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Abstract

Describing the relationship between vehicle volume and

travel time delay on road sections consisting multiple intersec-

tions in the context of junction quantity is favorable to extend

the advantage of intersection-specific volume-delay functions.

This paper demonstrates a microsimulation method combined

with a non-linear function fitting algorithm to determine unbi-

ased delay function parameters and inspect the effect of junction

number on time delays. Results are bifold: first the distance be-

tween intersections deemed irrelevant regarding delay function

shape, second the implicit scaling property of homogenous junc-

tion chains is revealed. Consequently the definition of time delay

on uniform intersection chains can be determined by a sole pa-

rameter set for the volume-delay function and the addition of a

single scaling variable.
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1 Introduction

This paper merges and extends two previously introduced

concepts: intersection-specific time-delay functions [1] and af-

fection radius of singular junctions [2].

Relationship of traffic volume and travel time delay of vehi-

cles passing specific road intersections may be described with a

formula analogous to volume-delay functions of uninterrupted

road sections [1]. Presumably the number of, and distance be-

tween junctions on a road section also has large impact on the

shape delay functions besides the intersection layout. Of these

two additional aspects the effect of intersection quantity is ev-

ident: the more junctions are on a road, the higher is the de-

lay of individual vehicles. The current paper presents a spe-

cific method to evaluate traffic flow measurements and deter-

mine intersection-specific volume-delay function parameters for

different types of homogenous junction-chains on a closed road

section.

After laying down the principles of function fitting and be-

fore switching over to analyse the effect of junction quantity,

assessment of the second aspect will be presented. Distance be-

tween particular intersections is also an important attribute in the

quantization of time delay. When junctions are close, conges-

tion caused by an oversaturated intersection is affecting neigh-

bouring junctions’ traffic flow triggering traffic jams remotely or

amplifying already existing ones. For the spatial limit of junc-

tion interaction the concept of ‘affection radius’ [2] is utilised in

the paper to demonstrate that intersection distance has no effect

on the shape of delay function – due to a specific restriction of

function fitting.

2 Framework

Instead of road side measurements a number of microsimu-

lations were employed to provide detailed traffic flow metrics

as they replicate real-life driving behaviour and traffic situations

adequately [3]. The possibility to maintain a controlled input

volume of vehicles throughout the analysed network segment

makes data separation and function fitting a straightforward task

compared to using real life measurements.

Simulation models created for previous analysis [1] were
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stringed together to create chains of two and three intersec-

tions. To clearly discern junction-specific details of superposi-

tion the investigation was restricted to homogenous intersection

sets. Microsimulation models of the experiment share the fol-

lowing features:

• Due to their higher stability and cleaner separation of results,

all model junctions had two through lanes in both directions.

• Every model junction had a separate left-turning lane on the

major road, and no turning lanes on the minor road

• Heavy vehicle ratio was confined to 10%

• Minor roads had vehicle inputs of 200 v/h

• Turning ratios were defined per Table 1. Note that ev-

ery approach of the major road has only two directions at

three-leg junctions: either ‘left and through’ or ‘right and

through’. Percentages should be interpreted accordingly (i.e.

90% + 10%)

Tab. 1. Turning ratios

3-leg 4-leg

major
minor major minor

left turn right turn

left 10% - 50% 10% 20%

through 90% 90% - 80% 60%

right - 10% 50% 10% 20%

• The composition of microsimulation models from the con-

structs introduced earlier [1] is according to Table 2. Length

of downstream road section leading to the junction chain and

intermediate road sections linking particular intersections are

displayed on the table. Upstream road section length was

uniform – 1 km. The notation concept used throughout this

paper is: n x mL, where n = ’number of intersections’, and

m = ’number of junction legs’ (i.e. 3 or 4). A suffix of in de-

notes junction compositions where intersections were inside

each other’s affection radius (see [2] for details).

Volume-delay function parameters were set during the re-

search for every intersection model of Table 2 according to

the results of microsimulations. It must be noted that although

traffic composition and junction configuration seem to be a re-

stricted set, the following methodology can be utilized to discern

parameter sets and reveal similiraties of other junction types.

