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Abstract

A model of a circular disk fracture based on consideration

of the fracture process zone near the curvilinear crack tip is

suggested. It is considered that mixed boundary conditions are

given on the boundary of the disk. It is accepted that the frac-

ture process zone is a finite length layer with a material with

partially broken bonds between its separate structural elements

(end zone). Analysis of equilibrium limit of the curvilinear crack

is performed on the basis of ultimate extension of the material

bonds.
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1 Introduction

Circular disks are widely used in up-to-date machines. The

problems of disks strength are very urgent and undoubtedly, in-

terest to these problems will increase in connection with devel-

opment of machine-building and power engineering. For ana-

lyzing the disks reliability it is necessary to study their stress-

strain state and fracture. Simulation and analysis of stress-strain

state in disks has a special applied value in the first turn for tame

choice of their construction, optimal sizes and admissible value

of actuating loadings. The disks often work in highly stressful

conditions. There is a wide reference (see review in the mono-

graphs [1, 2]) devoted to strength analysis of disks. In most ex-

isting papers A. Griffith’s model of a crack is used.

Account of plastic deformation near the crack was realized

by M.Ya. Leonov and V.V. Panasyuk [3] and afterwards by D.S.

Dugdale [4]. Bilby and others [5, 6] obtained the solution of the

problem at longitudinal shear. By analogy of D.S. Dugdale’s hy-

pothesis, it was accepted that the plastic zone was concentrated

in the narrow layer on the continuation of the crack.

As applied to the problem of brittle failure, G.I. Barenblatt has

suggested the conception of cohesion zone. Implicit existence

of bonds between stresses near the crack ends and its continued

faces was supposed in [7].

The model of a crack with interfacial bonds at the end zones

may be used in different scales of fracture. Intensive develop-

ment of crack models with explicit account of nonlinear laws

of interaction in conformity to elasto-visco-plastic behaviour of

materials and various kinds of loading is connected with this

fact. Bibliography of works on this theme may be found in the

papers of special issue [8].

In the present paper we use a bridged crack’s model [8–10].

2 Formulation of the problem

Assume that on the boundary of a circular disk the normal

displacements ur (t) and tangential component of surface forces

Nθ (t) are given, and the normal pressure Nr (t) should be defined

in the course of problem solution. Refer the cross section of the

disk to polar system of coordinates rθ having chosen the origin

of coordinates at the centre of the circle L of radius R (Fig. 1).
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Let the disk be weakened by a crack. In real materials, be-

cause of structural and technological factors the crack surfaces

have irregularities and curvatures. In the disk’s cross section,

the crack with end zones is represented by a slot of length

2` = b − a, whose contour has small deviations from the recti-

linear form (Fig. 1).

The crack is assumed to be close to the rectilinear form allow-

ing only small deviations of the crack line from the straight line

y = 0.

The crack contour equation is accepted in the form

y = f (x) , a ≤ x ≤ b. (1)

Based on the accepted assumption on the form of the crack

with end zones, the functions f (x) and f ′(x) are small quanti-

ties relative to the crack length. Let us consider some arbitrary

realization of the curved surface of the crack.

Fig. 1. Computatinal diagram of fracture mechanics problem for a circular

disk

As the disk is loaded, in the crack vertices there will arise

the prefracture zones (end zones) that we model as the areas

of weakened interparticle bonds of the material. Interaction of

faces of these areas is simulated by introducing between the pre-

fracture zone faces the bonds having the given deformation di-

agram. Physical nature of such bonds and the sizes of prefrac-

ture zones where the interaction of faces of weakened interpar-

ticle bonds is realized, depends on the kind of the material. The

bonds between the crack faces at the end zones retard the frac-

ture development. This braking effect grows by increasing the

size of the end zone of the crack occupied by the bonds [11–13].

In the case when the size of the crack end zone is not small in

comparison with the crack length, the approximate methods of

estimation of fracture toughness of disks based on consideration

of a small end zone crack, are not applicable. In these cases di-

rect simulation of stress state at the end zone of the crack with

regard to deformation characteristics of bonds is necessary.

Distinguish the parts of the crack d1 = λ1 − a and d2 =

b − λ2 (end areas), where the crack faces interact. Interaction of

the crack faces at the end zones is simulated by introducing be-

tween the crack faces the bonds (cohesive forces) with the given

deformation diagram. As the circular disk is loaded, in the bonds

connecting the crack faces there will arise normal qy (x) and tan-

gential qxy (x) forces. These stresses are not known beforehand

and should be defined.

The boundary conditions on the faces of the crack with end

zones are of the form

σn − iτnt = 0 for y = f (x), λ1 < x < λ2

σn − iτnt = qy(x) − iqxy(x) for y = f (x),

a ≤ x ≤ λ1 and λ2 ≤ x ≤ b.

(2)

The main relations of the problem should be complemented

by the equation connecting the opening of end zone faces and

forces in bonds. Without loss of generality, represent this equa-

tion in the form [9]

(υ+ − υ−) − i (u+ − u−) = Π (x, σ) ·

·
[
qy(x) − iqxy(x)

]
,

σ =

√
q2

y + q2
xy.

