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Abstract

After the description of the basic geometry and relationships

of the hyperbolic transition curve geometry we made further

analysis. In this paper we analyzed the possible minimal length

of the transition curve based on the dynamical characteristics.

We determined the relationship between the dynamical parame-

ters and the p parameter of the transition curve. For transition

curves between tangential sections and curves we compared the

minimal lengths of the hyperbolic geometry to the clothoide and

cosine ones. The results show that according to the consid-

ered regulations the hyperbolic geometry gives shorter transi-

tion curve length. This has significant practical consequences

as it makes the design more flexible.
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1 Introduction

The transition curve geometries (clothoide, cosine, parabolic

etc.) were developed several decades ago and no new transition

geometry appeared since. Therefore there is no current research

analyzing of the basic transition geometries. Instead researches

focus along the well-known basic transition geometries on the

examination of the vehicle-track complex system [8], evaluated

the dynamic effects and suggested complex solutions for the cur-

vature change [4].

Our research dealt with something new, a new transition ge-

ometry, the hyperbolic transition. Therefore we had to go back

to the beginning, to the analysis of the basic characteristics of

the new geometry. This way we were behind the current re-

search activities in complexity, because we had to demonstrate

the characteristics of the hyperbolic geometry – just like it had

been done several decades ago for the other geometries. The de-

tailed modeling of the track and vehicle relationship would be a

further step after getting to know the basic characteristics of the

geometry.

In our paper we compare the hyperbolic transition curve to

two frequently applied transition geometries, to the clothoide

and the cosine transition curves. Our research question was if

the application of the S-shaped hyperbolic transition curve of-

fered definite practical advantages over the application of the

traditional geometries.

2 Basic geometry of hyperbolic transition curve

Based on the sine hyperbolic function [6] introduced the con-

cept of the parametric hyperbolic transition curve and described

the basic relationships. The curvature function of the hyperbolic

geometry is:

G (l) =
1

2R

sinh
(
p −

2p

L
l
)
− sinh (p) +

2p

L
l cosh(p)

p cosh (p) − sinh(p)
. (1)

Fig. 1 shows the graphical representation of the curvature

function. Figs. 2 and 3 display the third and fourth order mo-

tion characteristics of the geometry, which is characteristically

similar to the first and second derivate of the curvature function.
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The calculations were done according to the basic theoretical ap-

proach described by Megyeri [7], using power series to describe

the functions. The first two terms of the power series were used,

because the numeric difference between the results of applying

two or three terms are extremely slight, by several order under

the accuracy of geodetic setting out.

Fig. 1. The curvature function of the hyperbolic transition curve (G)

Fig. 2. Third order motion characteristic of the hyperbolic transition curve

(dG / dl).

3 Determination of maximum change of acceleration in

hyperbolic transition curve

3.1 Third order motion characteristics of hyperbolic geom-

etry

The minimum length of transition curves depends on the third

order motion characteristics, as its value may not exceed the lim-

iting value of vector h̄. The vector h̄ in general case can be de-

scribed by the following function, as it is determined by Megyeri

[7]:

h̄ =

(
dat

dt
− v3G2

)
t̄ +

(
3vatG + v2 dG

dt

)
n̄ + v3GTb̄ , (2)

Fig. 3. Fourth order motion characteristic of the hyperbolic transition curve

(d2G / dl2)

If acceleration is considered constant then the simplified func-

tion of vector h̄ is:

h̄ = −v3G2 t̄ +

(
3vatG + v3 dG

dl

)
n̄ + v3GTb̄ , (3)

where:

v Speed [m/s]

at Tangential acceleration [m/s2]

G Curvature of the track [1/m]

T Torsion of the track [1/m]

t̄, n̄, b̄ The first three orthonormal unit vector of the Frenet

frame

From the point of view of vector h̄ the middle of the transition

curve is the critical location (Fig. 2). Using parameterization by

arc length this point is located at l = L / 2, where L is the length

of the transition curve. The curvature of hyperbolic geometry at

location l = L / 2 is [6]:

G =
1

2R
. (4)

The value of the first derivate of the curvature (dG / dl) at

l = L / 2:

dG

dl
(l = L/2) =

p

RL

cosh (p) − 1

p cosh (p) − sinh(p)
. (5)

3.2 Torsion of hyperbolic geometry

The torsion of a curve measures how sharply it is twisting

out of the plane of curvature. We determined the torsion of the

hyperbolic geometry based on the parametric equation of the

space curve [7]:

r̄ (l) = x (l) ī + y (l) j̄ + z (l) k̄. (6)

where

r̄ (l) The position vector parameterized by arc length

x (l) , y (l) Horizontal orthogonal coordinates
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z (l) Vertical orthogonal coordinate

