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Abstract

The plated structures are one of the most frequently used en-

gineering structures. The object of this research work is the

optimal design of curved folded plates. This work is an ongo-

ing investigation. There are various solution methods to analyze

this type of structures. Here the finite strip method is used. At

first single load condition is considered, but later the multiple

load conditions are used for the design. The base formulation

is a minimum volume design with displacement constraint what

is represented by the compliance. For the multiple loading two

equivalent topology optimization algorithms can be elaborated:

minimization of the maximum strain energy with respect to a

given volume or minimization of the volume of the structure sub-

jected to displacement constraints. The numerical procedures

are based on iterative formulas which is formed by the use of

the first order optimality condition of the Lagrangian-functions.

The application is illustrated by numerical examples.
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Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary

e-mail: logo@ep-mech.me.bme.hu

1 Introductions

The minimum weight design as an objective was a rather pop-

ular topic during “golden ages” of the optimization. The classi-

cal solutions of the different type of plate or shell problems can

be followed by the works of Mroz [13], Prager & Shield [14],

Shield [17] from the end of 50-s of the last century. The design

was elaborated in elastic or plastic ways. A good overview can

be obtained by reading the report Rozvany et al. [16]. The de-

sign methods generally elaborated on deterministic based data

but later it was extended to stochastic ones (e.g. Lógó [12]).

The optimal limit state design of prestressed thin-walled

folded plate structures under multiple loading conditions was

presented by Bergamini & Biondini [2]. Lellep [6], Lellep &

Paltsepp [7,8] formed the optimal design formulation for inelas-

tic shells included internally stiffened and/or supported ones.

Leng, Guest and Schafer [9] presented a comprehensive study

on shape optimization of cold-form steel columns. Their opti-

mal shape of the cold-formed steel lipped channel has doubled

capacities than the conventional one. Gilbert et.al. [4] elabo-

rated a genetic algorithm for optimisation of section capacity

for thin-walled profiles.

Considering the solution methods, the optimality criteria as

a tool for optimal design started its carrier from the beginning

of 70-s of the last century (Gellatly & Berke [3]). This is date

when Rossow & Taylor [15] published the very first topology

optimization paper.

Here an optimality criteria based (Lógó [10]) design algo-

rithm is combined by the finite strip formulations for curved

folded plate design. The elaborated method is generally ap-

plied for single load condition but it can be extended for mul-

tiple ones, too. The extended formulations are presented, but

the algorithm is derived for single load case. This paper is an

extended version of the conference presentation of Balogh and

Lógó [1].

2 Formulation of the finite strip method for curved

folded plates

To be able to apply the finite strip for curved folded plate

structures it is necessary to reformulate the general expressions.
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Fig. 1. A folded plate (left) and a curved box girder bridge (right)

Here the most general case of curved folded plates will be con-

sidered.

It has to note that the phrases “curved plate” and “shell” is

identical as they are both plates with non-zero curvature. The

phrase “folded” means that the joining elements at the nodal

lines do not meet with the same tangent. One example for both

folded plate and curved folded plate can be seen in Fig. 1.

2.1 Assumptions

The shells are following first order shear deformation theory,

as linear displacement variation is assumed through the thick-

ness. Therefore the assumptions of the Mindlin-Reissner plate

theory holds. This allows to take into account the effects of a

constant transverse shear stress state by removing the normal-

ity conditions from the kinematic assumptions of classical plate

theory. This way of approximation provides good results even

under the side to thickness ratio of 20.

2.2 Strains and displacements

The displacement field at any point of the plate can be ex-

pressed as:

u (s, θ, n) = u0 (s, θ) + nϑs (s, θ) , (1)

v (s, θ, n) = v0 (s, θ) + nϑt (s, θ) , (2)

w (s, θ, n) � w0 (s, θ) , (3)

where u, v and w are the displacements of a typical point in the

s, t and n directions, ϑs and ϑt are the normal rotations contained

in planes sn and tn, while θ without a lower index stands for the

radial coordinate in the cylindrical coordinate system. The sign

convention is shown on Fig. 2. We note, that s, t and n forms

an orthogonal system in both the left and right pictures of this

figure.

The rotations can be expressed as the sum of change in slope

of the middle surface and an additional average rotation due to

shear effects:

ϑs = −
∂w0

∂s
+ φs, ϑt = − 1

r

∂w0

∂ϑ
+ φt . (4)

Here the terms due to shear effects are denoted by φs and φt.

