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Abstract

Natural rock joints infilled with soil materials may show a re-

duced shear strength, which influences rock mass stability. The

aim of this paper is to experimentally investigate the shear be-

haviour of infilled rock joints, taking into account joint surface

characteristics and the properties of the joint and infill mate-

rials. A new model for predicting the shear strength of infilled

joints is presented, on the basis of a series of tests carried out on

natural rock joints with same surface roughness, with clay, sand

and sandy-clay used as infill materials. All tests were carried

out in a shear box apparatus under constant normal load (CNL)

conditions. The empirical model was finally validated based on

the experimental data from the literature. The results showed an

acceptable confidence level for the model and reported that the

new model successfully describes the observed shear behaviour

of natural infilled rock joints.
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1 Introduction

Over many years, fine sediments resulting from weathering

and other surface processes could subsequently ingress to rock

joints, reducing the overall shear strength of the joint surface

[1–3]. Rock joints that are naturally filled with fine materials

(see 2) are likely to be the weakest elements in a rock mass and

can have a dominant influence on its shear behaviour due to of

the low frictional properties of the infill [4, 5].

The most effect of filling material is to separate the discon-

tinuity walls and thereby reduce intact rock contact, but shear

strength will also be influenced by the nature of the filling ma-

terial itself and the characteristics of the wall-fill interfaces. Be-

cause of the lack of reliable and realistic theoretical or empirical

relations and the difficulties in obtaining and testing representa-

tive samples, engineers generally rely on judgment, often con-

sidering the shear strength of the infill itself to be conservative.

In critical cases, in situ tests may be carried out to provide site

specific design criteria, but invariably amount of testing that can

be undertaken precludes the establishment of fundamental re-

lations. During the past 30 years much more information has

become available on the shear behavior of joints infilled with

soil material. Several models have been proposed to predict the

shear strength of infilled joints under both constant normal load

(CNL) and constant normal stiffness (CNS) boundary condi-

tions, considering the ratio of infill thickness (t) to the height of

the joint wall asperity (a), i.e., t/a ratio [4–22]. The experimen-

tal researches to date have tended to focus on modelled joints or

replicas rather than natural rock joints. In other words, although

some works have been done on the effect of infill material by us-

ing natural rock joints, they have not proposed prediction mod-

els and it can be noted that most of the previous models in the

literature have been developed based on the laboratory tests over

the simulated artificial joints and not on the real rock joints (for

simplicity and reproducibility reasons). In addition, there have

been no shear behaviour models which consider differences in

infill type within the rock joint. However, this research will give

an account of application of a statistical analysis on a series of

data obtained from a complete testing program on natural in-

filled rock joints, taking into account three different material fill-
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ing the rock joint. The output of this analysis has consequently

been conducted to propose an empirical model. The tests in this

research have been done in constant normal load (CNL) condi-

tions. In general, the CNL condition is more realistic for shear-

ing planar interfaces where normal stress applied to the shear

plane remains relatively constant, and the problem of surface

(shallow) slope stability. The development of shear resistance is

a function of constant normal stiffness (CNS), and based on the

opinion of some researchers (e.g. [13, 19]), the use of CNL test

results leads to underestimated shear strengths because the sur-

rounding rock freely allows the joint to shear without restricting

the dilation or there is no dilation during the shearing process,

thereby keeping normal stress constant during shearing process.

To evaluate the behaviour of rock joints under conditions more

commonly encountered in underground excavations, it is nec-

essary to simulate the stiffness of the rock mass normal to the

direction of shearing [23, 24]. However, this condition is only

existent in very deep situations, and the consideration of CNL

conditions would, therefore, be adequate for an available model

and the tests and resulted model proposed in this paper is there-

fore suitable to be utilized in shallow rock structures and slope

stability applications.

Fig. 1. A natural infilled rock joint in shallow depth

2 Laboratory investigation

The natural sandstone joints were sampled along 20 km of

rock slopes of the Khosh-Yeylagh Main Road located in north-

east of Iran. The specimens (not sheared naturally before sam-

pling, i.e. healthy specimens) were cut into about 70× 70 mm

surface profiles in order that they can be placed within the shear

box. Fig. 2 shows a set of the specimens prepared in this re-

search.

he joint roughness coefficient (JRC) value was calculated for

all the specimens using the tilt test, the Schmidt Hammer, and

the methodology presented by [25,26]. Then the specimens with

same JRC values (the specimens with JRC almost around 7)

were selected as the target specimens for the shear tests. Three

types of materials were considered for the infill of the rock joints

regarding their graining including sand, clay and sandy-clay.

The infill was then spread over the joints using a spatula to give

the desired thickness to asperity height ratio, i.e. t/a (Fig. 3).

