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Abstract
A high-performance genetic algorithm for the optimal synthe-
sis of trusses in discrete search spaces is developed. The main 
feature of the proposed computational procedure is the pos-
sibility of obtaining effective solutions without the violation of 
any constraint. In general, a varying of cross-sectional areas 
of bars, coordinates of nodes and topology system is provided. 
A group of individuals in the population can be accepted for 
further consideration only if all specified limitations have been 
fulfilled. Penalties that significantly change an objective func-
tion are introduced for other individuals. This mechanism of 
handling limitations provides for correction of inaccuracies 
that can introduce penalty functions for satisfying the problem 
conditions. Both a random change to the entire set of admissi-
ble values and a random choice of values among adjacent ele-
ments in this set can be performed during the mutation stage. 
Standard test examples for benchmark mathematical functions 
and trusses show high efficiency of the considered iterative pro-
cedure in terms of solution accuracy.
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1 Introduction
Genetic algorithms (GAs) [1] are one of the effective meta-

heuristic approaches to solve optimization problems. Simulated 
annealing algorithm [2], bat-inspired algorithm [3], magnetic 
charged system search method [4], ant colony optimization [5], 
particle swarm optimizer [6], harmony search algorithm [7, 8], 
charged system search method [9], and big bang-big crunch 
algorithm [10] are also in the class of such procedures. GAs 
have already found application in many areas of engineering 
and science [1, 11-13]. Different variants of GAs, adapted to 
the structural optimization problems, are presented in Refs. [14-
23] and in many other works. Algorithms for optimal design 
of constructions combining GAs procedures with other meth-
ods of structure optimization were also considered [24-27]. A 
feature of many load-bearing structure optimization problems 
lies in the great number of conditions that significantly nar-
row the admissible search areas of parameters. When solving 
these problems with GAs, penalty functions became widely 
used in handle limitations [28, 29]. Other methods for taking 
into account limitations which may include repairing infeasible 
individuals [30], searching the boundaries of a feasible region 
[31], and homomorphous mapping [32], are less universal [29]. 
At the same time, it should be pointed out that penalty func-
tions can lead to inaccurately satisfying limitations in the form 
of inequalities.

There was previously developed a GA for the optimization 
of deformable systems, where loading limitations are consid-
ered by means of the rigorous removal of unsatisfactory indi-
viduals [33-35]. During this, an auxiliary population of elite 
individuals is formed as well as the usual population. And it is 
used to refill the main population while removing unsatisfac-
tory structure variants not corresponding to the set limitations. 
Such GA allows avoiding defects resulting from penalty func-
tions. This procedure has helped to solve problems of synthesis 
of building industrial and civil frames, beam grillage, reticu-
lated domes, trusses and various other structures. Nevertheless, 
in some cases this computation method allowed one to obtain 
individuals which would satisfy loading limitations only in 
case of several hundreds of performed iterations.
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It is assumed that genetic algorithm can be made rather effi-
cient if different approaches for taking into account limitations 
are used for individuals of a population. It is provided in this 
paper in respect to size, shape and topology discrete optimiza-
tion of trusses that a part of individuals of one population can 
be allowed for selection and crossover only if all specified con-
ditions have been met. At the same time, such rigorous rules 
are not specified for the remainder of individuals. Penalties 
are introduced for them, appreciably correcting the value of an 
objective function. When a couple of individuals are selected 
for the crossover procedure, all individuals of the population are 
considered on equal terms. As well, a mixed mutation procedure 
using one of two variants of random selection is realized: on the 
entire set of admissible values and only among several adjacent 
elements in this set. Efficiency of the offered GA is shown with 
the help of test examples for benchmark mathematical functions 
and truss structures which were considered in literature.

