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Abstract

The aim of the paper is to give a suggestion to the structural

engineers to model masonry infilled reinforced concrete frames.

We made several experiments, and developed some numerical

models. Our previous papers [12–15] we showed three different

FEM numerical models (equivalent diagonal strut model, or-

thotropic surface model and “suggested sophisticated model”),

and we made a comparison study between the numerical results

and the experimental tests in case of monotonic increasing lat-

eral loads. The experiments were continued with cyclic lateral

loads. Using the earlier proposed bi-linear σ - ε curve of the

masonry infill and the different Young’s moduli to model un-

loading, which are based on EC6, shows good correlation with

the test results, but unfortunately these are not enough precise

to calculate the size of the areas under the load-displacement

curves, so we obtained wrong damage parameters. We suggest

a new trilinear σ - ε curve. Using this proposed trilinear σ - ε

curve of the masonry infill, which is based on EC6, using the

“Suggested sophisticated model” with the equivalent struts of

the mortar layer shows good correlation with the experimen-

tal test results. Both of the calculated dissipated energies can be

calculated in good approximation also before and after the yield

point of the infill masonry, thus are already usable to calculate

the damage parameter D, which were determined by energy con-

cept. With the help of the damage parameter D, a comprehen-

sive damage-equivalent curve f (D) is suggested to calculate the

cyclic degradation of the two-storey, one-bay, masonry infilled

RC frames.
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1 Introduction

Nowadays structural design the influence of masonry infills

on the behaviour of reinforced concrete frames subjected to

earthquake resistance is very important. The most common ef-

fect in Hungary, which could be lateral effect during the life-

time of a building according to the valid standard Eurocode 6

[1], is the wind load, but special attention has been nowadays

given to the examination on the lateral cyclic horizontal loading,

principally on the seismic vulnerability of the masonry infilled

concrete frames. To describe and specify the behaviour of the

masonry infilled concrete frames for cyclic lateral loading an

experimental research was started at BME in Hungary. At the

beginning different finite element models had been worked out

[12,14] to describe the behaviour of the infilled frames under lat-

eral loading. A bilinear stress-strain relationship was suggested

for the masonry wall, to take into consideration the infills in the

RC skeleton. The first experimental test series (9 pieces) and

results had been engaged in the examination of the monotonic

increasing laterally loaded infilled RC frames [13]. Experimen-

tal and different analytical results were compared in [15]. As

the next step, the cyclic laterally loaded specimens (6 pieces)

were executed and tested [16, 17]. The results and conclusions

of the monotonic increasing loaded specimens were the basis of

the cyclic laterally loaded experiment studies. The effective and

useable load histories were defined according to those consider-

ations. The purpose of the executed experimental program was

to specify the behaviour of infilled RC frames for cyclic lateral

load, especially when the main continuous diagonal corner-to-

corner crack is evolved in the infill masonry, called the “yield

point” of the masonry [17].

In this article we give useable methods for the designers to

how to take into consideration the infill masonry made of “clas-

sical” Hungarian solid masonry units and commercially avail-

able mortar for cyclic lateral forces according to Eurocode 6

specify with the nowadays available scientific results.

2 Short review

Many analytical and experimental results showed due to

changes in stiffness and mass, dynamic characteristic/response
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of the whole structure also changes [5, 9, 10, 20, 28]. The infill

masonry has an effect on both global and local failure modes,

new and unexpected forms of failure could be appeared [31].

After the opening investigations [18, 26, 32–34] because of

the imprecision of the elastic theories, the theories of plastic-

ity were started to use [8, 21, 29, 31, 36]. By the evolution of

the softwares using in structural design process many analytical

and numerical models and results [14, 22, 24, 27, 28] were pub-

lished. Above all many experimental results also were presented

in connection with the masonry infilled steel frames [30,35] and

concrete frames [4, 6, 7, 23].