(3)

The function Π (x, σ) is the effective compliance of the bonds

dependent on tension; σ is a modulus of a stress vector in bonds;

(υ+ − υ−) is a normal, (u+ − u−) is a tangential component of

the opening of end zone faces of the crack.

Denote the considered area enclosed between the circle L of

radius R and one slit L1 = [a, b] by S +, the area complemented

to the complete complex plane by S −.

Since the functions f (x) and f ′(x) are small quantities, we

can represent the function f (x) in the form

f (x) = εH (x) , a ≤ x ≤ b, (4)

where ε is a small parameter.

3 The Method of the Boundary-Value Problem Solution

Using the perturbations method, we get boundary conditions

for y = 0, a ≤ x ≤ b: for a zero approximation

σ(0)
y − iτ(0)

xy = 0 for y = 0, λ0
1 < x < λ0

2,

σ(0)
y − iτ(0)

xy = q(0)
y − iq(0)

xy for y = 0,

a ≤ x ≤ λ0
1 and λ0

2 ≤ x ≤ b.

(5)

for a first approximation

σ(1)
y − iτ(1)

xy = q̄y − iq̄xy for y = 0, λ1
1 < x < λ1

2,

σ(1)
y − iτ(1)

xy = q(1)
y − iq(1)

xy + q̄y − iq̄xy for y = 0,

a ≤ x ≤ λ1
1 and λ1

2 ≤ x ≤ b.

(6)
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Here

qy (x) = q(0)
y (x) + εq(1)

y (x) ;

qxy (x) = q(0)
xy (x) + εq(1)

xy (x) ;

λ1 = λ0
1 + ελ1

1; λ2 = λ0
2 + ε λ1

2;

q̄y = 2τ(0)
xy

dH

dx
− H

∂σ(0)
y

∂y
for y = 0;

q̄xy =
(
σ(0)

y − σ
(0)
x

) dH

dx
− H

∂τ(0)
xy

∂y
.

(7)

Similarly, we get boundary conditions on the contour L at

each approximation, and also the relations connecting the open-

ing of the end zone faces of the crack and forces in bonds.

Now construct the solution in a zero approximation. Denote

the area occupied by a disk, bounded by a circle L and one rec-

tilinear cut [a, b] by S +, the area is complemented to complete

complex plane by S −.

Under these conjectures, the problem is reduced to definition

of two complex variable functions Φ0 (z) and Ψ0 (z), analytic in

the area S + and satisfying on the basis of [14] the following

boundary conditions:

Re

{
κΦ0 (t) − Φ0 (t) +

R2

t2

[
tΦ′

0
(t) + Ψ0 (t)

] }
=

= 2µu′r (t)

(8)

on L,

Im

{
Φ0 (t) + Φ0 (t) −

t2

R2

[
t̄Φ′0 (t) + Ψ0 (t)

]}
=

= −Nθ (t)

(9)

on L.

And also the condition on the faces of the crack with end

zones

Φ0 (x) + Φ0 (x) + xΦ′
0

(x) + Ψ0 (x) = f0 (x) , (10)

where κ = (3 − ν)/(1 + ν); ν is the Poisson ratio of the disk’s

material; µ is the shear modulus;

f0(x) =


0 y = 0, λ0

1
< x < λ0

2

q
(0)
y (x) − iq

(0)
xy (x) y = 0,

a ≤ x ≤ λ0
1

λ0
2
≤ x ≤ b

(11)

In the general case, on the circle L we take the functions ur (t)

and Nθ (t) in the form of Fourier series:

ur (t) =

∞∑
v=−∞

Vv

(
t

R

)v

, iNθ (t) =

∞∑
v=−∞

Tv

(
t

R

)v

, (12)

where Vν, Tν (ν= 0,± 1,± 2, . . . ) are generally speaking, known

complex coefficients and are determined by the formulas

Vk =
1

2π

2π∫
0

ur (θ) eikθdθ k = 0, 1, 2, . . .

Tk =
1

2π

2π∫
0

iNθ (θ) eikθdθ.

(13)

The main relations of the stated problem in a zero approxi-

mation should be complemented by the equation connecting the

opening of the faces of the prefracture end zone and the forces

in bonds.

υ+
0 (x, 0) − υ−0 (x, 0) − i

(
u+

0 (x, 0) − u−0 (x, 0)
)

=

= Π
(
x, σ0

) (
q(0)

y (x) − iq(0)
xy (x)

) (14)

Passing in relations (8) and (9) to conjugate values, after some

transformations on the contour L we get boundary conditions in

the following form

(κ − 1)
[
Φ0 (t) + Φ0 (t)

]
+

R2

t2

[
tΦ′

0
(t) + Ψ0 (t)

]
+

+
t2

R2

[
R2

t
Φ′0 (t) + Ψ0 (t)

]
= 4µu′r (t)

(15)

on L.