2 Statement of the truss optimization problem
Weight minimization of plane and space trusses which can 

generally vary on discrete sets of cross-sectional areas of bars 
and the coordinates of nodes is performed. Additionally, topol-
ogy optimization is realized with the help of redundancy struc-
tures which are controlled using an ability to introduce “zero” 
(absent) construction elements by assigning relatively small 
cross-sectional areas for them. When calculating the weight of 
a construction, such elements are not taken into account. As 
a general matter, strength and stiffness limitations are consid-
ered. A truss is assumed to be discretized in terms of the finite 
element method according to a displacement approach [36]. 
Truss nodes coincide with nodes of the finite element model.

The stability of a geometrical shape condition for a load-
bearing construction will be adduced to displacement limi-
tations. For that purpose, first of all there must be provided 
stability of the geometrical shape of a redundant base design. 
Calculations show that in this case when fictitious cross-sec-
tional areas of “zero” construction elements are 105…106 times 
less than the smallest allowed cross-sectional area of bars, both 
imitation of absence of these elements and ability to obtain a 
well-conditioned system of finite elements method equations if 
the object has a stable geometrical shape is provided. If a bar 
structure loses stability of its geometrical shape, this can be 
shown by relatively large fictitious displacements in a formal 
problem solving. If groups of finite elements become virtually 
isolated when low stiffness bars are introduced and these ele-
ments are not loaded, then solution of the system of equations 
of the finite elements method may not give great displacements, 
yet such individuals are excluded as irrational during the opti-
mization process. An alternative of this approach to selecting 
geometrically unstable systems is evaluation of a matrix deter-
minant for a system of equation. However, this way appears to 
be rather computationally expensive. 

An optimization problem in general is formulated as follows:
Find  A,  X,  Y  and  Z, which minimize

W l Ai i i i
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where W is the weight of bars, A={A1, ..., A1}
T is the numeric 

vector of cross-sectional areas  Aj  of bars, I is the number of 
bars, X={X1, ..., XM}T, Y={Y1, ..., YM}T  and  Z={Z1, ..., ZM}T are 
the numeric vectors of x, y and z coordinates of truss nodes, 
respectively, M is the number of nodes, αi is the Boolean value 
(αi=1, if presence of the bar i is taken into consideration in the 
construction, αi=0, if presence of the bar in the construction is 
not taken into account), ρi and li are the density and length of bar 
i, respectively, K is the stiffness matrix, Uk and Qk are the vector 
of node displacements and vector of external forces for loading 
k, respectively, k0 is the number of loadings, Pσik and P mk

t
δ
( )  are the 

values that specify whether k loading satisfies the limitation or 
it does not satisfy limitation on stress in bar i and displacement 
in node m in the direction of axis under number t with consecu-
tive numbering of x, y and z axes, respectively, σik and [σik] are 
the calculated and working normal stresses in bar i for loading 
k, respectively,  δmk

t( )   and  δmk
t( )    are the calculated and allowed 

displacements of node m in t direction, respectively.

3 Genetic algorithm for trusses
Genetic operators in the search process are performed by the 

main population П of fixed even size N. Additionally, an aux-
iliary elite population Ψ is used. Its size depends on the results 
of genetic algorithm operation, but does not exceed N. A set of 
admissible values is arranged in the order of their increasing for 
each varied parameter.

3.1 Selection of the initial population П
Here N individuals of population Π are specified by means 

of assigning maximum admissible values for varied parame-
ters. Population Ψ remains empty on this stage.

3.2 Iterative process
The following actions are performed at every iteration:
a) Checking whether limitations for individuals of popula-

tion П are satisfied. Calculations of the stress-strain state of 
construction variants of the given population are performed on 
the base of the solution of Eq. (2). The population is divided 

(1)

(4)

(3)

(2)
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into groups Π1 and Π2. Group Π1 includes the first N1 individu-
als (N1 < 1), group Π2 includes the other individuals. If at least 
one of the limitations (3), (4) for an individual of group Π1 is 
not satisfied, and there are individuals in auxiliary population 
Ψ which are missing from the main population, then the best of 
these individuals replaces the checked project. If there are no 
individuals in population Ψ for which this condition holds true, 
then a new individual of population Π is specified by means 
of random choice of design variable values. If limitations (3) 
and (4) for an individual from group Π2 are not satisfied, then a 
penalty factor kp is introduced for it:

W k Wp= α ,

where Wα is the value of object function before penalty intro-
duction. A ratio

k P P
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is used, where Pσ max and Pδ max are the maximum values of  Pδik 
and P mk

t
δ
( )  for loading k, respectively, γσ, γδ are assigned positive 

values; χ(x) is the Heaviside function of some argument x: χ (x) 
= 0.5 (1+sgn(x)).

b) Modification of population Ψ. Every individual in popula-
tion Π is checked by two criteria: is there such an individual in 
population Ψ, does value W of this individual not exceed the 
value of the objective function for the worst individual in the 
population. If both answers are negative, the considered indi-
vidual is placed into population Ψ. If the number of individuals 
in the auxiliary population was already equal to N, then an indi-
vidual with the greatest objective function value is excluded 
from population Ψ.

c) Mutation. This procedure may be performed with the 
probability p1 for a randomly selected

n n
1 0

1=  ( )max , λ

parameters for each individual of the population Π  
(0 < λ < 1), where p1, λ are the specified values, n0 is the total 
number of parameters. The next scheme to choose a value of 
parameter under number j is introduced. Values pa, pb are deter-
mined with the help of a random number generator on the seg-
ment (0, 1) with a uniform law of distribution, and then are 
compared with the mutation control numbers ma (0 < ma <1), 
mbl(l = 1,2,3,0 < mb1 < mb2 < mb3 < 1). 

If the inequality pa > ma holds true, then any of the admis-
sible parameter values is chosen randomly with equal prob-
ability. Otherwise, for number rj of the current position of this 
parameter in the set of its acceptable values any of the follow-
ing modifications can be carried out:
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where wj is the number of elements in the set of admissible 
values of the variable parameter.

d) Operations of steps a and b are repeated.
е) Selection and crossover. Here N / 2 couples of individu-

als are consecutively chosen from individuals of population Π 
by the roulette-wheel method with regard to W value. So, a 
numerical interval is selected for every individual s on a unitary 
numerical interval. The length ∆s of this interval is defined by 
the value of the objective function for this individual:

∆ =
=
∑s s i
i

N

ϕ ϕ
1

,

where

ϕ α β
i iW= ( )1 / .

Here Wi is the value of the objective function for individual 
i, α, β are prescribed constants. Then, a change of parameters 
is performed for every considered couple according to the 
scheme of a single-point crossover with a random choice of 
cut point. We do not allow re-entering of an individual into a 
couple during crossover process. At the same time, one project 
may be included in several pairs. The research of the function-
ing of the provided algorithm showed for trusses that in order 
to obtain an efficient iteration procedure, it is useful to accept 
p1 = 0,8... 1; λ = 0,1...0,2; N = 15...25; α = 5...15; β = 1...3;  
ma = 0.9,  mb1 = 0.5; mb2 = 0.75;  mb2 = 0.9; γσ = 10; γδ = 100, 
assume the chance of mutation for every individual, and to take 
the part of individuals Π1 in population Π equal to 60%. These 
recommendations were taken into account in the considered 
examples for trusses with the specified values p1 = 1; λ = 0,1;  
N = 20; α = 10; β = 1.

4 Numerical examples
To analyse the efficiency of the provided evolutionary strat-

egy, optimization calculations for a number of standard math-
ematical functions and examples of size, size/topology and 
size/shape/topology optimization of trusses were carried out. 
Values of kips and inches for structures were used for a suitable 
comparison of obtained results with the data published by other 
researchers.

(5)
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4.1 Benchmark mathematical functions
Some unimodal, multimodal, rotated, shifted and shifted and 

rotated functions taken from Ref. [37] are applied to test the 
efficiency of the proposed genetic algorithm (Table 1). Here 


  X x x xn= ( )1 2
, ,...,  is the vector of continuous variables, M is 

the orthogonal rotation matrix, O=(o1, o2, ..., on) is the vector of 
shifts,    Y y y yn= ( )1 2

, ,...,  is the auxiliary vector [37, 38]. The 
task was to minimize each function within the specified range.