The displacement vector at any point is:

{u} =
{

u0 v0 w0 ϑs ϑt

}T
. (5)

Fig. 2. Sign convention for displacements in a troncoconical shell

The elements of the small strain tensor in the local coordinate

system (s, t, n) are:

εs =
∂u

∂s
, (6)

εt =
1

r

∂v

∂ϑ
+

u

r
sin φ −

w

Rt

, (7)

γst =
1

r

∂u

∂ϑ
+
∂v

∂s
−

v

r
sin φ −

n

Rt

∂v

∂s
, (8)

γsn = ϑs +
∂w

∂s
, (9)

γtn = ϑt +
1

r

∂w

∂ϑ
+

v

Rt

. (10)

After substituting the expressions for the displacement field

in the strain terms we can separate the strains due to membrane,

bending and shear effects respectively, as:

{εmembrane} =



∂u0

∂s
1
r

∂v0

∂ϑ
+

u0

r
sin φ − w0

r
cos φ

1
r

∂u0

∂ϑ
+

∂v0

∂s
−

v0

r
sin φ

0

0


, (11)

{
εbending

}
=


∂ϑs

∂s
1
r

∂ϑt

∂ϑ
+

ϑs

r
sin φ

∂ϑt

∂s
+ 1

r

∂ϑs

∂ϑ
−

ϑt

r
sin φ − cos φ

r

∂v0

∂s

 , (12)

{εshear} =

 ϑs +
∂w0

∂s
1
r

∂w0

∂ϑ
+

v0

r
cos φ

 , (13)

thus the strain vector can be composed as:

{ε} = {εmembrane} +

 n ·
{
εbending

}
{εshear}

 . (14)
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It has to be noted, that at the calculation of the shear contri-

bution, the following assumptions have been made:

1 + n
Rt

= 1 , n2

Rt

∂ϑt

∂s
= 0 and r = Rt cos φ . (15)

2.3 Stresses

The stress resultants of a shell must have the same order as

the generalized strains, therefore:

{σ} =
{
{σm}

T {σb}
T {σs}

T
}T

, (16)

where,

{σm} =
{

Ns Nt Nst

}T
, (17)

{σb} =
{

Ms Mt Mst

}T
, (18)

{σs} =
{

Qs Qt

}T
, (19)

are the stress vectors due to membrane, bending and shear

effects respectively. The sign convention is shown on Fig. 3.

Fig. 3. Sign convention for stress resultants.

2.4 Constitutive equations

We applied Hooke’s model do describe the connection be-

tween stresses and strains. It is only a first order approximation

of the real material behavior, but it holds, if the forces and de-

formations are small enough. Therefore:

{σ} = [D] {ε} , where [D] =


[Dm] [0] [0]

[0] [Db] [0]

[0] [0] [Ds]

 . (20)

The sub - matrices are:

[Dm] =


1 ν 0

ν 1 0

0 0 1−ν
2

 Et(
1 − ν2

) ,
[Db] =


1 ν 0

ν 1 0

0 0 1−ν
2

 Et3

12
(
1 − ν2

) ,
[Ds] = Ks

 Gt 0

0 Gt

 .
(21)

3 Finite strip formulation

Because the steps of the formulation are basically identical to

that for plates, a less detailed discussion should be satisfactory.

The displacement field within a strip can be approximated

with the following expression by applying a summation over the

number of nodes in the strip element (i = 1, . . ., ne) and over the

number of Fourier terms (l=1, . . ., n):

{u} =

n∑
l=1

ne∑
i=1

[
N l

i

] {
al

i

}
, (22)

where,

[
N l

i

]
=



Ni · S l 0 0 0 0

0 Ni ·Cl 0 0 0

0 0 Ni · S l 0 0

0 0 0 Ni · S l 0

0 0 0 0 Ni ·Cl


, (23)

and

{
al

i

}
=

{
ul

0i
vl

0i
wl

0i
ϑl

si
ϑl

ti

}T
, (24)

S l = sin
(

lπ
α
ϑ
)

and Cl = cos
(

lπ
α
ϑ
)
. (25)

Fig. 4. Curved strip element.

The meaning of the geometrical parameters is shown on

Fig. 4. By having a look on the terms of the shape function

matrix we can conclude, that the trigonometric expansion of

the unknown displacements satisfies simply supported bound-

ary conditions at ϑ= 0 and ϑ=α with rigid diaphragms at the

two ends.