−
R2

t2

[
tΦ′

0
(t) + Ψ0 (t)

]
+

t2

R2

[
R2

t
Φ′0 (t) + Ψ0 (t)

]
=

= 2iNθ (t)

(16)

on L

Based on (15) and (16), on the circle L we shall have the

following relation

(κ − 1)
[
Φ0 (t) + Φ0 (t)

]
+

2t2

R2

[
R2

t
Φ′0 (t) + Ψ0 (t)

]
=

= 2
[
2µu′r (t) + iNθ (t)

] (17)

on L.

Now, substitute relation (12) into the last equality and get:

(κ − 1)
[
Φ0 (t) + Φ0 (t)

]
+ 2

t2

R2

[
R2

t
Φ′0 (t) + Ψ0 (t)

]
=

= 2

 ∞∑
ν=0

[
Tv +

2µ (v + 1)

R
Vv+1

] (
t

R

)v

+

+

∞∑
v=1

[
T−v −

2µ (v − 1)

R
V−v+1

] (
R

t

)v


(18)

on L.

Introduce on L a new unknown auxiliary function ω0 (t) ∈ H

(the Holder condition) in the form

2ω0 (t) = (κ − 1)
[
Φ0 (t) − Φ0 (t)

]
−

−
2t2

R2

[
R2

t
Φ′0 (t) + Ψ0 (t)

]
on L.

(19)

Putting together relations (18) and (19), we get

Φ0 (t) =
ω0 (t)

κ − 1
+

1

κ − 1

∞∑
v=0

[
2µ (v + 1)

R
Vv+1 + Tv

] (
t

R

)v

+

+
1

κ − 1

∞∑
v=1

[
T−v −

2µ (v − 1)

R
V−v+1

] (
R

t

)v

on L.

(20)

Now, having substituted (20) into (19), we get

Ψ (t) = Q (t) + R1 (t) + R2 (t) on L. (21)
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Here we introduce the following denotation

R1 (t) =

∞∑
v=0

[
1

2

(
1 −

v − 2

κ − 1

)
Tv+2 −

1

2
T̄−v−2+ +

+
µ (v + 1)

R
V−v−1 +

µ (v + 3)

R

(
1 −

v − 2

κ − 1

)
Vv+3

] (
t

R

)v

;

R2 (t) = −

∞∑
v=2

[
µ (v − 1)

R
V̄v−1 +

1

2
T̄v−2

] (
R

t

)v

+

∞∑
v=3

[
1

2

(
1 +

v − 2

κ − 1

)
T−v+2 −

µ (v − 3)

R

(
1 +

v − 2

κ − 1

)
V−v+3

]
×

×

(
R

t

)v

+ +

[
µ

R
V1 +

1

2
T0

]
R2

t2
+

+

[
1

2

(
1 −

1

κ − 1

)
T1−

1

2
T̄−1 −

µ

(κ − 1) R
V1 +

2µ

R
V2

]
R

t
;

Q (t) = −
R2

2t2

[
ω0 (t) + ω0 (t)

]
−

R2

(κ − 1) t
ω′0 (t) .

(22)

Based on the theorem on analytic continuation, and the prop-

erties of the Cauchy type integral, from relations (20) and (21)

we get:

Φ∗ (z) = Φ0 (z) −
1

κ − 1

1

2πi

∫
L

ω0 (t)

t − z
dt−

−
1

κ − 1

∞∑
v=0

[
2µ (v + 1)

R
Vv+1 + Tv

] (
z

R

)v

z ∈ S +;

(23)

Φ∗ (z) = −
1

κ − 1

1

2πi

∫
L

ω0 (t) dt

t − z
+

+
1

κ − 1

∞∑
v=1

[
T−v −

2µ (v − 1)

R
V−v+1

] (
R

z

)v

z ∈ S −;

(24)

Ψ∗ (z) =


Ψ0 (z) − 1

2πi

∫
L

Q(t)

t−z
dt − R1 (z) , z ∈ S +

− 1
2πi

∫
L

Q(t)

t−z
dt + R2 (z) , z ∈ S −

. (25)

In relations (23) – (25) the functions Φ∗ (z) and Ψ∗ (z) are ana-

lytic in the complete complex plane cut along the slit L = [a, b]

and vanish at infinity, i.e.

Φ∗ (∞) = 0; Ψ∗ (∞) = 0. (26)

We shall look for the unknown auxiliary function ω0 (t) ∈ H

on L in the form of Fourier series

ω0 (t) = α0 +

∞∑
v=1

[
αv

(
t

R

)v

+ α−v

(
R

t

)v
]
, (27)

where αv (v = 0, ± 1, ± 2, . . . ) are, generally speaking, com-

plex coefficients.

We substitute relation (27) in the first formulas of (23), (25)

and using the Cauchy integral theorem get general formulas for

the sought-for functions:

Φ0 (z) = Φ∗ (z) +

∞∑
v=0

Jv

(
z

R

)v

z ∈ S +, (28)

Ψ0 (z) = Ψ∗ (z) +

∞∑
v=0

Wv

(
z

R

)v

z ∈ S +. (29)

Here

Jv =
1

κ − 1

[
αv + Tv +

2µ (v + 1)

R
Vv+1

]
;

Wv = −

(
1

2
+

v + 2

κ − 1

)
αv+2 −

1

2
ᾱ−v−2 +

1

2

(
1 −

v + 2

κ − 1

)
Tv+2−

−
1

2
T̄−v−2 +

µ (v + 3)

R

(
1 −

v + 2

κ − 1

)
Vv+3 +

µ (v + 1)

R
V−v−1.