In order to optimize such functions some adjustments were 
introduced into the presented in Section 3 discrete algorithm. Sev-
eral octal digits are used to represent each continuous variable. 
Each octal digit varied in the discrete optimization as an independ-
ent variable. Then  no = nl(8) , where  l(8) is the number of octal 
digits. In order to operate with negative values of the objective 
function the following scheme for calculating values  φi  was used:

ϕ α
β

i i avgW W W= − +( )( )1 0 0001
min

.

where Wmin and Wavg are the minimum and the average values of 
the objective function for the population, respectively.

Unlike the optimization of trusses we have put λ = 0.18 and 
the parameter p1 varies depending on the value j r r=   +/ α 1, 
where r is the number of iteration and rα is the integer. It was set 
that rα = 50. For odd values j we have put p1 = 1, for even j  p1 = 
0.1 value was used.

For functions 1–13 n = 8 and the maximum number of itera-
tions was assumed to be 500, for functions 14 and 15 we have 
put n = 10 and the maximum number of iterations was assumed 
to be 800 [37]. When n = 8 it was taken into account that l(8) = 
5, when n = 10 the value l(8) = 7 was used. Here 30 runs of the 
algorithm were performed for each function.

The results of optimization for the considered benchmark func-
tions are given in Table 2. These results are compared with new 
binary particle swarm optimization (NMBPSO) algorithm [39], 
binary gravitational search algorithm (BGSA) [40] and recently 
developed high-performance binary hybrid topology particle 
swarm optimization quadratic interpolation (BHTPSO-QI) algo-
rithm [37]. Data for comparison are taken from [37]. Table 2 
shows that in general the proposed genetic algorithm allowed to 
achieve slightly better results in comparison with BHTPSO-QI 
and significantly better results in comparison with NBPSO algo-
rithm and BGSA on the average values of best solutions.

4.2 10-bar truss
The truss shown in Fig. 1 is a standard example for optimi-

zation problems and is used by researchers to evaluate perfor-
mance of algorithms for efficiency analysis of the evolutionary 
modelling strategies. This truss was considered in Refs. [15], 
[16], [28], [41] and in many other works. We accepted the fol-
lowing characteristics for the material of bars: density ρ = 0,1 lb 
/ in3, coefficient of elasticity E = 10,000 ksi. Force P = 100 kips . 
A limitation 2.0 in. on displacements along x and y axis for every 
node of the deformed system was introduced. It was supposed 

that the stress modulus in truss bars would not exceed 25 ksi.

Fig. 1 10-bar truss

4.2.1 Size optimization
Let distance L = B = 360 in. A cross-sectional area of every 

member was varied independently. Two sets of values of var-
ied parameters, shown in Table 3 (Case 1 and Case 2), were 
considered. Here 50 runs of the genetic algorithm were held 
with every set of admissible cross-sectional areas to estimate 
convergence.

The weight of the determined rational construction in every 
run was equal to 5490.7 lb in a discrete set of areas taken from 
Ref. [28]. The obtained vector of values of designed variables 
is {33.5, 1.62, 22.9, 14.2, 1.62, 1.62, 7.97, 22.9, 22, 1.62}. This 
is the best result at the exact compliance by the set limitations 
among those considered in the literature sources [42], [43]. Our 
algorithm required here less than 250 iterations to obtain this 
solution in more than 80% of runs. The longest calculation took 
407 iterations. How quickly this project is found in the first 16 
runs is shown in Fig. 2.
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Fig. 2 Number of iterations required to determine solution of the problem in 
the first 16 runs at size optimization of the 10-bar truss in Case 1

For a set of cross-sectional areas which was given in Ref. 
[15], the weight in all runs was equal to 5130.20 lb. The maxi-
mum number of iterations required to determine this result was 
equal to 2683. It required less than 1500 iterations in more than 
80% of runs. The solution was compared in Table 4 with the 
results from corresponding literature sources for this problem 
which used the same discrete set of admissible area values. 
The weight which was determined via the proposed algorithm 
appeared to be smaller than in Refs. [15] (Solution 2) and [45], 
yet bigger than in Refs. [15] (Solution 1) and [44], however the 
results of this problem in Refs. [15] (Solution 1) and [44] do 
not exactly satisfy the displacement limitation.