Torsion can be computed from the following formula:

T (l) =

dr
ds

d2r
ds2

d3r
ds3

G2
=

∣∣∣∣∣∣∣∣∣∣
x
′

y
′

z
′

x
′′

y
′′

z
′′

x
′′′

y
′′′

z
′′′

∣∣∣∣∣∣∣∣∣∣
x
′′2

+ y
′′2

+ z
′′2

. (7)

At the calculation of x (l), and y (l) coordinates we applied to

approximations:

• The horizontal coordinates were approximated by the first

terms of the function series of cosine and sine functions (this

simplification was used only at the calculation of torsion):

x (l) =

∫ l

0

cos (τl) dl =

∫ l

0

dl, (8)

y (l) =

∫ l

0

sin (τl) dl ≈

∫ l

0

τldl ≈ l . (9)

• The curvature of the space curve was approximated by the

curvature of (x, y) plane because the difference is negligible

from practical aspects.

Superelevation development, which is located inside the tran-

sition curves, influence the value of vector h̄ through torsion. In

this paper we used the cosine geometry for superelevation de-

velopment for the hyperbolic geometry as well:

z (l) =
m

2

(
1 − cos

(
π

L
l

))
. (10)

In the equation m denotes the value of superelevation at the

end of the transition curve. It was determined by the formula

applied in Hungary:

m = 11.8
V2

R
− 100. (11)

where

m Superelvation at the end of the transition curve [mm]

V Speed [km/h]

R Radius of the curve [m]

At the l = L / 2 critical point the value of torsion will trivially

be identical with cosine transition curve – cosine superelevation

development configuration:

T = −
mRπ3

2L3
. (12)

3.3 Lateral acceleration change in hyperbolic geometry

The absolute value of the third order motion characteristic

was determined based on (Eq. (3)):

∣∣∣h̄∣∣∣ =

√
−v6G4 +

(
3vatG + v3

dG

dl

)2

+ v6G2T 2 , (13)

Substituting (Eqs. (4), (5), (12)) into (Eq.(13)) and converting

speed to km/h dimension (v [m/s] = V [km/h] / 3,6) the lateral ac-

celeration change in the critical point is:

∣∣∣∣∣h̄ (
L

2

)∣∣∣∣∣ =

√
m2π6V6

16 · 3, 66L6
+

V6

16 · 3, 66R4
+

+

(
2pV3 (1 − cosh(p)) + 3aπ2LV (sinh(p) − p sinh(p))

)2

4π6L2R2 (sinh(p) − p sinh(p))2

(14)

4 Determination of the minimal transition curve length

4.1 Basic approach

The practical goal in railroad design is to apply the shortest

possible transition curves which fulfills the boundary conditions.

The minimal transition curve length for speed-curve radius re-

lations can be determined by (Eq. (14)). Thus theoretically the

relationship between the L length of the hyperbolic transition

curve and the p parameter is defined. But there are further prac-

tical aspects as well:

• The coordinates were expressed as power series, so it makes

sense to check how the extreme values of parameter p effects

the accuracy of the coordinates.

• The vehicle entering into the transition geometry begins to

feel the transition when its pins start to deviate away the tan-

gent. We analyzed the parameter values from the point of

view of smooth transition, where the center of mass of the ve-

hicle deviates only in the transition curve. Here the accuracy

of geodetic setting out and the vehicle characteristics were

considered. The geometrical tolerancies of the track right af-

ter the construction are normally 1 - 2 mm, therefore – simi-

larly to the spline-method [1] – we do not suppose that the

real railway track fits absolutely the calculated coordinates.

Therefore we only considered the deviation effect of the tran-

sition curve to exist if the value of the ordinate exceeded a

chosen minimal value (ymin), so the calculations were made

for ymin = 0.5 mm and ymin = 1 mm geodetic accuracy.

As it is demonstrated by Bocz [2], the Hungarian legislation

applies a multi-level approach to track alignment design:

• The Hungarian National Railway Regulation [10] is harmo-

nized to the valid draft Technical Specification of Interoper-

ability (TSI). This regulation defines the normal limit of the

lateral acceleration change as h = 0.4 m/s3.