(30)

For determining the functions Φ∗ (z) and Ψ∗ (z), following

[14] we consider the function

Ω∗ (z) = Φ∗ (z) + zΦ′∗ (z) + Ψ∗ (z) , (31)

that is analytic on the whole complex plane outside of the recti-

linear slit (i.e. the cracks with end zones).

For the stress vector components we have [9]:

σ(0)
y − iτ(0)

xy = Φ0 (z) + Φ0 (z) + zΦ
0

(z) + Ψ0 (z). (32)

Taking into account the loading condition on the faces of

crack and on the end zones, based on (10) as z → t (t is the

affix of the points of crack and end zones) we get the conditions

Φ+
0 (t) + Φ̄−0 (t) + tΦ̄−

′

0 (t) + Ψ̄−0 (t) = f0; (33)

Φ−0 (t) + Φ̄+
0 (t) + tΦ̄+′

0 (t) + Ψ̄+
0 (t) = f0, (34)

where f0 = 0 on the crack faces and f0 = q
(0)
y − iq

(0)
xy in the

end zones.

Substituting formulas (28), (29) in relation (33), we have

Φ+
∗ (t) + Φ̄−∗ (t) + tΦ′

−

0 (t) + Ψ̄−∗ (t) = f1(t) + f0; (35)

Φ−∗ (t) + Φ̄+
∗ (t) + tΦ′

+

0 (t) + Ψ̄+
∗ (t) = f1(t) + f0, (36)

where

f1(t) = −

∞∑
v=0

[
Jv + (v + 1)Jv + Wv

] ( t

R

)v

. (37)

Having changed in formula (31) z by z̄ and passing to conju-

gated values, we get

Ψ∗ (z) = Ω∗ (z) − Φ∗ (z) − zΦ′∗ (z) (38)

Having substituted (38) in relation (35), we get

Φ+
∗ (t) + Ω−∗ (t) = f∗(t); (39)

Φ−∗ (t) + Ω+
∗ (t) = f∗(t). (40)
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Hence we obtain that the problem of definition of the func-

tions Φ∗ (z) and Ω∗ (z) is reduced to the Riemann linear conju-

gation problem [14]:

[Φ∗ (t) + Ω∗ (t)]+ + [Φ∗ (t) + Ω∗ (t)]− = f∗ (t) ; (41)

[Φ∗ (t) −Ω∗ (t)]+ − [Φ∗ (t) −Ω∗ (t)]− = 0. (42)

Here

f∗ (t) = 2 f0 + 2 f1(t) =

∞∑
v=0

(`v + pv)

(
t

R

)v

+ 2 f0;

`v = −2

[
−

(
1

2
+

v + 2

κ − 1

)
ᾱv+2 −

1

2
α−v−2 +

1

κ − 1
αv+

+
v + 1

κ − 1
ᾱv

]
;

pv = −2

[
1

2

(
1 −

v + 2

κ − 1

)
T̄v+2 −

1

2
T−v−2 +

1

κ − 1
Tv +

+
v + 1

k0 − 1
T v +

2µ (v + 1)

(κ − 1) R
Vv+1 +

2µ (v + 1)2

(κ − 1) R
Vv+1+

+
µ (v + 1)

R
V−v−1 +

µ (v + 3)

R

(
1 −

v + 2

κ − 1

)
Vv+3

]
.

(43)

Since Φ∗ (∞) − Ω∗ (∞) = 0, then the general solution of

problem (42) will be

Φ∗ (z) −Ω∗ (z) = 0 (44)

Based on (41) and (44), for the function Φ∗ (z) we get a linear

conjugation problem

Φ+
∗ (x) + Φ−∗ (x) = f1(x) λ0

1 < x < λ0
2, (45)

Phi+∗ (x) + Φ−∗ (x) = q(0)
y (x) − iq(0)

xy (x) + f1(x)

a ≤ x ≤ λ0
1 and λ0

2 ≤ x ≤ b.
(46)

The corresponding homogeneous problem is of the form

Φ+
∗ (x) + Φ−∗ (x) = 0 a ≤ x ≤ b. (47)

Since the stresses in the disk are restricted, the solution of the

boundary value problem (45) should be sought in the class of

everywhere bounded functions.

As a particular solution of homogeneous problem (47) we

take the function

X(z) =
√

(z − a) (z − b) (48)

meaning the branch for which the following equality holds

X+(x) = −X−(x) on a ≤ x ≤ b. (49)

Based on the last relation, we rewrite the conjugation problem

(47) as follows

Φ+
∗ (x)

X+(x)
−

Φ−∗ (x)

X−(x)
= 0 on a ≤ x ≤ b. (50)

From the last boundary condition it follows that the solution

of the homogeneous problem vanishing at infinity equals zero.