(14)
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Table 1 Bencmark functions

Function Name Type [Range]n Global  
minimum

Sphere Model Unimodal [-100, 100]n 0

Schwefel’s Problem 2.22 Unimodal [-10, 10]n 0

Schwefel’s Problem 1.2 Unimodal [-100, 100]n 0

2n Minima Function Multimodal [-5, 5]n -78.3323

Generalized Schwefel’s 
Problem 2.26 Multimodal [-500, 500]n -418.9829×n= 

-3351.86

Generalized Griewank 
Function Multimodal [-5.12, 5.12]n 0

Rotated Schwefel’s 
Problem 2.22 Rotated Unimodal [-10, 10]n 0

Rotated 2n Minima 
Function Rotated Multimodal [-5, 5]n -78.3323

Rotated Rastrign 
Function Rotated Multimodal [-5.12, 5.12]n 0

Shifted Schwefel’s Problem 
1.2

Shifted
Unimodal [-100, 100]n -450

Shifted Schwefel’s  
Problem 2.21

Shifted
Unimodal [-100, 100]n -450

Shifted Generalized 
Griewank Function

Shifted
Multimodal [-600, 600]n -180

Shifted Rastrign  
Function

Shifted
Multimodal [-5.12, 5.12]n -330

Shifted and Rotated 
Rosenbrock’s Function

Shifted and Rotated
Multimodal [-100, 100]n 400

Shifted and Rotated 
Rastrigin’s Function

Shifted and Rotated
Multimodal [-100, 100]n 900
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Table 2 Minimization results for the bencmark functions

