounding rock for 9 engineering

examples was predicted by using the established SVM pre-

diction model. The results showed that the prediction values

agreed well with the measured values and the maximum rel-

ative error was 20%. Since the engineering measured values

are influenced by the inevitable tectonic stress and measure-

ment error, it is believed that predictions can meet the engi-

neering prerequisites well for the preliminary design of un-

derground caverns.
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