Fig. 2. A set of specimens prepared for the laboratory investigation

The tests on the soil-infilled rock joints were performed using

the Constant Normal Load Direct Shear Test apparatus (Shear

Box) (Fig. 4a). The specimens were fixed within the appara-

tus by molding with a high-strength gypsum plaster (Fig. 4b).

Fig. 4c also shows the molded specimens before shear test. The

gypsum plaster used for molding the specimens does have the

uniaxial compressive strength equal to 25-30 MPa and Young’s

Modulus equal to 4.8-5.5 GPa (The molded gypsum condition

was checked after each test and it made sure that was quite

healthy and undamaged.). The shear box is capable of mea-

suring the peak and residual shear strength of rock specimens

in CNL conditions. It has two loading systems: the hydraulic

loading is used for normal and shear loads, and the pneumatic

loading is utilized to maintain (fix) the normal load within the

adjusted desired range while shearing the specimen. Nine dif-

ferent t/a ratios were tested: 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4,

1.6. The tests were also performed in four normal load levels:

0.25, 0.50, 0.75 and 1.0 MPa.

3 Results and discussion

The experimental results for all t/a ratios tested are presented

in Fig. 5 to Fig. 7. Stresses have been calculated using the

corrected cross-sectional area of the specimen at each displace-

ment. Figs. 8 to 10 show the shear stress - shear displacement

plots for five t/a ratios in different conditions of normal load for

the rock joints filled with clayey, sandy, and sandy-clayey infill

materials, respectively.

As expected, for a thin layer of infill material from any type,

there is a considerable decrease in the peak shear stress com-

pared to a clean joint. With increase in infill material relative

thickness (t/a), the shear stress would be gradually decrease and

would approach the strength of infill soil itself at about t/a =1.4.

Actually, at ratios more than 1.4 the shear behavior would be un-

der control of the infill material and the joint surface roughness

no longer plays an important role at this point. This ratio can,

therefore, be considered as the critical t/a ratio for all tested rock

joints and this means that increasing the infill thickness more

than it would not be effective to shear behavior. In addition, it

is seen that the drop from peak shear to residual shear stress is

negligible at higher t/a ratios. This takes place in any type of
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(a)

(b)

(c)

(d)

Fig. 3. Addition of the infill material over the rock joints; (a): Sandy-clayey

infill; (b): Sandy infill; (c): Clayey infill; (d): The specimen ready for the shear

test

(a)

(b)

(c)

Fig. 4. (a): Gypsum plaster mold; (b): Direct Shear Test Apparatus; (c): The

molded specimens prior to shear tests

infill material with any normal load value.

The shear behavior changes with change in the infill type. For

instance, at first stage of clayey infill addition to the joints inter-

face (i.e., t/a = 0.2), they show peak shear strength of 0.45,

0.50, 0.65 and 0.80 MPa for 0.25, 0.50, 0.75 and 1.0 MPa of

normal stress, respectively. In the same stage, addition of sandy

infill would result in peak shear strength values of 0.30, 0.45,

0.60 and 0.85 MPa. The sandy-clayey infill material would also

show the values equal to 0.40, 0.55, 0.70 and 0.85 MPa.

The experimental results show that the rock joints infilled

with sandy material have less shear stress compared to those

infilled with clayey material. This can be considered to be re-

sulted from the higher cohesion of clay compared to the sandy

materials used in this research.

The behavior that is seen in almost all the plots is that even ad-
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(a)

(b)

(c)

(d)

Fig. 5. Shear stress – shear displacement plots for rock joints infilled with

clayey material; (a): Normal load = 0.25 MPa; (b): Normal load = 0.50 MPa; (c):

Normal load = 0.75 MPa; (d): Normal load = 1.00 MPa

(a)

(b)

(c)

(d)

Fig. 6. Shear stress – shear displacement plots for rock joints infilled with

sandy material; (a): Normal load = 0.25 MPa; (b): Normal load = 0.50 MPa; (c):

Normal load = 0.75 MPa; (d): Normal load = 1.00 MPa
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(a)

(b)

(c)

(d)

Fig. 7. Shear stress – shear displacement plots for rock joints infilled

with sandy-clayey material; (a): Normal load = 0.25 MPa; (b): Normal

load = 0.50 MPa; (c): Normal load = 0.75 MPa; (d): Normal load = 1.00 MPa

dition of a thin layer of infill material would drastically decrease

the shear strength of the rock joints. While increasing the thick-

ness of the infill, the peak shear stress is gradually decreased and

reaching a specific infill thickness, decrease in the stress would

be negligible. That is more obvious at lower normal load values.