Much of the publications dealed with the classical “Equiv-

alent diagonal compressed strut model”, of course using plas-

tic elements/springs in FEM software to take into consideration

the degradation of the infill masonry. Some/several proposes

were worked out to model the softening of the masonry, such

as hyperbolic-shaped enveloped model [7], or using a short per-

fectly plastic zone followed by a linear softening branch [6,19].

The behaviour of the infill masonry before the appearance of

the continuous diagonal corner-to-corner crack is significantly

diverged from following the yield point [17]. Under the cyclic

forces, which are lower than the yield force, the accumulated

residual strains, displacements are smaller in each cycle than in

the behaviour stage after the yield point.

Accordingly our approach is a little bit different. The consti-

tutive equations of the masonry infills are based on the models

were introduced in [14] and [15], but modified by the theories

of continuum damage mechanics. In the theory of damage me-

chanics the main goal is to evaluate the description of the micro

cracks due to mechanical loads. We can introduce a new internal

variable, called “D” damage parameter [11, 25, 27]. The vari-

able, combined with numerical FEM results, could be utilized

in a relatively easy design procedure.

3 Experimental study

The experimental part of the whole research project was al-

ready published. The important details and the maden conclu-

sions could be seen in [13, 15–17].

In this article we would like to give only so short review of

the main details and results of the executed experimental result,

that the numerical models could be verified and understood.

3.1 Test frames

In the experimental part of the study one-third scale, one-bay,

two-storey reinforced concrete (RC) frames were used as spec-

imens in the execution of the tests [13]. On the whole 9 speci-

mens were tested; the dimensions and the reinforcements of the

concrete skeleton can be seen in Fig. 1. The ratio of one storey

infill height (h) and length (`) h/` is 0,595.

The concrete skeletons were prefabricated in a concrete fac-

tory with common characteristics of materials (reinforcement

and concrete) were used, see in Table 1.

Fig. 1. Dimensions and reinforcements of the test frames

Tab. 1. Classifications of the used materials

Used materials Classifications

Concrete C20/25 fck = 20 N/mm2

Steel reinforcement S500B fyk = 500 N/mm2

The RC frame was posteriorly infilled in the laboratory. The

used masonry unit was the so-called “classic” solid small brick

with dimensions 6.5 * 12 * 25 cm, and each of the elements were

cutted into three uniform pieces to take into consideration the

scale of the RC test frame, see in Fig. 2.

Fig. 2. The “classic” solid small brick in Hungary

The mean compressive strength of the masonry unit (data

of the factory) is fk = 10 N/mm2. The normalized compressive

strength of the cutted units (6.5 * 12 * 8) was calculated by EC6,

that is fb = 8.57 kN/mm2. The average thickness of both mortar

layers was about 3 - 3.5 mm, and the whole surface was cov-

ered with mortar. Two different mortars were used in the exper-

iments, Table 2.

Both of the main values of the material characteristic were

checked in the laboratory, such as the concrete, the reinforce-

ment and the masonry unit. The difference between the designed

and the measured values were similar with each other, except the

compression strength of the mortar, see in Table 3.

The infill masonry was continually chocked to the concrete

surface with using steel plates, see on Fig. 3.

3.2 Test set-up and procedure

All the fifteen RC frames have the same internal steel rein-

forcement and divided into five series, each consisting of three
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Tab. 2. Classifications of the designed mortars

Classification of mortar Compr. strength fm [N/mm2]

Baumit M30 (M3) 3

Baumit M100 (M10) 10

Tab. 3. Classifications of the executed mortars

Sign of specimen Executed Class. fm [N/mm2]

Km1 - Sp.1. 2,3

Km1 - Sp.2. 2,7

Km1 - Sp.3. 3,3

Km2 - Sp.1. 9,3

Km2 - Sp.2. 8,0

Km2 - Sp.3. 8,5

frames. The first series had no infill masonries, all of the other

series had infills. In the second and fourth series the infill ma-

sonries were made of the lower compressive strength mortar

(M3), as against the third and fifth series, where the higher com-

pressive strength mortar (M10) was used. The second and the

fourth series had monotonic increasing lateral, the third and the

fifth had in turn cyclic loading, see in Table 4.