We represent the inhomogeneous conjugation problem (45) in

the form

Φ+
∗ (x)

X+(x)
−

Φ−∗ (x)

X−(x)
=

F(x)

X+(x)
on a ≤ x ≤ b (51)

Denote

Φ0∗ (z) =
Φ∗ (z)

X+(z)
; F∗(x) =

F(x)

X+(x)
, (52)

then boundary value problem (51) takes the form

Φ+
0∗ (z) − Φ−0∗ (z) = F∗(x) on a < x < b.

Here F∗ (x) =
f1(x)

√
(x − b) (x − a)

for λ0
1 < x < λ0

2,

F∗ (x) =
q

(0)
y − iq

(0)
xy + f1(x)

√
(x − b) (x − a)

for a ≤ x ≤ λ0
1 and λ0

2 ≤ x ≤ b.

(53)

The desired solution of the problem is written as [9]:

Φ∗ (z) =

√
(z − b) (z − a)

2πi

b∫
a

F∗(x)dx

x − z
. (54)

According to the behavior of the function Φ∗ (z) at infinity,

the solvability condition of the boundary value problem has the

form

b∫
a

f∗ (t) dt
√

(t − a) (b − t)
= 0;

b∫
a

t f∗ (t) dt
√

(t − a) (b − t)
= 0 (55)

These relations help to find the unknown parameters λ0
1

and

λ0
2

determining the sizes of the end zones of the crack at a zero

approximation.

The obtained relation contains the unknown stresses at the

end zones of the crack.

Now we construct an integral equation for determining un-

known forces q
(0)
y (x) − iq

(0)
xy (x). The additional relation (14) is

the condition that determines the unknown stresses in the bonds

between the faces at the end zones of the crack in a zero approx-

imation.

In the considered problem it is convenient to write this addi-

tional condition for the derivative of the opening of the faces of

the crack’s end zones.

Using the Kolosov-Muskhelishvili relation [14] and boundary

values of the functions Φ∗ (z) and Ω∗ (z),on the segment y = 0,

a ≤ x ≤ b we get the following equality

Φ+
0 (x) − Φ−0 (x) =

=
2µ

1 + κ

[
∂

∂x

(
u+

0 − u−0

)
+ i

∂

∂x

(
υ+

0 − υ
−
0

)]
.

(56)

Using the Sokhotskii-Plemelj formulas [14] and taking into

account formula (54), we find

Φ+
0 (x) − Φ−0 (x) = −

i
√

(x − a) (x − b)

π
×

×


b∫

a

f∗ (t) dt
√

(t − a) (t − b) (t − x)

 .
(57)
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We substitute the found expression into the left hand side

of (56), and taking into account relation (14) after some trans-

formations we find the system of nonlinear integro-differential

equations with respect to the unknown functions q
(0)
y and q

(0)
xy :

−
1

π

√
(x − a) (b − x)×

×


b∫

a

q
(0)
y (t) dt

√
(t − a) (b − t) (t − x)

+

+

b∫
a

fy (t) dt
√

(t − a) (b − t) (t − x)

 =

=
2µ

1 + κ

d

dx

(
Π

(
x, σ0

)
q(0)

y (x)
)

;

(58)

−
1

π

√
(x − a) (b − x)×

×


b∫

a

q
(0)
xy (t) dt

√
(t − a) (b − t) (t − x)

+

+

b∫
a

fxy (t) dt
√

(t − a) (b − t) (t − x)

 =

=
2µ

1 + κ

d

dx

(
Π

(
x, σ0

)
q(0)

xy (x)
)

;

(59)

Here fy (t) = Re f1 (t) ; fxy (t) = Im f1 (t) ;

f1 (t) = −

∞∑
v=0

[
Jv + (v + 1) Jv + Wv

] ( t

R

)v (60)

Each of the equations (58) and (59) is a non-linear integro-

differential equation with the Cauchy kernel and may be solved

only numerically. For solving them we can use the colloca-

tional scheme with approximation of unknown functions [15].

The obtained relations (28) - (29) with regard to formulas (20),

(21), (27) and equations (58), (59) permit to get the final solu-

tion of the problem in a zero approximation if the coefficients

αv (v = 0, ± 1, ± 2, . . .) are determined.

For composing the infinite system of algebraic equations with

respect to unknowns αk, substitute relations (28), (29) into con-

dition (18) with regard to (54) and expansions

√
(t − a) (t − b) = t

∞∑
r=0

Mr

(
R

t

)r

,

1
√

(t − a) (t − b)
=

∞∑
r=0

M∗r

(
R

t

)r+1
(61)

After some transformations, condition (18) is reduced to the

form

∞∑
m=0

Am

(
t

R

)m

+

∞∑
m=0

A∗m

(
R

t

)m

=

=

∞∑
m=0

Cm

(
t

R

)m

+

∞∑
m=0

C∗m

(
R

t

)m

.