The generalized strain vector has the form

{ε} =

n∑
l=1

ne∑
i=1

[
Bl

i

] {
al

i

}
, (26)

where

[
Bl

i

]
=

[ [
Bl

mi

]T [
Bl

bi

]T [
Bl

si

]T
]T

, (27)
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with

[
Bl

mi

]
=

∂Ni

∂s
S l 0 0 0 0

Ni

r
sin φS l −

Nilπ

b
′ S l −

Ni

r
cos φS l 0 0

Nilπ

b
′ Cl

(
∂Ni

∂s
−

Ni

r
sin φ

)
Cl 0 0 0

 (28)

[
Bl

bi

]
=

0 0 0
∂Ni

∂s
S l 0

0 0 0
Ni

r
sin φS l −

Nilπ

b
′ S l

0 −
∂Ni

∂s

cos φ
r

Cl 0
Nilπ

b
′ Cl

(
∂Ni

∂s
−

Ni

r
sin φ

)
Cl

 , (29)

[
Bl

si

]
=

 0 0
∂Ni

∂s
S l NiS l 0

0
Ni

r
cos φCl

Nilπ

b
′ Cl 0 NiCl

 . (30)

Here b
′

= rα and
[
Bl

mi

]
,
[
Bl

bi

]
and

[
Bl

si

]
are the generalized

strain matrices from membrane, bending and shear effects re-

spectively, for node i and the lth harmonic.

The expansion of the force vectors follow the same pattern as

the displacements, therefore it is possible to write

[
{b} {t} {p}

]
=

n∑
l=1

[
[S l] {b}

l [S l] {t}
l [S l] {p}

l
]
,

(31)

where

[S l] =



S l 0 0 0 0

0 Cl 0 0 0

0 0 S l 0 0

0 0 0 S l 0

0 0 0 0 Cl


. (32)

and {b}l, {b}l and {b}l are force amplitude vectors for the lth

harmonic.

By the use of the formulation above the total potential energy

of the shell can be created. Applying the stationary conditions

the formulae for the stiffness matrix and the load vector of an

element now becomes:

[
Klm

i j

]e
=

 α
2

∫ ae

0

[
B̄i

]T
[D]

[
B̄ j

]
r ds f or l = m

0 f or l , m
, (33)

{
f l
i

}
=

∫∫
A

[
N l

i

]T
{b} dA+

+

∫∫
A

[
N l

i

]T
{t} dA +

∫∫
A

[
N l

i

]T
{p} dA .

(34)

Matrix
[
B̄i

]
can be simply obtained from

[
Bl

i

]
by making

S l = Cl = 1. The discretized equations of the system can be

obtained by minimizing the Total Potential Energy of the shell

with respect to all nodal amplitudes, which finally leads to an

uncoupled system of equations, thus it can be solved separately

for each harmonic.

3.1 Coordinate transformation

Contrary to plates, the strip elements of a folded plated struc-

ture meet in different angles, in other words they lie in different

planes. Since all the variables of an element are expressed in

its local coordinate system, it is necessary to transform the ele-

ment arrays to a common, uniquely defined coordinate system.

According to the theory, in the local coordinate systems only ϑs

and ϑt is necessary to be defined. However, if considering the

displacements from another system, all three rotation will have

importance. If the axes of the global coordinate system are X̄, Ȳ

and Z̄, then it is possible to write that

{
āl

i

}
= [T ]e

{
al

i

}
and

{
f̄ l
i

}
= [T ]e

{
f l
i

}
. (35)

Here

{
āl

i

}
=

{
ūl

i
v̄l

i
w̄l

i
ϑl

x̄i
ϑl

ȳi
ϑl

z̄i

}T
, (36)

and

{
f̄ l
i

}
=

{
F̄ l

xi
F̄ l

yi
F̄ l

zi
Ml
ϑx̄i

Ml
ϑȳi

Ml
ϑz̄i

}T

(37)

are the generalized displacement and force vectors at node i

of element e in the global coordinate system X̄, Ȳ , Z̄ where Ȳ

is parallel to t and Z̄ is the vertical axis, as it can be seen on

Fig. 2. In expression (35) [T ]e is the transformation matrix of

the element. According to this thought, these vectors must be

slightly modified in the local coordinate systems by adding a

zero term, to facilitate the transformation, thus

{
al

i

}
=

{
ul

0i
vl

0i
wl

0i
ϑl

si
ϑl

ti
0

}T
, (38)

and

{
f l
i

}
=

{
F l

si
F l

ti
F l

ni
Ml
ϑsi

Ml
ϑti

0
}T

. (39)