3.3 Loading and supporting systems

The one-bay, two-storey reinforced concrete (RC) frames

were fixed by complementary steel structures to the concrete

slab. The static test loading consisted lateral uniaxial, mono-

tonic increasing loading (V) at the top beam of the frame be-

sides constant (100 kN) vertical load applied on both columns,

see on Fig. 4. All of the loadings were applied by using hy-

draulic jacks. A very rigid external steel frame attached to the

specimen was used to prevent any out-of-plane deformations,

see also on Fig. 4. The loading and the supporting system was

basically the same under the cyclic loading. The only difference

was the second lateral hydraulic jack in the countered direction,

to be able to create the quasi-static cyclic load histories, see also

on Fig. 4.

3.4 Deformation measurements

All deformations were measured by inductive displacement

transducers, such as the top drifting under the centre line of the

Fig. 3. The infilled frame specimen

Tab. 4. Experimental program

Sign Test frame set-up Pieces Loading set-up

K0 Not infilled 3 monotonic

Km1 Infilled with mortar M3 3 monotonic

Km2 Infilled with mortar M10 3 monotonic

Kc1 Infilled with mortar M3 3 cyclic

Kc2 Infilled with mortar M10 3 cyclic

top beam, the relative displacements between the masonry and

the concrete, the buckling displacements perpendicular to the

equivalent diagonal strut. All the electrical signs were detected

and the signals were processed by software and PC. In case of

cyclic loading the main differences were that the relative dis-

placements between the masonry and skeleton were measured

in symmetric positions, and the buckling displacements were not

measured, see on Fig. 5.

3.5 Cyclic load histories

The used load histories could be seen on Fig. 6.

3.6 Experimental results

In the followings the test frames are evaluated in terms of

load - top displacement. A typical load-top displacement curve

is shown up at Fig. 7.

The results of the two test series with the different mortars

under monotonic increasing lateral loading are shown at Fig. 8.

The results of the two test series with the different mortars

under cyclic lateral loading are shown at Fig. 9.

4 Analytical study

In this main part of the article we present numerical results of

different finite element [14] models.

Infill masonry consists of two different materials, the brick

and the mortar. The discrete element method (DEM) is the most

common used procedure to simulate the contact between the el-

ements. It is computable, but it is very difficult and thus not

acceptable to analyse entire buildings.

In numerical analysis of infilled RC frames, the masonry can

be modelled by continuum, if the material properties and the

sources of non-linearity of the infill are carefully homogenised.

Representative volume element (RVE) of masonry is usually

used to homogenise the equivalent material properties of ma-

sonry. It is a breakable, but very valuable boundary between

DEM and continuum model. The present study employs the ma-

terial as homogenised by the numerical analysis of masonry.

4.1 Elastic and plastic strains

The FEM models and the results usually give/contain the

whole lateral response of the structure, therefor the results con-

tain the total strain altogether:

{
etot

}
=

{
eel

}
+

{
epl

}
(1)
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(a) Uniaxial lateral load (b) Cyclic lateral load

Fig. 4. Loading system

where eel elastic strain vector, epl plastic strain vector.

If we are able to calculate the total and the elastic deforma-

tions/strains, the plastic deformations/strains are the followings:

{
epl

}
=

{
etot

}
−

{
eel

}
(2)

Taken the advantages of Eq. (2), the elastic and total defor-

mations need to be calculated to determinate the plastic defor-

mations. For this the “Mesh surface model” and “Suggested

sophisticated model”, which were defined in [15] (under mono-

tonic increasing lateral load), will be used.

4.2 Material characteristics of the masonry infill

In case of monotonic increasing lateral loading the top dis-

placements of the RC frame were able to be calculated with rela-

tively small error [15] using the suggested bilinear σ - ε curve of

the masonry infill. But using the earlier introduced models, the

plastic deformations can be calculated as only with the differ-

ences of the total and the elastic deformations, Eq. (2). Therefor

two different calculations need to be executed.

