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Abstract

In order to plan a construction project, computer simulations

are frequently used to predict the performance of the operations

through simulating the process flows and resource selection pro-

cedure. However, for finding the optimum resource allocation

of the construction activities, all possible combinations must

be tested through simulation study. If the number of activities

and allocated resources are high, the numbers of these combi-

nations become too large, then this process would not be eco-

nomical task to do. Therefore, simulation analysis is no longer

considered through an optimization technique. Using of Ge-

netic Algorithms (GA) is one of the simple and widely used tools

for optimizing heavy intensive engineering problems which can

covers various areas of research. With keeping this in mind,

this study presented a new hybrid model which integrated agent

based modeling with CPM and GA to find out the best resource

allocation combination for the construction project’s activities.

Based on the results obtained, this new hybrid model can effec-

tively find the optimum resource allocation with respect to time,

cost, or any combination of time-cost.
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1 Introduction

Despite the fact that different robust methods have been de-

veloped for project scheduling and planning, in the construction

industry, Critical Path Method (CPM) is still the most popular

method. The first major cause of this popularity is the simplic-

ity of the CPM. On the other hand, for finding the optimum allo-

cation, planners must test all of the alternate construction tech-

nologies and resource allocations, including crew sizes for all

of the project activities. In each activity, each of its alternatives

cause specific duration and cost. In the complicated projects,

with increase in the number of activities and the types of re-

sources, these alternatives increase progressively. Therefore, the

effective technique is necessary to analyze and determine the

optimal resource allocation to complete a project with the mini-

mum cost or time. Several researchers have used discrete event

simulation (DES) to develop such a technique for analyzing the

effect of different resource allocations. Examples include eval-

uating the effect of different resource allocation on the concrete

batching operations, [1], earthmoving operations [2], residential

construction inspection process [3], precast concrete workshops

[4], and tunnel planning [5].

Although these simulation techniques could find optimum re-

source allocation, examination of all resource allocation com-

binations to determine the best solution is too lengthy. There-

fore, sensitivity analysis was proposed by [6] to facilitate such

enumerations. However, with increase in the complexity of sim-

ulation model and number of available resource combinations,

sensitivity analysis becomes an extremely time-consuming pro-

cess. In this regard, different researchers have used heuristic

algorithms (HAs) to efficiently search for appropriate resource

allocation under specified objectives. For instance, AbouRizk

and Shi (1994) used a heuristic algorithm (HA) to find the best

resource allocation in the simulation system [7]. Several re-

searchers proposed a hybrid model with combining genetic algo-

rithms (GAs) and simulation for optimizing resource allocation

regarding minimum unit cost or maximum productivity rate of

the simulation model [8–10]. Senouci and Adeli (2001) used dy-

namic neural network to optimize resource allocation subjected

to project network and available resource constrains that was
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neglected in the previous research [11]. Cheng and Yan (2009)

combined messy genetic algorithms (GAs) and DES to select

best resource utilization schemes relative to production rate or

unit cost. [12].

Most of these methods are suitable for construction projects

with highly repetitive tasks [9]. As mentioned earlier, the major

reason that planners use CPM is its simplicity. However, using

these methods need a high experience for simulation via DES

software, since it could be complicated. In addition, in the tra-

ditional network planning techniques, such as CPM, PERT, and

their derivatives, it is assumed that the duration of activities was

almost known or had a pre-determined probability distribution.

In practice, there are many cases where these conditions are not

met.

In the CPM, the focus of concern is on the duration and cost of

the project’s activities. In practice, the duration and cost of each

activity is determined through a three-way interaction among ac-

tivity, its assigned resources, and the project environment. The

attributes of activity, quantity and quality of resources, and en-

vironmental factors directly affect these interactions.

With this in mind, the very purpose of this study was to come

up with a model which these interactions are of concern, and

the model procedure is simple and easily comprehensible like

CPM. To achieve this contribution, in this study, GA, CPM, and

Agent Base Modeling (ABM) were combined. Genetic algo-

rithm is a known issue in civil engineering and can easily be

combined with other methods. So, it is used in different areas in

civil engineering, such as cost estimation [13], design of a long-

span suspension bridge [14], life cycle optimization of buildings

[15], resource leveling model for line of balance schedules [16],

and etc.