Function NBPSO BGSA BHTPS-QI This work

f1

Avg. best solution 6.414 1.088 0.0008 0.3463

SD 12.32 2.658 0.0021 0.6625

Median best solution 2.563 0.0149 0.0001 0.1331

f2

Avg. best solution 0.1303 0.0631 0.0082 0.0309

SD 0.1126 0.1417 0.0153 0.0284

Median best solution 0.0971 0.0147 0.0031 0.0168

f3

Avg. best solution 105.4 773.3 35.02 36.609

SD 163.3 696.3 78.35 58.993

Median best solution 54.30 531.6 6.559 16.817

f4

Avg. best solution -76.95 -77.07 -77.41 -78.26

SD 0.6794 0.9648 0.5434 0.1888

Median best solution -77.01 -77.26 -77.43 -78.31

f5

Avg. best solution -3150 -3283 -3311 -3316

SD 118.9 63.82 48.72 63.68

Median best solution -3177 -3305 -3317 -3351.50

f6

Avg. best solution 5.668 7.680 4.434 0.1319

SD 1.629 1.944 1.736 0.1269

Median best solution 5.318 7.005 5.000 0.1747

f7

Avg. best solution 5.191 7.211 5.709 0.0841

SD 1.421 1.465 1.077 0.0756

Median best solution 5.338 6.896 5.896 0.0565

f8

Avg. best solution -63.52 -63.25 -64.30 -66.40

SD 2.621 2.082 2.53 3.187

Median best solution -63.04 -63.49 -64.11 -67.52

f9

Avg. best solution 30.93 34.57 28.85 12.42

SD 4.439 4.652 4.504 5.140

Median best solution 30.72 34.97 29.01 11.68

f10

Avg. best solution -244.1 833.3 -386.9 -377.0

SD 340.1 936.0 111.3 60.48

Median best solution -342.7 879.1 -421.2 -392.8

f11

Avg. best solution -443.3 -439.8 -446.00 -448.1

SD 4.624 7.583 1.748 1.369

Median best solution -443.9 -443.2 -445.7 -448.7

f12

Avg. best solution -179.2 -179.6 -179.4 -179.7

SD 0.4436 0.3698 0.4111 0.1127

Median best solution -179.3 -179.7 -179.6 -179.7

f13

Avg. best solution -321.8 -323.6 -324.4 -323.8

SD 2.834 2.559 2.132 2.203

Median best solution -321.6 -323.8 -324.8 -323.5

f14

Avg. best solution 438.0 450.1 433.0 416.5

SD 19.80 15.47 15.029 24.72

Median best solution 438.4 447.5 436.0 409.8

f15

Avg. best solution 919.3 913.3 912.0 917.0

SD 5.896 3.435 5.420 4.193

Median best solution 919.6 913.6 911.9 917.1

Avg. rank 3.40 3.40 1.73 1.47
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Table 3 Cross-sectional areas of members for the size optimization
of a 10-bar truss

Case Areas (in.2)

1:
Nanakorn and  

Meesomklin [28]

{1.62, 1.8, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 
3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 
4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 
7.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 

19.9, 22, 22.9, 26.5, 30.0, 33.5}

2:
Jenkins [15]

{0.1, 0.347, 0.44, 0.539, 0.954, 1.081, 1.174, 1.333, 
1.488, 1.764, 2.142, 2.697, 2.8, 3.131, 3.565, 3.813, 
4.805, 5.952, 6.572, 7.192, 8.525, 9.3, 10.85, 13.33, 

14.29, 17.17, 19.18, 23.68, 28.08, 33.7}

Table 4 Comparison for the size optimization of the 10-bar truss in Case 2

Variables

Optimal cross-sectional areas (in.2)

Jenkins [15] Toğan & 
Daloğu [44]

Grierson 
[45]

This 
workSolution 1 Solution 2

A1 28.08 33.7 28.08 33.7 28.08

A2 0.1 0.1 0.1 0.347 0.1

A3 23.68 23.68 23.68 19.18 23.68

A4 17.17 14.29 17.17 19.18 19.18

A5 0.347 0.347 0.1 0.347 0.1

A6 0.1 0.1 0.1 0.539 0.44

A7 7.192 7.192 7.192 10.85 7.192

A8 19.18 19.18 19.18 23.68 19.18

A9 23.68 23.68 23.68 19.18 23.68

A10 0.1 0.1 0.1 0.347 0.1

Weight 
(lb) 5054 5153 5054.6 5356 5130.2

Max. def. 
(in.) 2.02 2.00 2.0046 1.97 1.9971

4.2.2 Size/topology and size/shape/topology 
optimization

Two problems were solved where the 10-bar truss was con-
sidered as a base system. In the first task (А), studied in Refs. 
[41, 46], topology optimization with a fixed construction shape 
was held, and in the second task (B), which was considered in 
Refs. [8, 41, 46], size/shape/topology optimization was held. 
A set of 32 discrete values (1.62, 1.8, 2.38, 2.62, 2.88, 3.09, 
3.13, 3.38, 3.63, 3.84, 3.87, 4.18, 4.49, 4.8, 4.97, 5.12, 5.74, 
7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 18.8, 19.9, 22.0, 
22.9, 26.5, 30.0, and 33.5) (in.2) given in Ref. [41] was used for 
varied areas of every actual bar.

Problem А We provided the possibility to remove any 
bar. Here 50 runs of the program were held. The same result 
obtained in all runs is shown in Fig. 3. The weight of bars of 
the truss was 4962.1 lb. It took from 133 to 467 iterations. This 
project completely matches in weight, topology, and sizes with 
the solution of Ref. [41]. The same result of optimization in 
weight and topology was published in Ref. [46].