As an approximation, to model the unloading, different

Young’s moduli are suggested to be used in the numerical cal-

culations, see in Table 5. Before the yield point of the masonry

the Young’s modulus (Esec) according to EC6 can be used, but

for the closer results after the yield point another modulus need

to be applied, namely the initial stiffness (Ein f ill−β) of the earlier

suggested bilinear stress-strain curve [15].

4.3 Degradation and damage

Using a “continuum” model to describe the behaviour of the

infill masonry is a common solution [2, 3, 24]. To take into con-

sideration the cyclic degradation, a damage plastic model has

been assumed [11, 25, 27]. According to this assumption the

analysis of masonry infills is formulated in terms of plasticity

with which damaged is associated to the plastic strain.

Continuum damage mechanics are based on the concept of

a damage variable. Take a volume element in the continuum,

where A is the area of the intersection of one surface and Ad

is the effective area of all microcracks and microvoids, than the

damage D~n in this volume element in the direction defined by n

can be expressed as:

D~n =
Ad

A
(3)

The damage variable in case of intact element is 0, and 1 in

case of total damaged state. In any n direction the D~n can be

approximately the same according to the hypothesis of isotropic

damage [11]. In this case the value of the damage can be defined

with scalar D in all direction.

D~n � D (4)

With the normal force F resisted by area A of the volume

element, the conventional Cauchy stress is defined as:

σ =
F

A
(5)

Using the effective (damaged) area Ad instead of the total area

A, the effective stress can be represented in the same way:

σ =
F

A − Ad

=
σ

1 − D
(6)

The hypothesis of strain equivalence states that the behavior

of the damaged and the intact material can be described by the

same laws [2,3,24], if the Cauchy stress is substituted for the ef-

fective stress. So the linear elastic behaviour state of a damaged

material (in our case this is a brittled crashed material) accord-

ingly can be represented as:

σ = E
(
εtot − εpl

)
(7)
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(a) Measurement points (b) Back-side of the specimen

(c) Measurement system (d) Symmetric measurement points

Fig. 5. Displacement measurement (a-b: monotonic; c-d: cyclic loading)

Tab. 5. Different Young’s moduli to model unload

Unload Before yield point After the yield point

Young’s modulus Esec Ein f ill−β

Could be calculated according to EC6 suggested bilinear σ − ε curve

using the damage parameter D,

σ = (1 − D) E
(
εtot − εpl

)
(8)

Utilizing the Eq. (8) for the investigated problem, the cyclic

crashing/damage can be so taken notice that the elastic strain

will be enlarged directly with the rate of the damage. Us-

ing this hypothesis the above/earlier introduced numerical mod-

els/methods can be utilizable to describe the structural response

of the masonry infilled frames for cyclic lateral load before the

“yield point” of the masonry with choosing the proper damage

parameter D.

Some alternative approaches have been proposed in the lit-

erature [8, 19] to estimate the main chracterictic points of the

evolution laws of plactic and damage variables according to the

thermodinamycs of irreversible processes requires.

In this study to describe the relationship between strain and

damage an energy concept will be used combined with the ob-

served and developed behaviour and results of the infill dur-

ing experimental tests performed in infilled frames subjected to

monotonic increasing lateral load and displacement. The fol-

lowing expression will be proposed [7, 19, 25]:

E
(
δpl

)
=

∫ δpl

0

V
(
δpl

)
dδpl (9)

,where V is the external lateral load, and δpl is the lateral top

displacement.

The value of the maximum dissipated energy corresponds to

the final fracture is:

E (δmax) =

∫ ∞

0

V
(
δpl

)
dδpl (10)

Combining Eqs. (9) and (10) the following expression results

the damage evolution law, the damage parameter D:

D =
E

(
δpl

)
E(δmax)

(11)

After the appearance of the continuous diagonal corner-to-

corner crack the original defined continuum divides into two dif-

ferent continuums, henceforward it can appears that the classic

continuum conception can be only with difficulty interpreted.