3 Function fitting

Determining function parameters based on a set of observed

traffic flow data needed a verifiable method to support unbiased

comparison for the analysis of additive effects. Transportation

modelling makes use of several different volume-delay func-

tions. Comparison of a generic delay function curve to real life

traffic flow observations is displayed on Fig. 1. Taking into ac-

count the deterministic nature of modelling algorithms a real-

istic delay curve is amended at the point of capacity to enable

explicit definition of delay and also enable convergence during

traffic assignment. Therefore when a delay function is to be used

in transportation network models (e.g. with VISUM, EMME

CUBE etc. software) the curve should be fitted exclusively to

uncongested measurement data.

Fig. 1. VDF curves

Amongst the numerous volume-delay formulae (e.g. [4–7])

the function of choice for the current research was the ‘Conical

function’ [5]. The original formula was modified by modelling

practitioners as displayed on Eq. (1) to give it greater flexibility.

F (x̄, t) =

= x1

[
x2 +

√
x2

3

(
x4 −

t

x5

)2

+

(
2x3 − 1

2x3 − 2

)2

−

− x3

(
x4 −

t

x5

)
−

2x3 − 1

2x3 − 2

] (1)

Where vector x̄ represent the function parameters, and t the

function variable (traffic volume).

The composition of parameters were analysed and modified

during the research to better support convergence of the fitting

algorithm (see below). It must also be noted that the following

methodology is suitable for other types of volume-delay func-

tions as well.

A common solution for the problem of multi-parameter func-

tion fitting is through the use of Non-Linear Least-Squares

Method (NLLSM) where the task is to minimize the sum of

squares of residuals: The minimization problem is usually

solved with an iterative method (gradient descent, conjugate

gradient, line search etc.). For the current research a modi-

fied Gauss-Newton method was implemented which could be

regarded as a specific type of gradient-descent method. Formal

definition and solution of the problem may be found in [8]. Spe-

cific derivatives constructing the Jacobian matrix will be pre-

sented in the following paragraphs.

3.1 Reduction of parameters

Number of unknown elements – delay function parameters

at present – significantly affects iteration complexity thus effi-
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Tab. 2. Microsimulation model compositions

notation junctions downstream rd. sct. intermediate rd. sct.

1 x 3L One 3-leg 5 km -

2 x 3L Two 3-leg 5 km 5 km

3 x 3L Three 3-leg 5 km 5 km

1 x 4L One 4-leg 3 km -

2 x 4L Two 4-leg 3 km 3 km

3 x 4L Three 4-leg 3 km 3 km

2 x 3L in Two 3-leg, affected 3 km 3 km

3 x 3L in Three 3-leg, affected 3 km 3 km

2 x 4L in Two 4-leg, affected 1 km 1 km

3 x 4L in Three 4-leg, affected 1 km 1 km

ciency and convergence speed of an algorithm. It is favourable

to check the model function (1) for possible reduction of its pa-

rameters. These can be reduced by merging parameters x3, x4

and x5 as shown in Eq. (2).

x3

(
x4 −

t

x5

)
=

x5

x5

x3

(
x4 −

t

x5

)
=

x3

x5

(x4x5 − t) (2)

Hence using substitutions of (3) the number of function pa-

rameters can be reduced.

x̆3 =
x3

x5
and x̆4 = x4 · x5 (3)

Re-numerating the parameters, the formula of the volume de-

lay function to be fitted is (4).

F (x̄, t) = x1

[
x2+

√
x̆2

3
(x̆4−t)2 +

(
2x3−1

2x3−2

)2

−

− x̆3 (x̆4−t)−
2x3−1

2x3−2

] (4)

Further on the accent breve is omitted from variables x̆3 and

x̆4 for convenience.

3.2 Balance of sensitivity

When function value change disproportionately by the same

amount of difference in its parameters, minimization conver-

gence cannot be assured. Using One-Factor-At-a-Time and scat-

terplot analyses to assess parameter sensitivity it was found that

the model formula is ill-conditioned due to the highly different

sensitivity in terms of its parameters. This property prevents

convergence of the minimum search algorithm, thus the formula

had to be modified.

