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Abstract

The composite materials are extensively used in the struc-

tures of civil, aerospace, marine, and automobile engineering

due to their tailorable capability. The objective of this article

is to address the issue of resonance-free lightweight design of

such composite structures coupled with the notion of reliability.

Laminated composite spherical shell is considered in this study

to optimize width and thickness of the structure corresponding

to different level of reliability of the system to avoid resonance.

The present study utilizes genetic algorithm in conjunction to

surrogate modelling with D-optimal design for this reliability

based optimization problem.
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1 Introduction

The development of reliable composite structures in produc-

tion process is always subjected to large variability due to man-

ufacturing imperfection and uncertain operational factors. In

practice, an additional factor of safety is assumed by design-

ers due to difficulty in assessing reliability to avoid resonance

in conjunction to uncertainties of stochastic natural frequencies.

This existing practice of designer results in either an ultracon-

servative (overestimation of material cost) or an unsafe design.

Hence, it is needed to overcome this current limitation wherein

the design of composites are restricted to a deterministic regime

despite of rapidly increasing demands of technological, eco-

nomical and safety needs. Many literatures are available dealing

with uncertainty quantification of composite structures [1–3].

Moreover, the reliability in conjunction to cost component in-

volved in weight optimization of such composite structures are

always a challenge for the designers. The common cause of em-

ploying composite structures in many applications (such as air-

craft, civil structures) is weight sensitiveness wherein the objec-

tive of design optimization [4] is to lower the weight for achiev-

ing the better performance. For example, in structural design

problem, the need of computation of the natural frequency is re-

quired to avoid the resonance which can vary with the uncertain

geometric and material properties of the structure. In such engi-

neering applications with complex systems, the consequences of

uncertain system behaviour become severe in terms of cost and

effort. The assessment of probability of failure and the need to

improve the reliability of the systems have become essentially

important for structural safety. Such necessities in turn raise

the need for reliability based design optimization (RBDO) anal-

ysis [5]. The uncertain variation of system parameters can be

mathematically coupled with optimization tools such as genetic

algorithm (GA) to achieve safety as well as cost-effectiveness.

Many studies are carried out by applying RBDO methods

for optimal design of shallow composite structures. The ran-

dom loading and material properties including manufacturing

uncertainties are considered for example in [6–11]. Miki [12]

and Fukunaga and Chou [13] proposed a graphical optimiza-

tion method using lamination parameters for stiffened compos-
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ite structures. Composites structure with degradation model is

investigated by Antonio et al. [14] while buckling instabilities is

studied by Su et al. [15]. Many researchers studied on the opti-

mization coupled with uncertainty [16–18]. In contrast, Todor-

oki and Terada [19, 20] introduced the deterministic optimiza-

tion method for the stacking sequences of the composite lami-

nates wherein buckling load is maximized by employing fractal

branch-and bound (FBB) method. Reliability based design at-

tempts to ensure a minimal probability of failure by controlling

of stochastic variables. Hence such method is more flexible and

consistent than deterministic analysis as it provides more ratio-

nal safety levels over various types of structures and takes into

account more information than deterministic analysis. Thomp-

son et al. [21] studied the weight minimization problem with

a deterministic strength constraint and two probabilistic con-

straints for fiber-reinforced polymer composite bridge deck pan-

els while Yang et al. [22] explored the use of stochastic approach

to the design of stiffened composite panels in composite ship

structures under in-plane load.

Fig. 1. Composite shallow cantilever shell

In the present study, genetic algorithm (GA) is employed cou-

pled with a local multivariate search function for weight opti-

mization of composite spherical shells to obtain resonance-free

design. Most of the previous related studies are limited to deter-

ministic conditions, without considering the effects of uncertain-

ties in the natural frequency of composite shell structures. In this

study uncertainties due to material and geometrical properties of

composite are accounted to optimize the structure in a compu-

tationally efficient way. Novelty of this article includes appli-

cation of GA in conjunction with surrogate modelling approach

for reliability based optimization of composite shells. Moreover,

the utilization of the resonance criterion as an optimization con-

straint in the reliability based optimization of composites is first

attempted in this study.