Although the divided areas interact with each other, even so def-

initely are separated and need to be investigated separately. At
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Cyclic load histories
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Fig. 7. Load-top displacement curves of the unfilled test frames

(a) Infilled frames using mortar M3 (b) Infilled frames using mortar M10

Fig. 8. Load-top displacement curve of the infilled test frames under monotonic lateral loading

the same time in our case the general function of the continuum

in the numerical investigations is to describe “only” the whole

structural response, so the “local” disintegration of the masonry

is not a problem. So the numerical simulation can be used after

the appearance of the main diagonal corner-to-corner crack in

the infill masonry.

Furthermore the “Suggested sophisticated model” is able to

describe the structural response and the local damages also, be-

cause the relative displacements between the different masonry

units and rows can appeare, see at Fig. 10.

Using the “Suggested sophisticated model” the appearance

and the spread of the diagonal crack(s) can be also permanently

(in small numerical steps) followed, such like in strut-and-tie

models (STM) [24], but in this model the masonry units are de-

fined more sophisticated with shell elements. The corner cracks

and damages can be simulated more realistic.

4.4 Determination of the damage parameter

In this study we utilize the experimental results of [13, 16]

and [17] to compare with and verify the numerical results re-

ceived by “Mesh surface model” and “Suggested sophisticated

model”, which were defined in [14] (under monotonic increas-

ing lateral load).

To determinate the damage parameter D the dissipated exter-

nal potencial energy must be calculated, which in practice means

that the size of area under the external lateral force – top dis-

placement curve must be calculated in each load - unload steps.

The comparison of the experimental and the numerical re-

sults, in case of monotonic increasing lateral load, can be seen

on Fig. 11 and 12.

Using the proposed bi-linear σ - ε curve of the masonry infill

and the different Young’s moduli to model unloading, which are

based on EC6, in an orthotropic surface model (“Mesh surface

model”), or using the “Suggested sophisticated model” with the

equivalent struts of the mortar layer shows good correlation with

the test results, but unfortunately these are not enough precise

to calculate the size of the areas under the load-displacement

curves, thus the damage parameter D, because:

• by using the “Mesh surface model” the deviation of the irre-

versible plastic top displacements between the experimental

and numerical results are high, more than 200%, as it can be

seen at Fig. 11 and Fig. 12,

• by using the “Suggested sophisticated model” with the equiv-

alent sheared and compressed struts replaced the mortar layer,

the computable differences of the irreversible plastic top dis-

placements are under 15% between the numerical and the ex-

perimental results before the first corner-to-corner diagonal

crack is evolving, after the “yield point” of the infill masonry

the differences are under 20%, as it can be seen at Fig. 11 and

Fig. 12.

Because of the relatively high inaccuracy of the irreversible
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Load-top displacement curves of the infilled test frames under cyclic loading
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Fig. 10. Relative displacements of the masonry units (“Suggested sophisticated model”)

(a) Mesh surface model (b) Suggested sophisticated model

Fig. 11. Load-top displacement curves of the infilled test frames with unload-reload steps (unload at 80 kN and 110 kN)

(a) Mesh surface model (b) Suggested sophisticated model

Fig. 12. Load-top displacement curves of the infilled test frames with unload-reload steps (unload at 80 kN and 110 kN)
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plastic top displacements of the “Mesh surface model”, hence-

forward only the “Suggested sophisticated model” will be tried

to calculate the size of the areas under the load-displacement

curves. The calculatable areas by the “Suggested sophisticated

model” compared with the experimental results are shown on

Fig. 13 and Fig. 14:

The differences of the size of the areas under the curves, of the

dissipated energies between numerical and experimental results

are shown in Tab. 6:

Tab. 6. Differencies of the sizes of the calculated and measured areas under

the curves

Differences at 80 kN at 110 kN

Km 2-1 44,63% 35,39%

Km 2-3 44,21% 32,99%

Athough the numerically calculated and the measured top dis-

placements were close to each other using the “Suggested so-

phisticated model” with the bi-linear σ - ε curve of the masonry

infill and the differerent Young’s moduli to model unloading, but

the dissipated energies shows not enough good correlation to use

up those in further calculations.