Then the stiffness matrix of an element for the lth term in the

global coordinate system has the form

[
K̄ll

i j

]e
= [T ]e

[
K̂ll

i j

]e
[T ]eT

, (40)

where

[
K̂ll

i j

]e

(6x6)
=


[
Kll

i j

]e

(5x5)
0

0 0

 , (41)

because the stiffness matrix has to be extended either to fa-

cilitate the transformation and to match the dimension of the

extended versions of the other arrays of the element. Using ex-

pressions (20) and (26), the stiffness matrix can be written in a

more practical form as

[
K̄ll

i j

]e
=
α

2

∫ ae

0

[
B̄∗i

]T
[D]

[
B̄∗j

]
r ds , (42)
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where
[
B̄∗

i

]
can be obtained from

[
B̄i

]
by means of the follow-

ing transformation

[
B̄∗i

]
=

[
B̄i

]
[T ]eT

, (43)

which now allows the direct evaluation ofthe local stress re-

sultants from the global displacements using Eq. (20). Thus the

local stress resultants are:

{σ} =

n∑
l=1

ne∑
i=1

[D]
[
B∗li

] {
al

i

}
. (44)

At a general folded plate, the matrix
[
K̄ll

i j

]e
will be fully popu-

lated. However, a problem arises if the strips meeting at a node

lie in the same plane. In this situation, after the transforma-

tions the 6th diagonal term of the element stiffness matrix with

respect to the global coordinate system will be zero, thus the el-

ement stiffness matrix becomes singular, and the node is called

a co-planar node. In the practice this singularity is avoided by

putting an arbitrary value into this position of the matrix after

the transformation. This solution implies, that this equation will

be a pseudo equation. However, this step does not affect the so-

lution process, since this equation is uncoupled from the other

stiffness equations. This solution allows for all the coplanar and

non-coplanar nodes to have the same number of degrees of free-

dom, which can be very useful if the solution system does not

allow for varying numbers of variables at different nodes.

4 Optimal design of folded plates

The deterministic compliance design procedure of a linearly

elastic 2D structure (disk) in plane stress with single loading is

known from literature (e.g. Lógó [10]). This topology optimiza-

tion problem extended to folded plates is given as follows:

W =

G∑
g=1

γglgbgt
1
p

g = min! (45)

subject to
uT F −C ≤ 0;

−tg + tmin ≤ 0; (for g = 1, . . . ,G) ,

tg − tmax ≤ 0; (for g = 1, . . . ,G) .

(46)

The value of the objective function W means the total penal-

ized volume of the structure in the function of the strip thick-

nesses, where the summation goes from one to the number of

strips, denoted by G.

The strip element thicknesses tg are the design variables with

lower bound tmin and upper bound tmax, respectively. Further-

more γg is the specific weight, lg and bg are the length and the

width of the gth element. uT is the displacement vector associ-

ated with the loading F. The displacements u can be calculated

from Ku = F, where K is the system stiffness matrix. p is

the penalty parameter (p ≥ 1) and the given compliance value

is denoted by C what depends on the displacement limit of the

dedicated points. The above constrained mathematical program-

ming problem can be solved by the use of an appropriate SIMP

algorithm (Lógó [10]). The formulations above can lead to the

same optimal solution as if the objective function and the com-

pliance constraint were interchanged.

Another slight modification has to be evaluated if multiple

loading and/or stochastic loading (Lógó [11, 12]) is considered.

Either the number of the compliance constraint is increased or

the objective function (45) has to be modified to form a min-max

problem. It can be happened as follow:

min [max uT
i Kui] i = 1, . . . , n , (47)

subject to


G∑

g=1

γglgbgt
1
p

g −W0 ≤ 0 ;

−tg + tmin ≤ 0; (for g = 1, . . . ,G) ,

tg − tmax ≤ 0; (for g = 1, . . . ,G) .

(48)

Here n is the number of the independent load cases. W0 is

a given weight fraction of the structure. This type of problems

can be solved by using the so called “parametric level” tech-

nique. Introducing a new parameter C0 the min-max problem is

substituted by a constrained minimization problem [5].

4.1 Derivation of the optimality criteria formulation in case

of single loading

The necessary equations, which a thickness distribution has

to satisfy to be the optimal solution, can be formulated with the

so called Karush-Kuhn-Tucker (KKT) conditions. These con-

ditions are derived from the slack variable approach and the

classical technique of Lagrange multipliers. The difference to

the classical approach is that the KKT conditions define the La-

grange multipliers to be sign definite while the Lagrange multi-

plier theorem only states the existence of them.