Agent-based modeling (ABM) is a recently developed ap-

proach to model complex systems. ABM has a broad range

of application in many areas and fields including stock market

[17], supply chains [18], adaptive immune system [19], under-

standing consumer purchasing behavior [20], military applica-

tion [21], modeling fuzzy group decision making [22], and etc.

Having laid the ground, to achieve its objectives, this study is

arranged as follows:

In section 2 and 3, ABM and Support Vector Regression

(SVR) is introduced; the problem statement is described in sec-

tion 4; section 5 describes the modeling procedure and method-

ology; the case study is described in section 6; in section 7 the

results and discussion are presented; finally, the study is closed

through the conclusion part.

2 ABM introduction

If a complex system is created from interacting, autonomous

‘agents’, then one of the recently developed approach to model

it is ABM. The behavior of these Agents are affected by their

characteristic and interactions with one another agents, learning

from their experiences, and adaptation to their environment for

better matching. By modelling of agents individually, the effects

of their behavioral varieties with respect to their attributes can be

traced. If this is accomplished, the behavior of the whole system

can be predicted. In the agent based modeling, through system

decomposition, agent-by-agent and interaction-by-interaction,

model accuracy is improved [23].

2.1 Structure of an agent-based model

Typically an agent-based model contains three basic ele-

ments: [23]:

• A set of agents with their attributes and behaviors, where

these attributes can be static or dynamic with respect to time

or to simulation.

• A set of agent correlations and ways of interaction, where

through model topology, constrains of the selecting and inter-

acting mode are fixed.

• The agents’ environment: agents interact within their envi-

ronment as of other agents.

“The single most important defining characteristic of an agent

is its capability to act autonomously, that is, to act on its own

without external direction in response to situations it encounters.

Typically, agents are active, initiating their actions to achieve

their internal goals, rather than merely passive, reactively re-

sponding to other agents and the environment” [23]. The inde-

pendence of the agent contributes to their decision making. The

agent attributes could have a dynamic or a static due time.

In order to model the agent’s interactions, it is necessary to

establish two important issues:

1 Which agent could be connected to which one of its kind?

2 The manners of the interactions.

Both issues must be addressed in developing agent-based mod-

els. As in real-world systems, each agent interacts with other

agents, yet not necessarily in a direct manner or simultaneously

with all of them. Typically, every agent interacts with its neigh-

bors, where it obtains information and becomes aware of its

vicinity. ABM topology determines the agent’s neighborhoods.

One of the simplest topologies in ABM is cellular automata.

This topology splits the system environment to cells with grid

lines. The cells that immediately surround an agent make up its

neighborhood (Fig. 1-a).Another representation of ABM topol-

ogy is network. Here, the agent’s neighborhood could be defined

in a general sense (Fig. 1-b). In such networks, each agent can

communicate with other connected agents through the links.

Agents’ environment affect their behavior. The environment

could have both dynamic and static attributes.

In order to run, ABM model needs a computational engine.

This engine approximates the output of the agents’ interactions

with one another and the system environment. This computa-

tional engine can range from simplistic and reactive if-then-rule

engines to complex models run by adaptive Artificial Intelli-

gence (AI) techniques [23]. In the proposed model we used SVR
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Fig. 1. Schematic of some ABM topologies

as ABM computational engine to approximate the output of the

agents’ interactions with one another and the system environ-

ment. The most important reason for using SVR is its unique

structure in solving all related problems.

3 Support Vector Regression (SVR) introduction

Support vector machine (SVM) is a supervised learning

method for analyzing the data for classification and regres-

sion problems. Vapnik proposed ε-support vector regression

(SVR) by introducing an alternative ε-insensitive loss function

[24, 25].The purpose of the SVR is to find best function for ap-

proximating the outputs of given training data and have to be as

flat as possible [26]. A summary of the SVR methodology is

presented as follows:

Let input xi with n component have output yi. F(x) is a set of

real functions that contains the regression function f0(x). Con-

sidering linear regression ( f (x) = (w · x) + b) with the set of

data {(x1, y1) , . . . , (xn, yn)}. The optimal regression function can

be found by minimizing the empirical risk R:

R =
1

n

n∑
i=1

|yi − f (xi)|ε (1)

With ε-insensitive loss function:

|y − f (x)|ε =

 if |y − f (x)| ≤ ε0

otherwise |y − f (x)| − ε
(2)

Now the function f (x) must be found, that has minimum de-

viation of ε from the actual outputs yi for all the training data

and at the same time is as flat as possible.