(62)

In view of some bulky form of expressions for Am, A∗m, Cm,

C∗m (m = 0, 1, 2, . . .) they are not cited. Comparing the coeffi-

cients at the same degrees t /R and R / t in the both sides of the

obtained relation (62), we get infinite systems of linear algebraic

equations

A0 + A∗0 = C0 + C∗0 (m = 0) ;

Am = Cm, A∗m = C∗m (m = 1, 2, ...) .
(63)

Now let us pass to procedure for converting a system to an

algebraic system of integro-differential equations (58) and (59)

with additional conditions (55). At first in integro-differential

equations (58) and (59) and in additional conditions (55) all

integration intervals are reduced to one interval [-1, 1]. By

means of quadrature formulas all integrals are replaced by finite

sums, and the derivatives in the right sides of equations (58) and

(59) are replaced by finite-difference approximations. There-

with the following boundary conditions are taken into account:

qy (a) = qy (b) = 0; qxy (a) = qxy (b) = 0 (this corresponds to the

conditions υ+
0

(a, 0) − υ−
0

(a, 0) = 0; υ+
0

(b, 0) − υ−
0

(b, 0) = 0;

u+
0

(a, 0) − u−
0

(a, 0) = 0; u+
0

(b, 0) − u−
0

(b, 0) = 0). As a result,

instead of each integral equation with corresponding additional

conditions, we get M1 + 2 algebraic equations for determining

the stresses at the nodal points contained at the end zone of the

crack, and the sizes of the end zones.

M1∑
k=1

Amk

(
q

(0)

y,k
+ fy,k

)
=

1 + κ

4µ

M

b − a
×

×
[
Π

(
xm+1, σ

0 (xm+1)
)

q
(0)

y,m+1
− Π

(
xm−1, σ

0 (xm−1)
)

q
(0)

y,m−1

]
(m = 1, 2, . . . ,M1),

M∑
k=1

f∗y (cos θk) = 0,

M∑
k=1

τk f∗y (τk) = 0.

(64)

M1∑
k=1

Amk

(
q

(0)

xy,k
+ fxy,k

)
=

1 + κ

4µ

M

b − a
×

×
[
Π

(
xm+1, σ

0 (xm+1)
)

q
(0)

xy,m+1
− Π

(
xm−1, σ

0 (xm−1)
)

q
(0)

xy,m−1

]
(m = 1, 2, . . . ,M1) ,

M∑
k=1

f∗xy (τk) = 0,

M∑
k=1

τk f∗xy (τk) = 0.

Here q
(0)

y,k
= q(0)

y (τk) , q
(0)

xy,k
= q(0)

xy (τk) ,

fy,k = fy (τk) , fxy,k = fxy (τk) ,

xm+1 =
a + b

2
+

b − a

2
ηm+1 , Amk = −

1

M
cot

θm ∓ θk

2
.

(65)

The joint solution of the obtained equations permits at the

given characteristics of bonds to determine the forces in the
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bonds q
(0)
y (x), q

(0)
xy (x) and the sizes of the end zones (parame-

ters λ0
1

and λ0
2
) at a zero approximation.

After solving the obtained algebraic systems, we can pass to

construction of basic resolving equations of the problem in a

first approximation. According to the found solution we find the

functions q̄y(x) and q̄xy(x).

The succession of the solutions of the problem in a first ap-

proximation is similar to a zero approximation. In a first approx-

imation the problem is reduced to determination of two analytic

functions Φ1(z) and Ψ1(z), analytic in the domain S + and satis-

fying the following boundary conditions

Re

{
κΦ1 (t) − Φ1 (t) +

R2

t2

[
tΦ′

1
(t) + Ψ1 (t)

] }
= 0 on L, (66)

Im

{
Φ1 (t) + Φ1 (t) −

t2

R2

[
t̄Φ′1 (t) + Ψ1 (t)

]}
= 0 on L, (67)

Φ1 (x) + Φ1 (x) + xΦ′
1

(x) + Ψ1 (x) = f1 (x) (68)

(a ≤ x ≤ b), (69)

where

f1(x) =


q̄y − iq̄xyy = 0, y = 0, λ1

1
< x < λ1

2

q
(1)
xy − iq

(1)
y + q̄y − iq̄xy y = 0,

a ≤ x ≤ λ1
1

λ1
2
≤ x ≤ b

(70)

Repeating the above mentioned method for solving the

boundary value problem in a zero approximation, we find

ω1 (t) = α1
0 +

∞∑
v=1

[
α1

v

(
t

R

)v

+ α1
−v

(
R

t

)v
]
, (71)

Φ1 (z) = Φ∗ (z) +

∞∑
v=0

J1
v

(
z

R

)v

z ∈ S +,

Ψ1 (z) = Ψ∗ (z) +

∞∑
v=0

W1
v

(
z

R

)v

z ∈ S +,

Here J1
v =

α1
v

κ − 1
; W1

v = −

(
1

2
+

v + 2

κ − 1

)
α1

v+2 −
1

2
ᾱ−v−2.