2 Theoretical formulation

A composite cantilever shallow doubly curved shells with

length ‘L’, width ‘b’, thickness ‘t’, principal radius of curvature

Rx and Ry along x- and y-direction, respectively and radius of

curvature in xy-plane ‘Rxy’ is considered as furnished in Fig. 1.

Based on the first-order shear deformation theory, the displace-

ment field of the shells can be expressed as

u(x, y, z) = u0(x, y) − zθx(x, y)

v(x, y, z) = v0(x, y) − zθy(x, y)

w(x, y, z) = w0(x, y) = w(x, y),

(1)

Assuming u, v and w are the displacement components in

x-, y- and z-directions, respectively and u0, v0 and w0 are the

mid-plane displacements, and θx and θy are rotations of cross-

sections along the x- and y-axes. The strain-displacement rela-

tionships for small deformations can be expressed as

εxx = ε0
x + zkx

εyy = ε0
y + zky

γxy = γ0
xy + zkyy

γxz = w0
,x − θx

γyz = w0
,y − θy,

(2)

where mid-plane components are given by

ε0
x = u0

,x , ε0
y = u0

,y , γ0
xy = u0

,y + v0
,x

and the curvatures are expressed as

kx = −θx,x = −w,xx + γxz,x

ky = −θy,y = −w,yy + γyz,y

kxy = −(θx,y + θy,x) = −2w,xy + γxz,y + γyz,x.

Therefore the strains in the k-th lamina can be expressed in

matrix form

{ε}k =


ε0

x

ε0
y

γ0
xy

 + z


k0

x

k0
y

k0
xy

 = {ε0} + z{k}

and {γ}k =

 γyz

γxz

 = {γ}

(3)

In general, the force and moment resultants of a single lamina

are obtained from stresses as [23]

{F} = {NxNyNxyMxMyMxyQxQy}
T

=

t/2∫
−t/2

{σxσyτxyσxzσyzτxyzτxzτyz}
T dz

(4)

In matrix form, the in-plane stress resultant {N} , the moment

resultant {M} , and the transverse shear resultants {Q} can be

expressed as

{N} = [A]{ε0} + [B]{k} {M} =

= [B]{ε0} + [D]{k} {Q} = [A∗]{γ}
(5)
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Here εyy = ε0
y + zky and

[
A∗

i j

]
=

t/2∫
−t/2

Q̄i jdz

for i, j = 4,5

[
Q̄i j(ω̄)

]
=



m4n42m2n24m2n2

n4m42m2n24m2n2

m2n2m2n2(m4 + n4) − 4m2n2

m2n2m2n2 − 2m2n2(m2 − n2)2

m3nmn3(mn3 − m3n)2(mn3 − m3n)

mn3m3n(m3n − mn3)2(m3n − mn3)


[
Qi j

]

Here m = S inθ(ω̄) and n = Cosθ(ω̄), wherein θ(ω̄) is the

random fibre orientation angle. However, laminate consists of a

number of laminae wherein [Qij] and [Q̄i j(ω̄)] denotes the on-

axis elastic constant matrix and the off-axis elastic constant ma-

trix, respectively. The elasticity matrix of the laminated com-

posite shell can be expressed as,

[
D′(ω̄)

]
=


Ai j(ω̄) Bi j(ω̄) 0

Bi j(ω̄) Di j(ω̄) 0

q q S i j(ω̄)

 (6)

where

[Ai j(ω̄), Bi j(ω̄), Di j(ω̄)] =

=

n∑
k=1

∫ Zk

Zk−1

[Q̄i j(ω̄)]k [1, z, z2]dz i, j = 1, 2, 6

and

[S i j(ω̄)] =

n∑
k=1

∫ Zk

Zk−1

αs[Qi j(ω̄)]kdz i, j = 4, 5

where αs is the shear correction factor and is assumed as 5/6.