This is equivalent to minimizing the following function:

R(w) =

∥∥∥w2
∥∥∥

2
+ C ×

1

n

n∑
i=1

|yi − f (xi)|ε (3)

Where flatness of function considering through

(
‖w2‖

2

)
and empirical risk was calculated the through second term(

1
n

n∑
i=1

|yi− f (xi)|ε

)
. C is a penalty value that trades off empiri-

cal risk against flatness of approximation function. The larger

value of C decreases the training error but decreases generaliza-

tion performance of the function as well. Eq. (3) could be rep-

resented as the dual optimization problem and this optimization

problem can be solved by Lagrange method as follows:

L2 =

l∑
i=1

yi

(
α∗i − αi

)
− ε ×

l∑
i=1

(
α∗i + αi

)
−

−
1

2

l∑
i=1

l∑
j=1

(
α∗i − αi

) (
α∗j − α j

) (
xi · x j

) (4)

Subject to these constrains:∑
α∗i =

∑
αi; 0 ≤ α∗i ≤ C; 0 ≤ αi ≤ C (5)

The training data with nonzero Lagrangian multipliers (αi,

α∗
i
) are called support vectors.

The final solution could be as follows:

f (x) =
∑nsv

i=1

(
α∗i − αi

)
xi + b (6)

Where nsv is the number of support vectors

However, in reality, as in the case of most engineering appli-

cations, linear regression is uncommon. Therefore, SVR maps

out the input data x into a high-dimensional feature space by a

non-linear map that in this space linear regression can be done

[27].

To avoid computing explicitly in this feature space, a nonlin-

ear kernel K
(
xi · x j

)
is used to map out the data. Once the opti-

mum values αi and α∗
i

are obtained, then the regression function

is given by

f (x) =
∑NS V

i=1

(
α∗i − αi

)
K (xi · x) + b (7)

Any function which satisfies Mercer condition can be used

as the kernel function [24]. Some of these kernel functions are

presented in Table 1. Choosing the kernel parameters is an im-

portant issue because they have important and direct effect in

accuracy and complexity of SVR.
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Tab. 1. Different types of kernel function

Type of classification Kernel Function

Polynomial degree K (x · xi) =
[(

xT · xi

)
+ 1

]d

Gaussian K (x · xi) = e
−
‖x−xi‖

2

σ2

Multi-layer perceptron K (x · xi) = tanh
[(

xT · xi

)
+ b

]

It should be noted that tuning of SVR parameters is a heuris-

tic process and the parameters specified by user are (1) type of

kernel function and the parameters, (2) the value of the penalty

factor C and (3) the value of ε-insensitive. More information

about the SVM method can be found in [28–30]

4 Problem statement

For the purpose of this study, an Activity on Node (AON)

project containing n activities is considered. The first and nth

activities represent the start and the finish points, respectively.

Assumptions:

1 Loop or circle is not allowed. This is a feedforward network.

2 No split is allowed.

3 Activities are ready to perform if the preceding activity com-

pleted.

4 Activity relationships are known and given based on the na-

ture of the works to be performed.

The split of the activities is not considered in this study. Mathe-

matical presentation of the CPM is:

min fn (8)

Subject to:

f1 = 0 (9)

f j − d j ≥ fi∀ (i, j) ∈ H (10)

Where di is the duration of activity i, fi is the finish time of

activity i, H is the subset of activities that are predecessors of

activity I, and fn is the duration of project.

As observed, fnis the function of di. In the traditional CPM, di

is the value based on experts’ or project team’s judgment. If the

activity duration is deterministic, the CPM can be a very useful

tool in managing project schedule. However, in practice, uncer-

tainties in the project environment and variation in the quality

of resources cause activity duration to become indeterministic.

As mentioned earlier, the duration and cost of every activity is

consequence of a three-way interaction among the given activity

properties, its assigned resources, and the project environment.