Fig. 8 shows the shear strength envelops (peak shear stress –

normal stress plots) for three types of infill materials at nine t/a

ratios. The parameters such as joint friction angle and cohesion

can be extracted from these plots. As seen from mentioned plots,

the rock joints infilled with sandy-clayey material show higher

shear strength compared to those infilled with other types of ma-

terials, because of greater strength of that infill itself compared

to the other infills.

(a)

(b)

(c)

Fig. 8. Shear strength envelops for three types of infill materials; (a): Clayey

infill; (b): Sandy infill; (c): Sandy-clayey infill

The greater friction angles in low normal loads show the di-

lation in the joint while being sheared. In other words, in low
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(a)

(b)

(c)

Fig. 9. The experimental normalized peak shear strength – relative thickness

data in different normal load values for three types of infill materials; (a): Clayey

infill; (b): Sandy infill; (c): Sandy-clayey infill

normal load, the tangential angle measured from shear strength

envelop is resulted from basic friction angle of joint surface as-

perities plus the angle come from dilation. In this case, while

shear stress increases, the joint surfaces only slide on each other

without any shear in joint surface nor a great damage in asperi-

ties.

Therefore, with increase in normal stress, the slope of the

shear stress – normal stress plot decreases and reaches its least

value. In other words, the increase in normal stress causes the

asperities on joint surface to be cut and as a result the dilation

angle decreases and reach zero value. As well, the rock joint

friction angle reaches the residual friction angle.

The experimental normalized peak shear strength – relative

thickness data in different normal load values for three types of

infill materials were plotted as shown in Fig. 9. Some criteria

such as simplicity, suitability and general type were taken into

account to select a series of preliminary mathematical functions

to be fitted to the experimental data for generation of the con-

ceptual model. These functions are as follows.

1 Exponential function including exponential and bi-

exponential;

2 Fourier function;

3 Gaussian function;

4 Polynomial function including linear, first order and second

order;

5 Rational function comprising all possible states in numerator

and denominator of the fraction.

The selected mathematical functions were separately fitted to

the experimental data and statistical parameters were extracted

for each fitting. Three parameters were taken into account to ex-

amine the suitability of the functions including R-Square, “Sum

of Squares due to Error” (SSE) and “Root Mean Squared Error”

(RMSE) [27, 28]. These parameters were calculated for each

fit. The main aim in this process was to find out a function

which had maximum R-Square and minimum SSE and RMSE.

For this purpose, all the calculations and statistical outputs were

recorded and compared to the others. Part of the outputs of SSE

for clayey infill has been shown in Table 1.

With consideration of three statistical parameters, it was

found out that the rational function with constant numerator and

second order denominator would be the best function compared

to the others. Thus that was selected as the starting state for uti-

lization in development of the conceptual model. General type

of the selected rational function is as follows.

f (x) =
c1

x2 + k1x + k2

(1)

where k1, k2 and c1 are constant values. Fitted rational func-

tion to the experimental data of clay infilled rock joints has been

shown in Fig. 10 as an instance.
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Tab. 1. Outputs of SSE for clayey infill

Function type
Normal load (MPa)

0.25 0.5 0.75 1.0

Exponential
I 0.0102 0.0095 0.0073 0.0081

II 0.0064 0.0079 0.0091 0.0086

Furrier 0.0111 0.0134 0.0134 0.0141

Gaussian 0.0148 0.0152 0.0128 0.0128

Polynomial

I 0.0090 0.0096 0.0083 0.0094

II 0.0178 0.0199 0.0180 0.0211

III 0.0844 0.0821 0.0705 0.0605

Rational

I 0.0051 0.0079 0.0086 0.0090

II 0.0037 0.0069 0.0041 0.0046

III 0.0092 0.0075 0.0084 0.0067

VI 0.0049 0.0074 0.0061 0.0051

V 0.0139 0.0152 0.0175 0.0136

VI 0.0056 0.0084 0.0074 0.0051

Fig. 10. Fitted rational function to the experimental data of clay infilled rock

joints

A normalized conceptual model would be in t form that the

shear strength of an infilled joint is described as the effect of

its two components combined, i.e. infill material and rock sur-

face. As can also be seen in fitted best function to experimental

data (Fig. 10), all the curves start from the point associated with

the shear strength value of clean joint and approach an almost

horizontal state after passing from the relative thickness of 1.4

(the critical infill relative thickness). For this reason, the derived

rational function considered to be “the amount of normalized

shear strength loss caused by presence of infill material in joint

interface” (Eq. (2)).(
τp

σn

)
=

(
τp

σn

)
clean

− ∆τp (2)

where:(
τp

σn

)
= normalized shear strength of infilled rock joint(

τp

σn

)
clean

= normalized shear strength of unfilled (clean) rock

joint

∆τp = shear strength loss

As a matter of fact, it can be mentioned that ∆τp is the shear

strength loss resulted from the presence of infill material within

rock joint interface. It is worthy to note that the main aim of

fittings was to achieve this parameter.