Therefore the conditions for a set
{
t1, t2, . . . , tg

}
to be a local

minimum of the objective function are the following:

∂L

∂tg
=

1

p
γglgbgt

1−p

p

g − λuT
g

∂K̃g

∂tg
ug = 0; g = 1, . . . ,G , (49)

λ ≥ 0 ; (50)

uT Ku −C ≤ 0 , (51)

tmin ≤ t∗g ≤ tmax ; g = 1, . . . ng , (52)

λ ·
(
uT Ku −C

)
= 0 , (53)

where
∂K̃g

∂tg
stands for the derivative of the strip stiffness matrix

and G denotes the number of strip elements. On the basis of
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Fig. 5. Straight and curved rectangular plate and box-girder bridge

Fig. 6. Geometrical data of the first example

these equations an iterative formula can be derived, which leads

to the optimal thickness distribution for one single load case.

tg =

(
λ·p·Rg

lg·bg

) p

1+p

, where Rg = t2
guT

g

∂K̃g

∂tg
ug , (54)

λ =
(

C
C∗

) 1+p

p , where C∗ =

[∑
g

[(
p·Rg

lg·bg

) p

1+p

uT
g K̂gug

]]
. (55)

In expression (55) K̂g means
∂K̃g

∂tg
/ tg. As usual, the box con-

straints are treated separately from the compliance inequality

constraint, as they are not involved in the formulation of the La-

grangian function, but examined at every iteration cycle. There-

fore, if a thickness happens to fall outside of the feasible set, in

the next cycle it is forced to start with the boundary value (tmax

or tmin) of the box.

5 Numerical examples

In the following, sample problems are introduced to illustrate

the above explained methods. As already mentioned, the Finite

Strip Method is used for the evaluation of the state variables,

which excels in the calculation of structures with constant cross

section. These include the following examples:

At each run, quadratic base functions were used in the cross

section. The boundary conditions are also the same, accord-

ing to the rules of the classical finite strip method (CFSM).

This means that hinged supports were prescribed by choosing

the proper trigonometric functions, while no additional bound-

ary conditions were imposed.

5.1 Straight rectangular plate

Here we note, that in all cases, the cross sections should be

understood in the x-z plane, therefore in Fig. 5 size ‘a’ means the

width of the plate and size ‘b’ means it’s width and accordingly

the thickness is the size in the ‘z’ direction.

The introduced plate was subjected to various loads, which

positions are given with coordinates relative to the upper left

corner, as seen in Fig. 7.

Fig. 7. Load coordinates for straight structures

Fig. 8. Results for straight plates with ξ = 3 m, η= 4 m

The first load case is a single concentrated force F = 100 kN

pointing downwards, acting in the geometric middle of the struc-

ture, so according to the notation of Fig. 7, ξ = 3 m and η= 4 m

in this case. The obtained thickness distribution can be seen on

the left of Fig. 8. The result for the same setup, but with a hor-

izontal load is presented on the right of the same picture. With

two concentrated forces of both 100 kN placed at ξ = 2 m and

4 m, η= 4 m:

Fig. 9. Results for straight plates with ξ = 2 m, η= 4 m

5.2 Curved rectangular plate

The setup of these examples is the same as at the straight

plate, with the difference, that the loads positions should be un-

derstood with the same value, but in a cylindrical relative coor-

dinate system, illustrated on the next figure.
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Fig. 10. Geometrical data of the second example

Fig. 11. Cylindrical load coordinates for curved structures

Fig. 12. Geometrical data of the third example

Fig. 13. Results for straight box-girder bridges

Fig. 14. Geometrical data of the fourth example

Optimal design of curved folded plates 4292014 58 4



Fig. 15. Result for a curved box-girder bridge

5.3 Straight box-girder bridge

The geometry of this example is presented on Fig. 12. On the

next figure (Fig. 13), the loads are always placed at the mid-span

on the top flange at the position of the webs, so according to the

notation of Fig. 11: ξ = 2 m and/or 4 m, η= 5 m.

5.4 Curved box-girder bridge

The geometry of this example shows no difference to the pre-

vious one, except that the bridge has a curved geometry around

the vertical axis. Only one load case was investigated, which

can be put into comparison with the upper left picture of Fig. 13.

The position of the concentrated forces should be understood as

before.

6 Conclusions

A numerical procedure and computer program were elabo-

rated for optimization of folded plates subjected to multiple

loadings. The computational method is based on the finite strip

method. The elaborated procedure with a slight modification

can be suitable for the case of stochastic loading and/or multiple

loading cases, as well. The surrogate loading system is problem

dependent.

To make more appropriate models it is needed to make some

additional investigations on the topic.
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