To be able to numerically acceptable describe the cyclic lat-

eral damage of the masonry infilled frames, more specified load-

displacement curves must be prepared. The easiest way for this

is to specify the usable σ - ε curve of the masonry infill.

4.5 New tri-linear σ - ε curve of the masonry infill

According to EC6 specified with the suggestions of [15], we

suggest to use a newσ - ε diagram on theabove mentioned cyclic

damage designing method of the lateral loaded masonry infills.

A trilinear relation stress-strain diagram could be defined, up

to the 40% of the “yield point” (the appearence of the first main

diagonal corner-to-corner crack in the masonry) an elastic (Esec)

section could be defined in totally accordance with EC6.

Esec = 1000 fk (12)

,where fk is the characteristic compressive strength of the ma-

sonry (using general purpose mortar).

After it, another linear elastic line could be defined up to the

“yield point” of the masonry infill:

fin f ill−β = 0.7 ∗ fk (13)

,where fk is again the characteristic compressive strength of the

masonry.

The perfect plasticity should be neglected, than a monotonic

linear decreasing section is suggested, see on Fig. 15.

To model the unloading, the earlier defined Young’s moduli

are henceforward suggested to be used in the numerical calcula-

tions. Before the yield point of the masonry the Young’s modu-

lus (Esec) according to EC6 can be used, but for the closer results

after the yield point another modulus (Ein f ill− β) need to be ap-

plied:

Ein f ill.β =

{
1

Ein f ill.0
cos4 (β) +

+

[
−

2ν0−90

Ein f ill.0
+

1

Gin f ill

]
cos2 (β) sin2 (β) +

+
1

Ein f ill.90

sin4 (β)

}−1

(14)

where Ein f ill.0 and Ein f ill.90 are Young’s modulus of the infill

masonry in the direction to parallel and normal to mortar bed

joints, Ein f ill.90 is equal to Esec, ν0−90 is Poisson’s ratio, Gin f ill is

shear modulus. Ein f ill.0 could be taken as half of Ein f ill.90, and

ν0−90 = 0.25 [14].

4.6 Approximation of the dissipated energy

The damage parameter D, which has been determined by en-

ergy concept, can be again calculated by using the above intro-

duced trilinear stress-strain diagram.

In the interest of the comparability with the earlier introduced

results (using the bilinear diagram) the same experimental re-

sults will be used for the verification. The specified numerical

results using with the new trilinear σ - ε diagram are shown on

Fig. 16.

The dissipated energies can be calculated again as the size of

the area under the load-displacement curves, see on Fig. 17.

The differences of the size of the areas under the curves, of the

dissipated energies between numerical and experimental results

using the suggested new trilinearσ - ε curve of the masonry infill

are shown in Tab. 7:

Tab. 7. Differencies of the sizes of the calculated and measured areas under

the curves

Differencies at 80 kN at 110 kN

Sp. Km 2-1 11,19% 0,49%

Sp. Km 2-3 18,26% 3,19%

Using the proposed trilinear σ - ε curve of the masonry in-

fill, which is based on EC6, using the “Suggested sophisticated

model” with the equivalent struts of the mortar layer shows good

correlation with the test results. Both of the calculated dissipated

energies can be calculated in good approximation also before

and after the yield point of the infill masonry, thus are already

usable to calculate the damage parameter D, which were deter-

mined by energy concept.