Obscurity of this interaction can cause uncertainty in the activ-

ities’ duration and cost. CPM cannot face these uncertainties

in an efficient manner. In cases, where the system outputs de-

pend on the system’s components and their interactions, one of

the applicable methods in predicting these outcomes is ABM.

However, to overcome some of the mentioned deficiencies in

a more efficient manner, the combination of CPM and ABM

adoption was proposed. In the proposed model, di is determined

through considering three-way interaction among activity i, its

assigned resources, and the project environment. Consequently,

the project’s duration, fn depends on the interaction between its

participated resources, activities, and environmental attributes.

Therefore, in this study, CPM is combined with ABM to gen-

erate the hybrid model. The attempt is made to make this model

consider this three-way interaction in a direct manner. Then, the

model is combined with GA to find optimal resource allocation

for activities subjected to minimization project’s total cost, du-

ration, or time-cost tradeoff.

5 Modeling procedure and methodology

All projects have three basic elements: labor, activity, and

environment. To achieve the study’s objectives, these elements

were mapped into ABM as follows:

1 Labors: every labor is an agent who is described through

his/her attributes and characteristics.

2 Activity: Every activity has two parts, agent and environment.

Agent part contains the natural attributes of the activity, and it

is independent of the activity location in the project, such as

the complexity. Environment part contains activity properties

that depend on the location of the activity in the project, such

as the accessibility to the activity material.

3 Environment: It contains the project properties that cover

project spaces such as management conditions.

Model topology defines the correlation of agents with one an-

other and with the environment. In this proposed model, the

agents that are participated in an activity interact with one an-

other, with the agent part of the activity, and with both the envi-

ronment of the activity and that of the project. The restriction of

the topology is similar to that of the activity. A schematic view

of the model’s topology is presented in Fig. 2.

An AI engine was selected as ABM computational engine to

predict the possible results obtained from the agents’ interac-

tions with one another and with the environment [23]. To do

this, the AI engine must be trained to find the best among agents’

and environment attributes as inputs, and result of their interac-

tions as outputs. This trained engine maps the agents’ attributes

and environment parameters onto the result of the interaction

of agents with one another and with the environment. As men-

tioned earlier, in this study, SVR was chosen as an AI engine.

For making the crews, several resource pool must be defined.

Each resource pool contains unlimited amount of resources (ar-

tificial agents) with similar characteristics. In the resource allo-

cation step, agents were selected from these resource pools, and

the crew properties were calculated based on these selections.

For optimizing the work crews, the proposed model had two

important sections:
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Fig. 2. Schematic view of the model topology

Fig. 3. Schematic of procedure of project duration and cost calculation

1 The project duration and cost calculation engine. This section

was done through combining CPM and ABM

2 Optimizing the work crews to minimize time, cost, or time-

cost. This section was completed via GA.

The step by step procedure of project duration and cost calcula-

tion engine includes:

1 Defining the labors and their behavioral attributes

2 Defining activities and their attributes and environmental fac-

tors

3 Defining and evaluating project environment factors

4 Collecting historical data based on previously defined pa-

rameters. These data contained the evaluation of activities

and their assigned labor attributes as inputs, and the average

workrate as output

5 Training SVR with collected data to predict new situations

6 Assigning labors to work crew of each activity from resource

pools.

7 Approximating activities’ durations using trained AI and ac-

tivities’ volume

8 Calculating network events based on predicted durations

The schematic view of this proposed model is illustrated in

Fig. 3

In the optimization phase, the model must find the best task-

force arrangement for each activity to minimize project time,

cost, or both of them. Therefore, the traditional CPM Eqs. (8)-

(10) convert to these equations:

min fn (11)
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Fig. 4. Chromosome, Crossover and Mutation function representation

Subject to:

f1 = 0 (12)

f j − d j ≥ fi∀ (i, j) ∈ H (13)

d j = G(wc jA jE) (14)

In the above mathematical model, Eq. (11) implies the ob-

jective function which is minimization of the total time of the

project. Eq. (12) represents the first activity will be started at

time zero. Eq. (13), presenting the relationships among the

activities and models preceding relationships of all activities.