• The Track Alignment Design Regulation of National Public

Railways [9] contains more detailed regulation of alignment

design. It defines the exact length of transition curves, de-

pending on alignment speed, and sets limits for the maximum

value of the lateral acceleration changes as well. This values

are h1 = 0.4 m/s3, for cosine and h2 = 0.3 m/s3 for clothoide

transition curves.
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Common element of the two regulations is that both of them

contain the linear (clothoid) and S-shaped (cosine) transition ge-

ometry. However the OVSZ gives only the maximal values of

allowable lateral acceleration, of its change and of supereleva-

tion, and says nothing about the minimal radii of curves. The

OKVPSZ contains several definitions for the radii of curves,

from which we used two in our analysis:

R1 – suggested minimal radii of curve in the function of

alignment speed,

R2 – minimum allowed radius of curve in function of speed

in case of curve correction of existing lines.

In our calculation we used the following values for lateral ac-

celeration and its change according to the Hungarian regulation:

• In Hungary there are two limit values for the change of lat-

eral acceleration as it was mentioned above. We made the

calculation for both of them:

– h1 = 0.4 m/s3 (general case);

– h2 = 0.3 m/s3 (in case of clothoide geometry).

• For lateral acceleration at = 0.35 m/s2 value was used.

4.2 Analysis of parameter p

The shape of hyperbolic transition curves depends on the pa-

rameter p. By changing this parameter the shape can be mod-

ified continuously between the clothoide and the cosine transi-

tion curve. By increasing the value of p the hyperbolic geome-

try approaches the clothoide one and its characteristics more and

more. By decreasing the value of p the hyperbolic geometry gets

very close to the cosine transition curve.

At the analysis of smaller and smaller values of p we experi-

enced that below p≈ 0.1..0.2 values – depending on the values

of R and L – the values of y ordinate are scattered in a wide lane

around the theoretical curve of the transition geometry (Fig. 4).

This makes necessary to choose a minimal value for parameter

p for practical purposes, and we applied pmin = 1 minimal value.

This question can require possible further research, but from the

point of view of practical application of hyperbolic geometry is

irrelevant.

We analyzed the effect of high parameter values to the tran-

sition curve geometry. The higher the parameter the shorter the

transition curve and the lower the y ordinate of the end point of

the transition curve (Y) is. However the higher the p parameter

is the less extent of y ordinate will decrease. The limiting value

of the y ordinate of the end point at p→ ∞:

lim
p→∞

Yhyp =
56L2R2 − L4

336L3
(15)

The results showed that above p = 100 the value of Y end

point ordinate could be decreased by only ~1 cm at most, which

is negligible in practical applications. This way the maximal

value of parameter p was set as pmax = 100.

The minimal length of the hyperbolic transition can be deter-

mined based on (Eq.(14)), but no explicit formula can be devel-

oped to describe the limiting value of L at p → ∞. We made

calculations for speed-curve radius (V - R) pairings taken from

practical applications. The result showed that above pmax = 100

only ~1 m decrease of the length could be achieved. As it is less

than 1% of the shortest transition curve lengths applied in prac-

tice the pmax = 100 maximal value appropiate from this aspect as

well.

4.3 Perceptibility of the hyperbolic geometry

In this stage of research we analyzed the basic geometry of

hyperbolic transition curves so we considered the vehicle as a

moving point on a path. Based on this we assumed the vehicle

perceived the transition curve when its motion sensing point en-

tered into the geometry. The motion sensing point of the vehicle

is the middle point between king pins, and the general distance

between pins is d = 17 m. Our goal was to apply only those tran-

sitions geometries where the motion sensing point of the vehicle

does not deviate from the tangent outside the transition curve.

This meant transition curves whose y ordinates at d / 2 length

of the transition curve did not exceed the geodetic setting out

accuracy (0.5 and 1.0 mm, respectively).

In our calculations we used both the ymin = 0.5 mm construc-

tional accuracy and ymin = 1.0 mm maintenance accuracy. In

case of hyperbolic geometry the higher the parameter is the

faster the value of y ordinates increase, so we defined the param-

eter where the y ordinate at d / 2 length equals to ymin as maximal

from the aspect of vehicle motion. If the y ordinate of hyperbolic

transition geometry with p = 100 parameter did not exceed ymin,

then this p = 100 parameter was set as maximal, according to the

earlier reasoning.

4.4 Results

In our calculations we determined the minimal length of the

hyperbolic transition curve inside the 120 - 160 km/h speed in-

terval, using R1 and R2 minimal curve radii and h1 and h2 maxi-

mal changing of acceleration values according to the Hungarian

regulation. The results are shown in Table 1 for 1.0 mm geodetic

accuracy and in Table 2 for 0.5 mm geodetic accuracy.