4.7 Cyclic degradation

As it was introduced in the previous chapter, the damage

parameter D of a masonry infilled one-bay, two-storey rein-

forced concrete frame can be numerically calculated in very

good correlation by using the proposed trilinear σ - ε curve of

the masonry infill and the “Suggested sophisticated model” un-

der monotonic increasing lateral external forces.
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(a) unload at 80 kN (b) unload at 110 kN

Fig. 13. Areas under load-displacement curve before and after “yield point”

(a) unload at 80 kN (b) unload at 110 kN

Fig. 14. Areas under load-displacement curve before and after “yield point”

Fig. 15. Suggested new trilinear σ - ε curve of the masonry infill

(a) Specimen Km 2-1 (b) Specimen Km 2-3

Fig. 16. Suggested new trilinear σ - ε curve of the masonry infill
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(a) Specimen Km 2-1 before yield point (b) Specimen Km 2-1 after yield point

(a) Specimen Km 2-3 before yield point (b) Specimen Km 2-3 after yield point

Fig. 17. Load-top displacement curves of the infilled test frames with unload-reload steps using the trilinear σ − ε diagram (unload at 80 kN and 110 kN)

Using the suggested Young’s moduli to model the unload sec-

tions the dissipated energies and the damage parameter can be

calculated.

A typical damage parameter – load quotient (V /Vpeak) curve

is shown on Fig. 18.

Fig. 18. Typical external load quotient-damage parameter curve

By using the experimental test results of [4, 7, 13, 16, 17],

and the own numerical results an f (D) comprehensive damage-

equivalent curve, which is depend on the above calculated dam-

age parameter D, can be suggested to take into consideration

the whole structural degradation of a masonry infilled one-bay,

two-storey reinforced concrete frame.

The suggested a f (D) comprehensive damage-equivalent

curve is:

f (D) =
1

2

(
1 − e−

D3

2

)
(15)

,where D is the damage parameter, which is determined by en-

ergy concept.

The suggested f (D) comprehensive damage-equivalent curve

and the values of the calculated damage parameters by the used

test results are shown on Fig. 19.

Fig. 19. Suggested comprehensive damage-equivalent curve

,where Symbol “O” is the calculated damage parameter by

using own test results, and Symbol “∆” is the calculated damage

parameter by using the test results of [4] and [7].

Using the value of the suggested f (D) comprehensive

damage-equivalent curve and Eq. (8), the whole structural

degradation can be taken into consideration by the following:

σ = (1 − f (D)) E
(
εel

)
(16)
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Eq. (16) can be used to modify the secant Young’s modulus

(Esec) of the earlier suggested trilinearσ - ε curve of the masonry

infill. So the modified secant Young’s modulus (ED), which con-

tains the structural damage, is the following:

ED = (1 − f (D)) Esec (17)

To be able to model the cyclic degradation of the infilled

frame the above mentioned calculation must be repeated by the

following flow diagram, see on Fig. 20.

Fig. 20. The flow diagram of the calculation of the cyclic degradation

In view of the effective load history, the external lateral load –

top displacement curve of certain load step is calculatable under

monotonic increasing lateral load. So thus each of the dam-

age parameter can be calculated. The numerical principle of the

degradation of the secant Young’s moduli in each load step is

shown on Fig. 21.

Either (i)th load-displacement curves can be produced by us-

ing the total structural damages (1 − f (D)i) of all previous cy-

cles:

1 − f (D)i =

i−1∏
k=1

(1 − f (D)k) (18)

5 Comparison of numerical and experimental results

The comparison of the calculated and the experimental results

of Specimen Kc 1-2 is shown on Fig. 22.

The results for the whole load history in case of Specimen

Kc2-2 and Kc2-3 are shown on Fig. 23 and Fig. 24.

With the introduced calculation method the deviations of the

estimation of the top displacements and the envelope of the

cyclic curves show quite good correlation with the experimen-

tal results. By the investigation of the above shown figures the

following statements could be made:

• Kc 1-2.: the coincidence of the experimental and the analyt-

ical results is very good using the suggested trilinear σ - ε

diagram for the infill masonry, the comprehensive damage-

equivalent curve for the degradation and the suggested sophis-

ticated FEM model.

• Kc 2-2.: in the first cycles of the load history the calculated re-

sults are lower than the measured, so the structure has higher

stiffness, but after the yield point it has changed, and the cal-

culation shows lower stiffness. Before the yield point of the

masonry the biggest deviation is lower than 10%, and after the

appearance of the diagonal corner-to-corner contionius crack

it is lower than 20%. The coincidence of the experimental and

the analytical results is also very good.