The mass matrix is expressed as

[M(ω̄)] =

∫
Vol

[N][P(ω̄)][N]d(vol) (7)

The stiffness matrix is given by

[K(ω̄)] =

1∫
−1

1∫
−1

[B(ω̄)]T [D(ω̄)][B(ω̄)]dξdη (8)

The strain-displacement relation is expressed as

{ε} = [B]{δe} (9)

where

{δe} = {u1, v1,w1, θx1, θy1, . . . u8, v8,w8, θx8, θy8}
T

[B] =



Ni,x 0 −
Ni

Rx
0 0

0 Ni,y −
Ni

Ry
0 0

Ni,y Ni,x −
2Ni

Rxy
0 0

0 0 0 Ni,x 0

0 0 0 0 Ni,y

0 0 0 Ni,y Ni,x

0 0 Ni,x Ni 0

0 0 Ni,y 0 Ni



The energy functional for Hamilton’s principle using La-

grange’s equation, the dynamic equilibrium equation for free

vibration of graphite-epoxy composite shell can be expressed

as [24]

[M(ω̄)]{∆̈} + [K(ω̄)]{∆} = 0 (10)

The governing equations are derived based on Mindlin’s the-

ory [25] incorporating rotary inertia, transverse shear defor-

mation. For free vibration, the stochastic natural frequencies

[ωn(ω̄)] are determined from the standard eigenvalue problem

and is solved by the QR iteration algorithm.

3 Reliability based optimization

Traditional design optimization does not consider the uncer-

tainties present in the actual modelling, imperfection during

random manufacturing processes and other external influencing

factors for composite structures. In other words, these uncer-

tainties can be occurred due to manufacturing variability like

uncertainties in material properties and variability in external

conditions like loading, error in modelling or simulation. These

uncertainties might cause large variations in certain performance

characteristics. Reliable designs are designs at which the chance

of failure of structure is low [26]. In reliability based optimiza-

tion (RBO) problems [27], there is a trade-off between obtain-

ing greater reliability and minimum cost, since greater relia-

bility implies greater cost, but smaller reliability also implies

greater cost due to failure costs. Hence there is an optimum re-

liability that can be achieved specific to design requirement. In

the subsequent sections the surrogate modelling approach using

D-optimal design, genetic algorithm and finally the reliability

based optimization scheme for the present study are discussed.

Fig. 2. Reliability based weight optimization for avoiding resonance

3.1 D-optimal design

D-optimal design is a statistical approach with a specific sam-

pling technique which is employed in mapping of the input and

output for construction of surrogate model using polynomial re-

gression method. Considering the problem of estimating the co-

efficients of a linear approximation is modelled by least squares

regression analysis

Y = Xβ + ε (11)
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where ‘Y’ is a vector of observations of sample size, ‘ε’ is the

vector of errors having normal distribution with zero mean, ‘X’

is the design matrix and ‘β’ is a vector of unknown model coef-

ficients and can be estimated by using the least squares method

as

β = (XT X)−1XT Y (12)

A measure of accuracy of the column of estimators, β is the

variance-covariance matrix which is defined as

V(β) = σ2(XT X)−1 (13)

where σ2is the variance of the error. The V(β) matrix is a sta-

tistical measure of the goodness of the fit. V(β) is a function of

(XT X)−1and therefore, one would want to minimize (XT X)−1to

improve the quality of the fit. If X denotes the design matrix

as a set of value combinations of coded parameters and XT is

the transpose of X, then D-optimality is achieved if the deter-

minant of (XT X)−1 is minimal. The letter "D’ stands for the

determinant of the (XT X) matrix associated with the model. In

the present study, the constructed meta-models provide an ap-

proximate meta-model equation which relates the input random

parameters ‘xi’ (say ply orientation angle, elastic modulus etc.

of each layer of laminate) and output ‘Y’ (say natural frequency)

for a particular system [28].

The meta-model is employed to fit approximately for a set

of points in the design space using a multiple regression fitting

scheme. The position of design points is chosen algorithmically

according to the selected number of input variables and their

range of variability. Hence the design points are not consid-

ered at any specific positions; instead, they are selected in such

a fashion so that it meets the optimality criteria. In D-optimal

design, the total sample size (n) is the summation of the min-

imum number of design points [nd = 0.5[(k + 1) (k + 2)], ad-

ditional model points (na = k) and lack-of-fit points (nl). (i.e.,

n = nd + na + nl) where k is the number of stochastic input

parameter. For model construction in the present study, an over-

determined D-optimal design [29, 30] (number of additional

samples na, along with the minimum point design and nl = 10

samples to estimate the lack of fit) has been used. The insignif-

icant input features are screened out and not considered in the

model formation using analysis of variance (ANOVA) method

according to its F-test value. The prediction quality of meta-

model is checked by three basic criteria such as coefficient of

determination or R2 (measure of the amount of variation around

the mean explained by the model), R2
ad j

(measure of the amount

of variation with respect to mean value explained by the model,

adjusted for the number of terms in the model) and R2
pred

(mea-

sure of the prediction capability of the response surface model)

[30].