The minimal length of the clothoide and the cosine transitions

geometries [5, 7] were calculated also for these values.

5 Conclusions and future development possibilities

The results show that the hyperbolic transition geometry re-

quires shorter transition curves than the other ones. In case of

h1 = 0,4 m/s3 maximal lateral acceleration change according to

OVSZ the differences are significant, so the application of the

hyperbolic transition geometry has definite practical advantages,

especially at severe geometrical restrictions.

The OKVPSZ gives lower allowances for the lateral accel-

eration change, here h2 = 0,3 m/s3 is applied. This restriction

regards to the clothoide geometry because of the incontinuity of
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Fig. 4. Disintegration of transition geometry in case of low values of p

Tab. 1. Comparison of minimal lengths of transition curves in case of 1.0 mm geodetic accuracy.

Vt [km/h] R1 [m]
h1 = 0.4 m/s3 h2 = 0.3 m/s3

Lcos [m] Lclothoid [m]
p [-] Lhyp [m] p [-] Lhyp [m]

120 1400 100 69.05 100 93.00 107.26 96.43

130 1600 100 76.70 100 103.23 119.12 106.25

140 1800 100 85.05 100 114.41 132.08 118.33

150 2000 100 94.06 100 126.47 146.05 132.00

160 2200 100 103.70 100 139.38 161.01 145.45

Vt [km/h] R2 [m]
h1 = 0.4 m/s3 h2 = 0.3 m/s3

Lcos [m] Lclothoid [m]
p [-] Lhyp [m] p [-] Lhyp [m]

120 950 100 103.39 100 140.01 160.57 142.11

130 1100 100 113.17 100 153.08 175.75 154.55

140 1300 100 119.12 100 160.90 184.99 163.85

150 1500 100 126.61 100 170.82 196.61 176.00

160 1700 100 135.28 100 182.37 210.07 188.24

Tab. 2. Comparison of minimal lengths of transition curves in case of 0.5 mm geodetic accuracy.

Vt [km/h] R1 [m]
h1 = 0.4 m/s3 h2 = 0.3 m/s3

Lcos [m] Lclothoid [m]
p [-] Lhyp [m] p [-] Lhyp [m]

120 1400 14 73,58 32,5 94,98 107,26 96,43

130 1600 23,5 79,28 78 103,52 119,12 106,25

140 1800 47,5 86,00 100 114,41 132,08 118,33

150 2000 100 94,06 100 126,47 146,05 132,00

160 2200 100 103,70 100 139,38 161,01 145,45

Vt [km/h] R2 [m]
h1 = 0.4 m/s3 h2 = 0.3 m/s3

Lcos [m] Lclothoid [m]
p [-] Lhyp [m] p [-] Lhyp [m]

120 950 20,5 107,56 51 141,37 160,57 142,11

130 1100 35,5 115,26 100 153,08 175,75 154,55

140 1300 69 119,65 100 160,90 184,99 163,85

150 1500 100 126,61 100 170,82 196,61 176,00

160 1700 100 135,28 100 182,37 210,07 188,24
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the curvature function of the geometry. If we apply this restric-

tion to the hyperbolic geometry as well then it will be shorter

than the clothoide but only marginally. However the curvature

function of the hyperbolic transition geometry is smooth and

continuous, so the application of h2 = 0,3 m/s3 value is not rea-

sonable. However the clarification of this question requires fur-

ther research.

The hyperbolic transition geometry offers a flexible and effec-

tive possibility, which opens numerous new research questions.

We plan to make further analysis to get more information about

this new geometry. Some of them connects to actual analysis of

other transition curve geometries, such as:

• Hyperbolic transition geometry as superelevation develop-

ment geometry [2]. In this research the vehicle will be con-

sidered as a space body.

• The examination of the shape of the geometry based on the

geodetic setting out coordinates by the novel spline theory.

• The examination of the characteristics of hyperbolic transi-

tion curve in the legislation frame [3], especially from the

point of view of application above 160 km/h design speed.

• From practical considerations it could be very important to

analyze the application of the hyperbolic transition geome-

try in track reconstructions of speed improvement. It is ex-

pected that this new geometry makes less earthwork construc-

tion needed.

References

1 Andor K, Polgár R, Localization of bearing errors using spline

method, Periodica Polytechnica Civil Engineering, 58(4), (2014), DOI

10.3311/PPci.7528.

2 Bocz P, Examination of transition curves by detailed kinematical methods,
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