Eq. (14), calculate the duration of activity based on three-way

interaction among the given activity properties, its assigned re-

sources, and the project environment

G is the function that calculates activity duration, wc j is the

properties of assigned work crew to activity j, A j is the proper-

ties of activity j, and E is the environmental parameters of the

project.

In the proposed model, each chromosome contains a [m × n]

matrix which n is the number of resource pools and m is the

number of activities The schematic view of chromosome was

shown in Fig. 4

During each successive generation, a proportion of the exist-

ing population is selected to breed a new generation. Individual

solutions are selected through a fitness-based process, where fit-

ter solutions (as measured by a fitness function) are typically

more likely to be selected. Certain selection methods rate the

fitness of each solution and preferentially select the best solu-

tions. Other methods rate only a random sample of the popula-

tion, as the former process may be very time-consuming. In the

proposed model The Stochastic universal sampling was used as

selection function [31]

In the proposed model, the crossover function creates a ran-

dom [m × 1] binary vector and selects the row where the vector

is a 1 from the first parent, and the row where the vector is a

0 from the second parent, then combines the genes to form the

child. The mutation function generated a random [m × 1] bi-

nary vector for selecting individuals; where the vector is a 1, the

corresponding row regenerates, and where the vector is a 0, the

corresponding row remains unchanged. In Fig. 4 example cases

of crossover and mutation functions are presented.

The model can be run in either one or multi objective opti-

mizations. The fitness of each individual is calculated based on

cost, time, or the combination of both of them through previ-

ously mentioned steps. The graphic view of the modeling pro-

cedure is presented in Fig. 5.

In the next section, the hypothetical problem is solved with

the proposed method in both one and multi objective conditions.

The obtained results are near optimal solutions. In order to

avoid falling in a local trap, mutation operator has been defined

in the developed genetic algorithm.

6 Case Study

For estimating the abilities of this proposed model, a simple

case problem was solved through hypothetical data. In this case,

problem, the project contained 8 activities (Fig. 6).

Agents and project environment were evaluated with follow-

ing parameters:

Activities contained these attributes:

1 Agent part

(a) Complexity level

(b) Repetition level

(c) Severity level

(d) Activity volume

2 Environment part
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(a) Level of the accessibility to the activity materials

All activities used four types of agents (R1, R2, R3, and R4).

Each labor is an individual agent with its following personal at-

tribute:

1 Average level of labor’s skill.

The project environment was described with the following pa-

rameters:

1 Management condition of the project

A 5-point Likert scale was used to evaluate the parameters of

the activity. Moreover, a 3-point Likert scale was used for the

evaluation of labor agents. (Table 2).

The numerical details and the description of these sample ac-

tivities of the project, based on 5-point Likert scale, are tabulated

in Table 3.

To accomplish any activity, four types of labors must be as-

signed to it, subjected to the following constrains:

1 ≤ nR1i ≤ 3 (15)

nR1i ≤ nR2i ≤ 3nR1i (16)

2nR1i ≤ nR3i ≤ 5nR1i, 3nR2i (17)

2nR1i ≤ nR3i ≤ 6nR1i, 2nR2i, 4nR3i (18)

where nR1i to nR4i are the number of R1 to R4 labors of

activityi , respectively.

The price of each type of labors, based on his/her skill level, is

shown in Table 4. The project overhead cost was 300 monetary

units per day. This project was managed in a normal manner

(Scale 3).

Duration of activity i(di) was calculated based on the in-

teraction among resources (R1, R2, R3, & R4), activity, and

project management conditions. This interaction was calculated

through Eq. (19), where f approximated with SVR as follows

Di = f
(

(nR1i, S LR1i) , (nR2i, S LR2i) , (nR3i, S LR3i) ,

(nR4i, S LR4i) , AAi, AV i, PMC
)

S LR1i =

nR1i∑
j=1

S Lr1 j

nR1i

, S LR2i =

nR2i∑
1

S Lr2 j

nR2i

,

S LR3i =

nR3i∑
1

S Lr3 j

nR3i

, S LR4i =

nR4i∑
1

S Lr4 j

nR4i

(19)

where S Lr1 j to S Lr4 jare the skill levels of j − th, R1 to R4

are labors of activity i, respectively,S LR1i and S LR4i are the

average skill rates of expert and common labors of activity i,

respectively, AAi is the properties of activity i, AV i is the volume

of activity i, and PMC is the project management condition.