3.2 Genetic algorithm for composite shells

The concept of Genetic Algorithm (GA) (originated by

Charles Darwin) is a computational search tool based on con-

cepts of natural selection and survival of the fittest individual.

The prime importance in GAs exists in the way by which the

solutions are tracked. Despite of using derivatives or gradients

of deterministic approach, GAs work with the objective func-

tion based on simple values of individuals. Such feature makes

it suitable for solving the problems with discontinuous func-

tions, and non-defined derivatives. GAs work with the popu-

lation of individuals in each generation similar to determinis-

tic optimization methods wherein the search is performed with

focus on a single solution at a time. As several search points

are maintained, the convergence or stagnation to local minima,

if the starting point is poorly chosen, is prevented. All these

aspects result in more chances of finding the optimal solution,

even on problems having hard search spaces with multiple local

minimum [31]. The design of the optimal sequence of layers

in laminated composite materials is a problem of global min-

imum. Due to the stochastic characteristics of GAs, they are

more suitable to optimize than deterministic methods of opti-

mization, which often converge to solutions representing a lo-

cal minimum. Moreover, in commercial designs, fiber orienta-

tion angles and the amount and thickness of layers are discrete

variables, a fact which confirms the suitability of GAs for these

kinds of problems. Many studies [32, 33] are subsequently car-

ried out by using the method of design optimization for compos-

ite structures.

The initial population of individuals is generated randomly

for the design parameters of composite shells. It is then encour-

aged to evolve over generations to produce new better or fitter

generations using genetic operators until the problem is satisfac-

torily solved. An elitist selection scheme is used to obtain the

new generation taking organisms from the current population

and from the children population just created. This process is

repeated until the convergence criterion is met. The three funda-

mental genetic operators are selection (according to the fitness

of individual solutions so that the number of times an individual

is selected is dependent on its relative performance in the popu-

lation) crossover (to form new individuals by exchanging chro-

mosome between two selected individuals segments) and muta-

tion (this prevents premature convergence by randomly chang-

ing part of one selected individual’s chromosome). Many ap-

plications related to GA can be found in the area of structural

engineering can be found [34, 35].

In the present study, a multivariable minimization function is

coupled with genetic algorithm in order to improve the value of

the fitness function. Genetic algorithm searches the results glob-

ally first and after the GA terminates a local search is employed

with the end results of GA. The output of GA is considered as

the initial point for next step of the local optimization. From

these initial points, the local minimum point is searched us-
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Fig. 3. Flowchart of RBDO using surrogate model for composite shells

ing a multivariable minimization function fmincon (MATLAB)

[36] which attempts to find the constrained minimum of a scalar

function of several variables starting at an initial estimate.

3.3 Detail optimization scheme

There are two types of variables considered in the present

analysis, namely stochastic variables (material properties, fibre

parameters, laminate dimensional parameters) and design vari-

ables (width and thickness) for the composite spherical shell.

The upper and lower bounds of design variables and stochas-

tic variables are furnished in Table 1 and Table 2 respectively

showing respective upper control limit (UCL) and lower control

limit (LCL). The reliability based optimization problem is stud-

ied with an objective of weight [i.e., volume(V)×density (ρ)]

minimization and to avoid resonance [37–39] as defined below:

Minimize V(b, t), subjected to

f1(b, t) < ( f1,min)i

f1(b, t) > ( f1,max)i

blcl ≤ b ≤ bucl

tlcl ≤ t ≤ tucl

(14)

where i =1,2,. . . . . . k represent different zone of resonances

(ZOR) representing the corresponding level of confidence in the

design (refer to Fig. 2). The fitness function can be expressed as

F(x) = {V} = πt

[
b2

4
+ R2

{
1 −

b2

4R2

}]
(15)

where, for spherical shell, Rx = Ry = Ris the radius of curva-

ture.