• Kc 2-3.: the coincidence of the experimental and the analyti-

cal results is again very good. The biggest deviations are less

than 10% and 20%, before and after the yield point between

the numerical and the experimental results.

Between the calculated and the measured accumulated resid-

ual plastic deformations there are relatively big differences, but

the envelope curve of both results shows very good coincidence.

The final failure of the infilled frame under cyclic lateral loads

dues to happen if the biggest relative top displacement in one

cycle is quasi equal to the maximum/failure top displacement

could be calculated/measured under monotonic increasing lat-

eral load.

6 Conclusions

The conclusions made below are based on the limited data of

the experimental tests and numerical studies of the masonry in-

filled RC frames. The numerical results of the finite element

models of masonry infilled reinforced concrete frames were

compared with experimental results.

The two-storey, one-bay RC test frames infilled with masonry

showed similar cyclic behaviour, especially the initial stiffness

of the frames, the yield point of the masonry infills and the peak

lateral loads and deformations were close.

As an approximation, to model the unloading, different

Young’s moduli are suggested to be used in the numerical calcu-

lations. For the more specified results and to be able to calculate

the dissipated energy in any point of the load history a new trilin-

ear σ − ε curve were introduced, which gives usable results by

applying the “Suggestes sophisticated model”. The “Mesh sur-

face model” has given relatively big differences, when the size

of the area under the load-displacement curve was investigated.

Using the bilinear stress-strain diagram and the mesh sur-

face model is not suggested to model the behaviour of the in-

fill frames under cyclic loads, because the numerical results of

the calculated dissipated energies show quite big (~40%) dif-

ferences. Although the numerical results are not enough close

to the experimental results to calculate the dissipated energies,

which are necessary to determinate the cyclic degradation, but

the bilinear material data and the orthotropic mesh model are

still usable to approximate the top displacements of the frame

under monotonic increasing loads.

By using the proposed trilinear material characteristics of the

infill masonry in the suggested sophisticated FEM model gave

extra safe and reliable results to the behaviour of the infilled RC

frames under both monotonic increasing and cyclic lateral loads

also.
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Fig. 21. The modified Young’s moduli under cyclic degradation

Fig. 22. Comparison of calculated and experimental results of Sp. Kc 1-2

Although this proposed method is more difficulty, and needs

a little bit “smarter” softwares, closer results can be presented

for the top displacements, already for the determination of the

dissipated energies and the damage parameter. By the help

of the damage parameter D of the structure, calculated under

monotonic increasing lateral load, a comprehensive damage-

equivalent curve f (D) was suggested to calculate the cyclic

degradation of the two-storey, one-bay, masonry infilled RC

frames.

The calculation of any point of a cyclic load history is able to

be made by using the proposed calculation method. It is much

more complicated, even so probably is usable in design practice.

This model gave close numerical results in top displacements to

the experimental results. The differences between the experi-

mental and analytical results were under 10% at the stage before

and 20% after yield point of the masonry infill.

The final failure of the infilled frame under cyclic lateral loads

can be predicted. The collapse will be evolved, if the biggest

relative top displacement in one cycle is quasi equal to the max-

imum/failure top displacement could be calculated under mono-

tonic increasing lateral load.

Using the proposed trilinear σ - ε curve of the masonry infill

with different Young’s moduli for the unload steps, which are

based on EC6, in a suggested sophisticated model shows good

correlation with the test results, strangly with the dissipated en-

ergies. By using the proposed damage parameter, and the com-

prehensive damage-equivalent curve the cyclic degradation of

the investigated masonry infilled RC frames can be calculated in

good approximation also before and after the yield point of the

infill masonry, and are already usable to model the behaviour

under cyclic lateral loads in the structural engineering.
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Fig. 23. Comparison of calculated and experimental results of Sp. Kc 2-2

Fig. 24. Comparison of calculated and experimental results of Sp. Kc 2-3
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