To train SVR, 220 hypothetical data were generated for each

activity. These data contain some nonlinear function that calcu-

late the results of agents’ interactions in different situations and

SVR tries to find this function in the training phase. Out of the

220 data, 150 data were used for training, 35 for validating and

35 for testing the AI core.

The duration and cost of each activity were calculated based

on the quality and quantity of the assigned work crew. Project

duration and cost were calculated in accordance with project

network and predecessor relations among activities, calculated

duration, and cost through Eq. (8)-(10)

7 Results and discussion

This example case was solved in both single and multi-

objective optimizations as follows:

1 Project duration minimization

2 Project cost minimization

3 Project Time-Cost optimization

In the duration minimization, the objective function is mini-

mizing the project duration subjected to project network con-

strains (Eq. (11)-(14)), the results of this optimization is shown

in Fig. 7. The best work crew subjected to duration minimiza-

tion is presented in Table 5.

Total project time after minimization is 67 days and project

cost is 239440 monetary unit. The duration, early start, free

float, and direct cost of each activity are presented in Table 6.

If every activities’ work crews have 3 R1, 9 R2, 15 R3, and 18

R4, the project duration will be 66 days and project cost will be

263478 monetary unit; it means, 1 day project duration reduc-

tion (1.4%) can cause 10% increase in project cost. So, some-

times, in some activities, it is better to change some fully skilled

resources with cheaper lower skill ones. Table 7 shows the re-

sult of this resource allocation. Since minimizing the noncritical

activities’ duration did not affect total project duration, in the

optimized case, the free floats were smaller.

Project total cost is the sum of the direct and indirect costs.

The result of cost minimization is presented in Fig. 8. The opti-

mum resource allocation is presented in Table 8.

Based on resource allocation results, in the cost optimization,

the model reduced the total cost through reducing direct cost by

using the cheaper resource with lower skills. The project dura-

tion in minimum cost is 99 days and in optimum cost is 214234

monetary unit. Table 9 shows the duration, early start, free float,

and direct cost of each activity after cost minimization. In this

situation, project duration increased up to33 days (50%) in com-

parison with minimum project long span, and project cost de-

creased about 20%. It shows that in this case study the decision

about choosing optimum project time or cost is highly depended

on the criticality of time. In the cost optimization, the model re-

duced the total cost through reducing direct cost by using the

cheaper resource with lower skills.
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Fig. 5. The view of the modeling procedure

Tab. 2. The likert scales of proposed model

LIKERT SCALE POINT 1 2 3 4 5

Severity Very easy work Easy work Moderate Hard work
Very Hard Work in

stressful condition

ACTIVITIES

PARAMETERS
Complexity Very routine Simple Moderate

Somedeal

complex
Very complex

Repetition Level
Without any

repetition
Very low repetitive Normal repetitive

More than normal

repetitive

completely

repetitive

accessibility to

material
Very hard Hard Normal Easy Trouble-free

LABORS

PARAMETERS
Skill level

very weak

experience

Normal

knowledge
Professional labor N/A N/A

ENVIRONMENTAL

PARAMETER

Management

Condition

Very weak project

management

weak project

management

Normal project

management

Good project

management

professional

project

management

Fig. 6. The example project network
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Tab. 3. Activities details

ACTIVITY NAME A1 A2 A3 A4 A5 A6 A7 A8

VOLUME(UNIT) 296 734 1695 783 2950 2000 936 853

SEVERITY 5 3 3 1 4 3 1 4

COMPLEXITY 4 2 4 5 1 2 1 3

REPETITION LEVEL 1 1 1 1 3 1 5 2

MATERIAL AVAILABILITY 5 3 5 3 1 3 5 5

Tab. 4. Labors cost (monetary unit per date)