(72)

The complex potentials have the form

Ω∗(z) = Φ∗(z) =

√
(z − a) (z − b)

2πi

b∫
a

F1
∗ (x)dx

x − z
, (73)

Here

F1
∗ (x) =

f 1
1

(x) + q̄y − iq̄xy
√

(x − a) (x − b)
for λ1

1 < x < λ1
2;

F1
∗ (x) =

q
(1)
y − iq

(1)
xy + q̄y − iq̄xy + f 1

1
(x)

√
(x − a) (x − b)

for a ≤ x ≤ λ1
1 and λ1

2 ≤ x ≤ b;

f 1
1 =

∞∑
v=0

`1
v

(
t

R

)v

;

`1
v = −2

[
−

(
1

2
+

v + 2

κ − 1

)
ᾱ1

v+2 −
1

2
α−v−2 +

1

κ − 1
α1

v+

+
v + 1

κ − 1
ᾱ1

v

]
.

(74)

The solvability conditions of the boundary value problem in

a first approximation have the form

b∫
a

F1
∗ (t) dt = 0;

b∫
a

tF1
∗ (t) dt = 0. (75)

These equations are used to determine the unknown param-

eters λ1
1

and λ1
2

defining the sizes of the crack’s end zones in a

first approximation.

The obtained relations contain unknown stresses at the crack’s

end zones.

Now construct integral equations for finding the unknown

forces q
(1)
y (x) − iq

(1)
xy (x). The additional relation

υ+
1 (x, 0) − υ−1 (x, 0) − i

(
u+

1 (x, 0) − u−1 (x, 0)
)

=

= Π
(
x, σ1

) (
q(1)

y (x) − iq(1)
xy (x)

) (76)

is the condition that determines the unknown stresses in the

bonds between the faces in the crack’s end zones in a first ap-

proximation.

Behaving as in a zero approximation, after some transforma-

tions we find the system of nonlinear integro-differential equa-

tions with respect to the unknown functions q
(1)
y and q

(1)
xy :

−
1

π
X(x)


b∫

a

q
(1)
y (t) dt

X(x) (t − x)
+

b∫
a

f 1
y (t) dt

X(x) (t − x)

 =

2µ

1 + κ

d

dx

(
Π

(
x, σ1

)
q(1)

y (x)
)

;

(77)

−
1

π
X(x)


b∫

a

q
(1)
xy (t) dt

X(x) (t − x)
+

b∫
a

f 1
xy (t) dt

X(x) (t − x)

 =

2µ

1 + κ

d

dx

(
Π

(
x, σ1

)
q(1)

xy (x)
)

;

(78)

Here f 1
y (t) = Re f 1

1 (t) + q̄y(t);

f 1
xy (t) = q̄xy + Im f 1

1 (t) ;

f 1
1 (t) = −

∞∑
v=0

[
J1

v + (v + 1) J
1

v + W
1

v

] (
t

R

)v

.

(79)
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The obtained relations (71) - (75), allowing for formulas

Φ1 (t) =
ω1 (t)

κ − 1
;

Ψ1 (t) = −
R2

2t2

[
ω1 (t) + ω1 (t)

]
−

R2

(κ − 1) t
ω′1 (t)

(80)

and equations (77), (78) permit to obtain the final solution

of the problem in a first approximation if the coefficients

α1
v (v = 0, ± 1, ± 2, . . .) are determined.

For constructing the infinite system of linear algebraic equa-

tions for the coefficients α1
v of the auxiliary function ω1 (t), we

behave as in a zero approximation. As a result, we get two infi-

nite systems of linear algebraic equations of type (63).

As a result of procedure for converting integro-differential

equations (77) and (78) with additional conditions (75), instead

of each integral equation with corresponding additional condi-

tions, to an algebraic system we get M1 + 2 algebraic equations

for determining the stresses at the nodal points contained at the

crack’s end zones, and the sizes of the end zones in a first ap-

proximation:

M1∑
k=1

Amk

(
q

(1)

y,k
+ f 1

y,k

)
=

1 + κ

4µ

M

b − a
×

×
[
Π

(
xm+1, σ

1 (xm+1)
)

q
(1)

y,m+1
− Π

(
xm−1, σ

1 (xm−1)
)

q
(1)

y,m−1

]
(81)

(m = 1, 2, . . . ,M1),

M∑
k=1

f 1
y (cos θk) = 0,

M∑
k=1

τk f 1
y (τk) = 0.

(82)

M1∑
k=1

Amk

(
q

(1)

xy,k
+ f 1

xy,k

)
=

1 + κ

4µ

M

b − a
×

×
[
Π

(
xm+1, σ

1 (xm+1)
)

q
(1)

xy,m+1
−

−Π
(
xm−1, σ

1 (xm−1)
)

q
(1)

xy,m−1

]
(m = 1, 2, . . . ,M1),

M∑
k=1

f 1
xy (τk) = 0,

M∑
k=1

τk f 1
xy (τk) = 0.

(83)

Here

q
(1)

y,k
= q(1)

y (τk) , q(1)

xy,k
= q(1)

xy (τk) ,

f 1
y,k = f 1

y (τk) , f 1
xy,k = f 1

xy (τk) .
(84)

The remaining denotations are the same as in a zero approxima-

tion.