After applying the parameters such as relative thickness of in-

fill and maximum normalized shear strength to the general form

of rational function and also considering the effect of infill ma-

terial on strength reduction, the final equation for prediction of

shear strength of infilled rock joint would be as follows.

τp

σn

=
τ0

σn0

−
c (t/a)

σn[(t/a)2 + k1 (t/a) + k2]
(3)

where:

τp = shear strength of infilled joint;

τ0 = shear strength of clean joint under normal load of σno;

σn = applied normal load to joint;

t = infill thickness;

a = average roughness of joint surface;

k1, k2 and c1 are empirical constants associated with the ap-

plied normal load and type of infill material.

Equation (Eq.(3)) will be reliable to the extent that τp ≥ τS oil

where τS oil is the shear strength of infill material.

To obtain the constant values of the model, the equation was

solved for various quantities of t/a ratio rather than using the

values of fittings. This resulted to achieve the values with a high

accuracy. The proposed constant values for three different infill

materials are shown in Table 2 to Table 4.

Tab. 2. Proposed constant values for clayey infill

Normal load (MPa) 0.25 0.50 0.75 1.0

c -0.8 -0.4 -2.16 -0.4345

k1 -2.08 -1.8 -3.4 -1.6897

k2 -1.08 -0.48 -2.24 -0.2814

Tab. 3. Proposed constant values for sandy infill

Normal load (MPa) 0.25 0.50 0.75 1.0

c -1.8 -0.5133 -0.7636 -0.56

k1 -5.6 -2.1689 -2.1636 -1.8

k2 -1.32 -0.2907 -0.3709 -0.24

Tab. 4. Proposed constant values for sandy-clayey infill

Normal load (MPa) 0.25 0.50 0.75 1.0

c 0.54 -0.8615 -0.75 3.3

k1 -1.6 -0.7692 -1.7 -0.8

k2 2.76 -3.4708 -1.2 6.72

It is worthy to note that the proposed new model would be

capable of calculation and prediction of the shear strength of

infilled rock joints under similar conditions. In addition, that

would obviously give more reliable outputs in CNL conditions

and surface situations such as road slopes, rock cuts, open pit

mines and ditches.
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A comprehensive validation with the help of published data

has finally been done on the model for determination of the de-

gree of accuracy and reliability. For this purpose, the experi-

mental data of some researches found in the literature were uti-

lized. These data were separately substituted within the model

and compared to their original outputs. Then, RMSE values be-

tween original and predicted amounts for the published date se-

ries were calculated. These values are summarized in Table 5.

The overall RMSE average was 0.2501.

Tab. 5. The RMSE values of comparison between published data and new

model’s predictions

Published data RMSE

Goodman (1970) [29] 0.1571

Lama (1978) [7] 0.2120

Phien-Wej (1990) [9] 0.2676

De Toledo (1993) [5] 0.3636

Average 0.2501

The confidence level of the model would accordingly be

0.7499, which can be considered as an acceptable value, hence

confirming the relative validity of the proposed model.

4 Conclusion

The main purpose of current study was to develop an empir-

ical CNL model with the help of a wide series of experimen-

tal data in order to predict the shear strength of natural infilled

rock joints. For this aim, laboratory investigation was conducted

to study the shear behavior of sampled sandstone joints infilled

with three different materials in various thickness conditions.

Then statistical analyses were utilized to achieve the best math-

ematical function that presents the behavior of infilled joints.

The new proposed model represents a variation in the normal-

ized shear stress (τp/σn) as a function of t/a ratio. This model

is capable of explaining the decrease of shear strength with in-

creasing t/a ratio where the critical t/a ratio plays an important

role in ultimate shear strength. This criterion has been developed

in CNL conditions where the normal load (σn) is expected not to

change during shearing process. Experimental validation of the

model showed an acceptable confidence level and thus it can be

used in many of similar positions. However, further experimen-

tal investigations are still needed to be undertaken to modify the

proposed model and increase the field applicability. In addition,

although some steps have been taken by the author to replicate

and conduct tests on natural joint profiles, there are still limita-

tions caused by the narrow range of JRC examined in this study.

Therefore, further testing of different irregular joint profiles is

required to validate the proposed model more comprehensively.

Scale effects (the effects of changes in joint surface wave length

and asperity height) were not studied which is recommended to

be done as the next research.
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