SKILL LEVEL 1 2 3

TYPE 1 23 30 41

TYPE 2 42 54 72

TYPE 3 35 45 65

TYPE 4 15 25 33

Tab. 5. The best work crew subjected to duration minimization

RESOURCE TYPE R1 R2 R3 R4

SKILL SCORE 1 2 3 1 2 3 1 2 3 1 2 3

A1 0 0 3 0 6 3 3 12 0 0 8 10

A2 0 0 3 0 9 0 15 0 0 18 0 0

A3 0 0 3 0 2 7 0 3 12 1 4 13

A4 2 0 0 5 1 0 6 0 0 4 0 0

A5 0 0 3 0 2 7 0 0 15 0 0 18

A6 0 0 3 0 0 9 0 15 0 3 0 15

A7 0 1 2 0 9 0 0 15 0 5 5 8

A8 0 0 3 0 4 5 0 0 15 1 4 13

Fig. 7. Results of duration optimization

Tab. 6. The duration, early start, free float and direct cost of activities of optimized work crew (duration)

A1 A2 A3 A4 A5 A6 A7 A8

Duration 13 13 21 21 19 27 8 6

Early Start 0 0 13 13 34 34 53 61

Direct Cost 22022 16653 42462 10479 40508 48600 12856 12360

Free Float 0 0 0 19 0 21 0 0

Tab. 7. The duration, early start, free float and direct cost of activities of professional work crew

A1 A2 A3 A4 A5 A6 A7 A8

Duration 13 9 21 7 19 25 7 6

Early Start 0 0 13 13 34 20 53 60

Cost 28002 19386 45234 15078 40926 53850 15078 12924

Free float 0 0 0 33 0 26 0 0

Finding Optimum Resource Allocation to Optimizing Construction Project Time/Cost 1772016 60 2



Fig. 8. Results of cost optimization

Tab. 8. The best work crew subjected to cost minimization

RESOURCE TYPE R1 R2 R3 R4

SKILL SCORE 1 2 3 1 2 3 1 2 3 1 2 3

A1 3 0 0 9 0 0 6 0 0 17 0 0

A2 1 0 0 1 0 0 2 0 0 2 0 0

A3 0 1 2 0 9 0 15 0 0 17 0 0

A4 1 0 0 1 0 0 2 0 0 2 0 0

A5 0 0 3 0 0 9 0 13 2 10 0 8

A6 0 0 3 0 2 7 13 2 0 16 0 2

A7 0 1 0 1 1 0 4 0 0 4 0 0

A8 0 0 3 0 9 0 0 15 0 8 10 0

Tab. 9. The duration, early start, free float and direct cost of activities of optimized work crew (cost)

A1 A2 A3 A4 A5 A6 A7 A8

Duration 19 57 26 30 21 34 26 7

Early Start 0 0 19 19 45 57 66 92

Cost 15162 9405 32448 4950 35994 48076 7982 10717

Free float 0 0 0 17 0 1 0 0

Fig. 9. Pareto front of time-cost optimization
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Tab. 10. Numerical results of Time-Cost trade off

PROJECT DURATION PROJECT COST DIRECT COST INDIRECT COST

87 230636 187136 43500

88 222718 178718 44000

89 221091 176591 44500

90 219523 174523 45000

91 218548 173048 45500

92 217922 171922 46000

93 217301 170801 46500

95 216705 169205 47500

96 215955 167955 48000

97 215334 166834 48500

Fig. 9 shows the Pareto front of time-cost optimization. The

numerical results, also, are presented in Table 10.

With Pareto front of time-cost trade off of project, the man-

ager could choose different scenarios to accomplish the project

based on project time and cost objectives.

8 Conclusions

Simulation techniques usually are used to model project op-

erations. Project planner has to choose the resource allocation

scheme among existing options for each activity. Generally,

there is more than one scheme available for running each activ-

ity. So, for finding the best known resource arrangement, regard-

ing to the total project life span or cost minimization, all feasible

combinations must be modeled through simulation study. When

there are a large numbers of resource combinations, examin-

ing every combination through this process is uneconomical.

Therefore, this study proposed a hybrid model which allowed

the project planner to find out the best or near optimal resource

combination regarding the project’s primary goals (time, cost,

or time-cost). According to the conducted case study, this new

hybrid model, showing proper results, could optimize resource

allocation in both single and multi-objective optimizations. In

future research, the abilities of this hybrid model can be evalu-

ated to possibly solve the resource constrain project scheduling

problem (RCPSP).
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