For each aforementioned ZORs, the probability of failure

(PF)can be estimated by performing Monte Carlo simulation on

the first- or second-order approximation g̃(xi) of the original im-

plicit limit performance function g̃(xi)and can be expressed as

PF =
1

Nsamp

Nsamp∑
i=1

Π
[
g̃(xi) < 0

]
(16)

where xi is i-th realization of X, Nsamp is the sampling size,

Π is a deciding function of the fail or the safe state such that

Π = 1, if g̃(xi) < 0otherwise zero. In the present study, if the

fundamental frequency for a particular design point falls outside

the ZOR, then for that sampleΠ = 1, otherwise zero. The relia-

bility index corresponding to the failure probability (PF) can be

obtained by

β = −Φ−1(PF) (17)

where ϕ(.) is the cumulative distribution function of a stan-

dard Gaussian random variable. In the present analysis, the fail-

ure criterion is defined as the occurrence of resonance in the

system.

A flowchart of the proposed optimization algorithm is pro-

vided in Fig. 3. The steps followed for the optimization in this

analysis are summarized below:

Step 1: Stochastic variables and the design variables are iden-

tified first. Stochastic input variables are considered to follow

uniform probability distributions which are defined by their up-

per and lower bounds. For Monte Carlo simulation based re-

liability analysis, it is more important to capture all the possi-

ble combinations of stochastic input variables within the design

space than the type of probability distribution of those variables.

In view of the above, uniform distribution is considered for all

the stochastic input variables bounded by upper and lower limits.

In this analysis, the design variables are considered to have un-

certain characteristics i.e. the design variables are also stochas-

tic variables. However, it is noteworthy that the design bounds

for width (b) and thickness (t) (Table 1) are taken higher than

the perturbation bounds of these two variables (Table 2). Basic
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idea of the proposed optimization algorithm in this article is as

follows. First the range of variation in the fundamental natural

frequency is quantified by randomly perturbing the stochastic

variables following a Monte Carlo simulation. Then an opti-

mization is performed as described in Eq. (14) to exclude a por-

tion of the ZOR for achieving desired level of confidence in a

particular design.

Step 2: After identifying the stochastic and design variables,

the next step is to construct the surrogate model for fundamental

natural frequency using D-optimal design. For details of forma-

tion of surrogate model using finite element code please refer to

the work of Dey et al. [40]. In the present study the purpose of

employing surrogate model is to eliminate the need of running

expensive finite element model several times and thus to achieve

computational efficiency.

Step 3: In this step, Monte Carlo simulation (10,000 samples)

is carried out for combined variation of all the stochastic vari-

ables employing surrogate modelling approach.

Step 4: After carrying out Monte Carlo simulation different

ZORs as depicted in Fig. 2 are defined according to required

level of confidence in a particular design (refer to Table 4).

Tab. 1. Upper and lower control limits of design variables

Parameters Symbol Design Variables

UCL LCL

Width b 1.5 m 0.5 m

Thickness t 0.007 m 0.003 m

Step 5: Volume optimizations are carried out corresponding to

different level of desired confidence in design to exclude ZORs

as described in Eq. (14).

Step 6: In this step probability of failures are obtained fol-

lowing Eq. (16) corresponding to different ZORs. Here Nsamp is

the total number of samples for Monte Carlo simulation and the

numerator is the number of realizations that are not considered

corresponding to a particular ZOR. From probability of failures

respective reliability indexes can be obtained using Eq. (17). In

the present article, optimized structural configurations are pre-

sented for different probability of failures as shown in Fig. 6 to

Fig. 8.

4 Results and Discussion

In the present study, four layered graphite-epoxy angle-ply

laminated composite cantilever shallow spherical shells are con-

sidered. Finite element formulation of the composite spheri-

cal shell structure is based on Mindlin’s theory considering an

eight noded isoparametric quadratic element. Table 3 represents

the non-dimensional fundamental natural frequencies [refer to

Eq. (18)] for isotropic, corner point-supported spherical shells

[41, 42].