Reconditioning the formula by scaling the parameters with

vector ā =
(
10−2 10−2 10−5 1

)T
and using the pointwise product

ā◦x̄ instead of x̄ the model function sensitivity toward its pa-

rameters can be equalized. Equation (5) introduces the modified

formula.

F (x̄, t) = a1x1

[
a2x2+

+

√
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(
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)2

−
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2a3x3−1

2a3x3−2

] (5)

3.3 Jacobian derivatives

The implemented minimum search algorithm requires the cal-

culation of Jacobian matrix members. Using the preconditioned

formula (5), following equations (6), (7), (8) and (9) display par-

tial derivatives of the volume-delay function.

∂F (x̄, t)

∂x1
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(9)
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3.4 Fitting considerations

Another detail has to be considered when using the NLLSM

for VDF parameterization. As it was mentioned above, fitting to

congested data has to be avoided by the removal of unnecessary

measurements from vectors t̄ and f̄ . In the developed software

an adjustable upper cap toward accepted time delay was imple-

mented to account for this need.

Observation showed that success of fitting mainly depend on

the initial value of parameter x4 – provided that upper cap was

set to a proper value (Fig. 2). This parameter has major effect on

the horizontal position of the vertical asymptote and has to be

set to a value where the asymptote is between the ordinate and

the congested part of the observed data.

Fig. 2. Examples of adequate (left) and unsuitable (right) initial values of x4

4 Evaluation

Although delay measurements of microsimulation runs were

collected on a 15-minute (simulation time) basis to provide ad-

equate sampling for analysis if necessary, functions were fitted

first to aggregated data (hourly sum of vehicles and average of

delay). This method was found suitable for further analysis. The

main reason to use a reduced data set in the NLLSM was to

avoid calculations with oversized vectors and matrices.

Different model setups yield to different travel distance for

the vehicles. To have comparable data, delay measurements

were recalculated to minute/km units to determine the relation

of junction quantity and delay function formula.

4.1 Context of affection radius

Time delay measurements of simulation runs showed iden-

tical results to traffic flow theories’ fundamental speed-volume

diagram. Considering that speed and travel time are parallel no-

tions and time delay is linear consequence of travel time these

results are sound. Vehicles traversing junctions which are in-

side the affection radius acquire more time delay than vehicles

on more spacious junction chains, but the difference is restricted

to the congested state. Below the point of theoretical capacity,

model setups show similar time delays regardless of intersec-

tion placement. This behaviour is illustrated on the following

figures: the ‘full range’ of measurements show every collected

data point, and dissimilarity between congested states are appar-

ent (Fig. 3). Time delay measurements of junctions within the

affection radius are higher than of unaffected junctions’ as it is

expected.

Fig. 3. Time delay measurements of two 3-leg junction (full range)

However inspection on the lower ranges of time delay reveals

the close similarity of uncongested state (Fig. 4). Comparing

3-leg and 4-leg (not displayed here) junction chains, the effects

match, although the lower throughput of the 4-leg variant is ob-

vious – due to the higher number of vehicle conflicts at the in-

tersections.

Fig. 4. Time delay measurements of two 3-leg junction (uncongested range)

As it was discussed above volume-delay functions have to be

fitted on uncongested traffic data: it is necessary to employ a

model curve past capacity to have a one-to-one mapping in the

function. Consequently the distinction of road sections based on

junction distance is not needed. To have numeric evidence Fig. 5

shows a function fit performed on two data sets (junctions inside

and outside of the affection radius), and also gives parametric

details of the result. Difference between the two function curves

are limited to the ‘model curve’ section, which part was omitted

from the fitted dataset. Concerning relevant measurements, the

determined parameters are very similar.
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Fig. 5. Fitted VDF curves with function parameters

4.2 Context of intersection quantity

Time delays are specific to junction type (3-leg or 4-leg) and

also depending on the number of intersections on the road. By

making use of the Non-Linear Least-Squares Method (NLLSM)

mentioned earlier, estimation of delay function parameters was

realized (Table 3). The Euclidian norm ‖g‖2 provides goodness

of fit metrics.