The joint solution of the obtained equations permits at the

given characteristics of bonds to determine the forces in the

bonds q
(1
y (x) and q

(1)
xy (x), the sizes of the end zones (the param-

eters λ1
1

and λ1
2
) and also to study the influence of irregularities

and curvatures of the crack surface on the stress strain state of

the circular disk.

4 Numerical Solution and Analysis

For formulation of the limit equilibrium criterion, we use the

criterion of critical opening of the crack. The opening of the

crack in the range of end zones may be determined from the

relations

υ+ (x, 0) − υ− (x, 0) = Π (x, σ) qy (x) ,

a ≤ x ≤ λ1 and λ2 ≤ x ≤ b,

u+ (x, 0) − u− (x, 0) = Π (x, σ) qxy (x) .

(85)

The condition of critical opening of the crack near the edge

of the end zone will be

Π (λ1, σ (λ1))σ (λ1) = δc for x = λ1,

Π (λ2, σ (λ2))σ (λ2) = δc for x = λ2,
(86)

where δc is the characteristics of the disk material determined

experimentally.

Even in the special case of linear-elastic bonds, the obtained

systems of equations become nonlinear because of unknown

sizes of the crack’s end zones. In this connection for solving

the obtained systems in the case of linear bonds, the successive

approximations method was used. At each approximation the

algebraic system was solved numerically by the Gauss method

with choice of the main element. In the case of nonlinear law

of deformation of bonds, for determining the forces at the end

zones, an algorithm similar to the A.A. Il’yushin method of elas-

tic solutions [16] was also used. Analysis of effective compli-

ance is carried out similar to definition of the secant modulus in

the method of variables of elasticity parameters [17]. The suc-

cessive approximations process ends as soon as the forces along

the end zone, obtained at two successive iterations differ a little

from each other.

The nonlinear part of the curve of deformation of the bonds

was taken in the form of bilinear dependence whose as-

cending portion corresponded to elastic deformation of bonds

(0 < V(x) < V∗, V =
√

u2 + υ2) with maximum tension of bonds.

For V(x) > V∗ the deformation law was described by a nonlin-

ear relation which is determined by two points (V∗, σ∗), and

(δc, σc), and for σc ≥ σ∗ we have increasing linear depen-

dence (linear strengthening corresponding to elasto-plastic de-

formation of the bonds). The algebraic system with respect to

tractions in bonds was solved numerically. For numerical cal-

culations it was assumed M = 30 that responds to partition of

integration interval into 30 Chebyshev nodal points.

The plots of dependence of dimensionless length of the end

zones of the right end d2 = (b − λ2) / (b − λ2) (b − a) on di-

mensionless load N0 /σ∗ for different sizes of cracks `∗ =

(λ2 − λ1) / (b − q, a) are depicted in Fig. 2.

Fig. 3 represents the graphs of distribution of the normal trac-

tions qy /N0 in the bonds for the right end zone of the crack

(curve 1 for linear bonds, curve 2 for bilinear curve of deforma-

tion of bonds).

The dependence of dimensionless opening modulus δ∗ =
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πEδ / 8N0` for the right end of the crack on dimensionless pa-

rameter N0 /σ∗ is represented in Fig. 4.

Fig. 2. Dependence of dimensionless length of the end zones of the right

end d2 = (b − λ2) / (b − a) on dimensionless load N0 /σ∗ for different sizes

of cracks `∗ = (λ2 − λ1) / (b − a)

Fig. 3. Distribution of normal forces qy /N0 in the bonds for the right end

zone of the crack (curve 1 corresponds to linear law of deformation of bonds,

curve 2 to nonlinear deformation)

The obtained main resolving algebraic equations permit to

predict the ultimate admissible size of the crack (technological

defect) by means of numerical calculation for a specific circular

disk.

5 Conclusions

The obtained closed algebraic system of equations and limit

condition of the crack growth permits to determine the admis-

sible size of the crack for different laws of deformation of in-

terparticle bonds, elastic and geometrical characteristics of the

material and the circular disk by means of numerical calculation

for any specific circular disk.

Distribution of forces in bonds and opening of crack faces

is determined directly from the solution of the obtained alge-

braic systems. The model of a bridged crack at the end zones

enables to study main regularities of forces distributions at the

end zones, to make analysis of ultimate equilibrium state of the

curved crack by means of deformation criterion.

Fig. 4. Dependence of dimensionless opening modulus δ∗ = πEδ / 8N0` for

the right end of the crack on dimensionless parameter N0 /σ∗

The developed calculation method permits to solve the fol-

lowing practically important problems:

to estimate the guaranteed resource of the disk with regard to

expected deficiency and loading conditions;

to set admissible level of deficiency and maximum value of

actuating loads that provide sufficient safety margin;

to select the disk’s material with a complex of characteristics

of fracture toughness.

The model of a crack with end zones, permits to consider the

fracture process including crack initiation, crack formation and

crack development from unified positions.
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