ω = ωnL2[12ρ(1 − µ2)/E1t2]1/2 (18)

The test of accuracy of surrogate model with respect to

R2,R2
ad j

, R2
pred

and adequate precision values are furnished in Ta-

ble 5. The scatter plot (refer to Fig. 4) represents the validation

of present surrogate model with respect to finite element model.

The surface plot for fundamental natural frequency with varia-

tions of thickness and width of composite shells is presented in

Fig. 5.

Fig. 4. Surrogate model validation with finite element model for fundamen-

tal natural frequencies

Fig. 5. Surface plot for fundamental natural frequency with variations of

thickness and width of composite shells

Due to paucity of space, only a few important representative

results of reliability based optimization are furnished in this ar-

ticle. The optimized width, thickness and volume for different

probability of failures are furnished in Fig. 6, Fig. 7 and Fig. 8,

respectively. The points shown in blue solid circles are corre-

sponding to the minimum weight obtained at zero probability

of failure. It is observed that as the probability of failure in-

creases, the volume decreases with corresponding optimization

of width and thickness of the spherical shell. Depending on

the constraints of probability of failure the optimal solutions for

width, thickness and volume can be found from these figures

according to design requirements. The reliability index corre-

sponding to different probability of failures can be obtained by

using Eq. (17) as furnished in section 3.

5 Conclusions

This article proposes a novel reliability based optimization

approach for weight minimization of spherical composite can-
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Tab. 2. UCL and LCL of stochastic and variables

Parameters Symbol Stochastic Variables

Upper control limit (UCL) Lower control limit (LCL)

Width b 1.1 m 0.9 m

Thickness t 0.0055 m 0.0045 m

Ply angle θ 50°/40°/ 50°/-40° 40°/-50°/ 40°/-50°

Elastic modulus

(longitudinal)
E1 151.8 GPa 124.2 GPa

Elastic modulus

(transverse)
E2 9.79 GPa 8.01 GPa

Shear modulus

(longitudinal)
G12 7.81 GPa 6.39 GPa

Shear modulus

(transverse)
G23 3.1249 GPa 2.556 GPa

Poisson ratio ν 0.33 0.27

Mass density ρ 3522.2 kg/m3 2881.8 kg/m3

Tab. 3. Non-dimensional fundamental frequencies of isotropic, corner point-supported spherical shells considering a/b = 1, a/a = 1, a/t = 100, a/R = 0.5,µ= 0.3.

Rx/Ry Present FEM Leissa and Narita [38] Chakravorty et al. [39]

1 50.74 50.68 50.76

Tab. 4. Probability of failures corresponding to different Zone of resonance (Refer to Fig. 2)

i Zone of Resonance

Sample no.

satisfying failure

criteria

Probability of failure

(PF )

Upper Bound

( fmax,1)i

Lower Bound

( fmin,1)i

1 53.99 45.24 10000 1.00

2 52.99 46.24 9600 0.96

3 51.99 47.24 7666 0.77

4 50.99 48.24 5000 0.50

5 49.99 48.30 1800 0.18

6 49.69 49.34 800 0.08

7 49.59 49.38 367 0.04

8 49.49 49.40 167 0.02

Tab. 5. Test for accuracy of surrogate model

Parameter Ideal value Present value

R2value 1.0 0.997

R2
ad j

value 1.0 0.999

R2
pred

value 1.0 0.992

Adequate Precision >4.0 69923.46
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Fig. 6. Probability of failure with respect to width (m)

Fig. 7. Probability of failure with respect to thickness (m)

tilever shells with an attempt to avoid resonance. Genetic al-

gorithm coupled with a local multivariate search function is

employed to minimise the weight by optimising the width and

thickness of the spherical shell corresponding to different prob-

ability of failures. In general, it is observed that as the prob-

ability of failure increases, the volumen of the composite shell

decreases corresponding to optimized values of width and thick-

ness. The optimised data obtained are the first known results for

the type of analyses carried out here and the results could serve

as reference solutions for future investigators. The proposed

surrogate based approach of reliability based optimization can

be extended to more complex system of laminated composite

structures and optimization of material properties in addition to

topology.
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