5 Analysis

Observation of the parameters tell that variations are in sim-

ilar order of magnitude, and – excluding x1 and x2 – each form

a tight numeric range but none of them are identical. Using a

specific set of parameters for every road section would require a

lot of resources (time and manpower) during modelling, hence

it is worth to investigate whether the formulation can be unified.

By taking a look at the function graphs it is clear without further

calculations that one VDF could not be reproduced by simple

scaling of one of the other curves. However the degree of devia-

tion could be better assessed. Fig. 6 shows 3-leg junction VDFs

(black curves) and additionally the ratio of specific functions,

marked with grey, defining function ratios as (10).

Rtyp1,typ2 (t) =
F

(
x̄typ1, t

)
F

(
x̄typ2, t

) (10)

where typ1, typ2 are examined junction types (e.g. 2 x 3L and

1 x 3L) and indexed vectors of x are the set of corresponding

function parameters.

Dividing the function values of junction chains by the func-

tion values of the singular intersection shows a quasi-linear rela-

tionship up to the point where traffic volumes exceed the capac-

ity of the model setup at one of the functions compared. After

that point, ratios show similarities to their own types but the ef-

fect is exaggerated by the increasing number of junctions. There

are some deviations to this logic, mostly apparent at 4-leg junc-

tions (not displayed here), where the fitted curve of the singu-

lar junction is irregular at very low traffic volumes, producing

a large spike when using VDF values as a denominator. This

irregularity can be explained with the mechanisms of the Least

Squares Method: the overweighing properties of the method at

high-gradient parts of the function, meaning that low gradient

parts are not fitted as accurately as high gradient parts. This at-

tribute produces the discrepancy between different VDFs around

zero traffic volume values.

Fig. 6. Delay curves and ratios of 3-leg junction and junction chains (Grey

curves show the ratio of different VDF values)

Although this inspection did not give first hand results, it

showed that while the functions themselves diverge, there is

some similarity in their behaviour. This confirmation of the hy-

pothesis leads to another inquiry: a similar examination of the

inverse functions. Considering the complexity of formula (5)

and the fact that inverse functions are not needed in other parts of

the research, inverses were constructed by numeric goal-seeking

in MS Excel at specific f (t) function values.

Analytically the function inverse can be written as (11).

F inv (x̄, f ) = T (x̄, f ) (11)

Then inverse function ratio as (12).

Ityp1,typ2 ( f ) =
T

(
x̄typ1, f

)
T

(
x̄typ2, f

) (12)

where f represent the variable along the ordinate.

By executing the division, resulting graphs (Fig. 7) prove to

be close to linear – even constant – indeed.

Again, there are irregularities at low function values due to

the inaccuracy of fitting. Overlooking the slight curve of these

graphs, approximate scaling factors can be determined for the

function variable, hence it is possible to describe all three delay

functions with a single parameter set and the additional scaling

factor. Results of the parameter substitution are on Fig. 8.

Here separate delay functions are displayed in black using

separate parameter sets determined by NLLSM, along with new

curves using a single (unified) formula and a scaling factor –

displayed in grey. Note that the unified function curve (1 x 3L
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Tab. 3. Function parameters determined by NLLSM

notation 1 x 3L 2 x 3L 3 x 3L 1 x 4L 2 x 4L 3 x 4L

x1 1.50 2.68 13.57 1.79 1.32 5.53

x2 37 308 39 868 22 499 63 094 60 710 35 935

x3 100 128 100 116 100 211 100 067 100 069 100 127

x4 2 123 2 287 2 349 2 591 2 144 2 189

‖g‖2 6.07 2.48 4.62 4.17 1.10 0.82

Fig. 7. Ratios of 3-leg junctions’ inverse VDFs

Fig. 8. Unified VDF for 3-leg junctions, based on 1 x 3L formula

variant) is not repeated on the chart. To help comparison, dif-

ferences between fitted and unified formulae are also presented

on the figure – using circular and triangular markers. The con-

spicuously large discrepancy at higher traffic volumes could be

deemed less significant as it is on the ‘model’ part of the curve,

where measured data had little to no impact on the function

shape. Aside from this ‘model’ part of the functions, difference

between firsthand fitted curves and ones determined by a unified

formula are very low. Table 4 lists the parameters and scaling

factor b of the unified formula for comparison with fitted param-

eters on Table 3. The low value of Euclidian norms (‖g‖2) prove

the concept of substitution successful.

However using the VDF of the singular junction model propa-

gates the inaccuracy of fitting at lower volumes to other intersec-

Tab. 4. Fitted and redefined function parameters

notation 1 x 3L unified 3 x 3L unified

x1 2,68 2,68

x2 39 868 39 868

x3 100 116 100 116

x4 2 287 2 287

b 0.95 1.10

‖g‖2 3.80 3.50

tion chains. A better curve shape can be derived from the two-

junction variant It is also a viable solution to manually adjust

the curve shape and use it as a basis for all three VDFs. Func-

tion differences also showed improvement – although marginal

– using the two-junction variant as a basis for unified formulae.

Four leg junction delays can also be analysed in the same

manner as three leg junctions: first determining the inverse-

function ratios, then using the results and replace the three pa-

rameter set with a single one and an additional scaling factor.

6 Conclusions

Implementation of the Non-Linear Least-Squares Method

was successful. Supporting convergence, a set of scaling fac-

tors were incorporated into Eq. (4) resulting in Eq. (5). These

factors may be omitted later, using the pointwise product ā ◦ x̄

directly in the original equation.

Microsimulation results showed that in the region of uncon-

gested traffic flow it is not necessary to distinguish upon inter-

section distance. Simulations also confirmed the different be-

haviour of affected and unaffected junctions under congested

traffic.

Scaling of the function variable successfully unifies the VDF

formula of homogenous junction series for each intersection

type. The operation eliminates the need of separate parameter

sets for different number of intersections on the link but intro-

duces a new factor (b) to the formula, expanding (4) to (13).

F (x̄, t) = x1

[
x2 +

√
x2

3
(x4 − b · t)2 +

(
2x3 − 1

2x3 − 2

)2

−

− x3 (x4 − b · t) −
2x3 − 1

2x3 − 2

] (13)

7 Further uses

The demonstrated methodology can be applied to chains of

other junction types to determine specific delay function param-
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eters. Delays should also be analysed in the context of heavy

vehicle ratio and minor flow volumes. The inspection of mixed

intersection chains is a straightforward extension of the research

project.

References

1 Vasvari G, Volume-delay functions of minor junctions created by mi-

crosimulation, Pollack Periodica, 9(1), (2014), 29-40, DOI 10.1556/Pol-

lack.9.2014.1.4.

2 Vasvari G, Affection radii of congested junctions on traffic networks,

Periodica Polytechnica Civil Engineering, 58(1), (2014), 87-92, DOI

10.3311/PPci.7409.

3 Fellendorf M, Vortisch P, Validation of the Microscopic Traffic Flow Model

VISSIM in Different Real-World Situations, TRB, 2001.

4 Bureau of Public Roads, Traffic Assignment Manual, US Dept. of Com-

merce, Urban Planning Division, 1964.

5 Spiess H, Conical Volume-Delay Functions, Transportation Science, 24(2),

(1990), 153–158, DOI 10.1287/trsc.24.2.153.

6 Akcelik R, Travel time functions for tranport planning purposes: Davidson’s

function, its time-dependent form and an alternative travel time function,

Australian Road Research Board, 1991.

7 Jastrzebski WP, Volume Delay Functions, 2000. 15th International

EMME/2 Users’ Group Conference.

8 Gisbert S, Numerikus Matematika - Mérnököknek és programozóknak, Hun-

garian, Typotex, 2007. (in Hungarian).

Additive Effects of Road Intersection-Specific Volume-delay Functions 4932015 59 4

http://doi.org/10.1556/Pollack.9.2014.1.4
http://doi.org/10.1556/Pollack.9.2014.1.4
http://doi.org/10.3311/PPci.7409
http://doi.org/10.1287/trsc.24.2.153

	Introduction
	Framework
	Function fitting
	Reduction of parameters
	Balance of sensitivity
	Jacobian derivatives
	Fitting considerations

	Evaluation
	Context of affection radius
	Context of intersection quantity

	Analysis
	Conclusions
	Further uses