Fig. 3 Resultant topology for the size/topology design  
of a 10-bar base truss with cross-sectional areas (in.2)

Problem B In addition to the condition of problem A, the 
positions of nodes 1, 3 and 5 of the truss were varied vertically 
between b=180 in. and b=1,000 in., with a 10 in. interval. In 
50 runs, during execution of 1000 iterations, more than 30 dif-
ferent solutions with the weight ranging from 2.74 to 2.94 kips 
were obtained. Two best results are shown on Fig. 4. Topolo-
gies for these solutions were also presented in Refs. [8, 47]. 
Solution 1 in topology and weight corresponds to the best result 
among those considered in the literature sources [47].

4.3 A 200-bar plane truss
This truss (Fig. 5) was considered by many researchers 

[7, 44, 48], when solving the problem of size optimization 
with a different limitation and grouping of members. We 
accepted the conditions of the problem in accordance with 
Ref. [44]. Distances L1 = 240 in, L2 = 144 in, L3 = 360 in. 
Values  ρ = 0.283 b/in3  and  E = 30,000 ksi were specified for 
the material of the bars. It was assumed that stress in every 
bar during compression and tension did not exceed 10 ksi in 
modulus. Displacements for unfixed nodes were not limited. 
Here 3 loadings were considered. In the first loading, forces of 
1 kip were applied in a positive x direction at nodes 1, 6, 15, 
20, 29, 34, 43, 48, 57, 62 and 71. In the second loading forces 
of 10 kips were applied in a negative y direction at nodes 1, 
2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19 … 71, 72, 73, 
74 and 75. In the third loading, the two previous loadings 
were combined. The members of the truss were linked into 29 
groups. The numbers of members inserted in these groups are 
shown in Table 5. To vary the cross-sectional areas, the values 
from the set of Case 2 (see Table 3) were taken into account. 
Here 30 runs of the algorithm were held with 4000 iterations. 
The received solutions ranged from 27701.7 lb to 29053.51 
lb. It took from 377 to 3927 iterations. Comparison of two 
individuals with a minimum weight using some data from 
literature sources is shown in Table 5. The results obtained by 
us appeared to have a better value of an objective function than 
those determined with the help of discrete design variables in 
[44] and [48].
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Fig. 5 200-bar truss

4.4 25-bar space truss
Optimal design of this object (Fig. 6) in different variants 

was performed in Refs. [7, 10, 16, 44, 49-51] and in many other 
articles. This paper gives consideration to the condition of a 
25-bar truss size optimization problem according to Ref. [16]. 
It was supposed that L1 = 75 in., L2 =100 in., L3 = 200 in. Load-
ing was taken into account, which is provided in Table 6.

Cross-sectional areas of the truss were linked into eight 
groups: (1): A1, (2): A2- A5, (3): A6- A9, (4): A10- A11, (5): 
A12- A13, (6): A14- A17, (7): A18- A21, (8): A22- A25. Here 
34 discrete values were used for every group, and these values 
were uniformly distributed on the interval [0.1-3.4] in.2, ρ = 0,1 
lb/in.3 and E = 10,000 ksi were taken for the material of bars. It 
was assumed that stress in bars did not exceed 40 ksi in modulus. 
Displacements along x and y axis for every unfixed node did not 
exceed 0.35 in. Optimal synthesis process gave the same result 
in all 50 runs. It took from 163 to 3278 iterations. The optimum 
solution vector is presented in Table 7. This is identical to the best 
design developed in [10, 51]. It performs better than others when 
the number of average weight for 50 runs are compared.

Fig. 6 25-bar space truss

4.5 Kirsh’s Example
The example of size/topology optimization of 15-member 

truss (Fig. 7) suggested by Kirsch [52] was considered. Here 
L=40 in., H=30 in., E=10,000 ksi, P=20 kips. Absolute values 
of axial stresses did not have to exceed 50 ksi. Weight optimi-
zation is deduced to the minimization of total material volume 
V of members. Limitation of displacements is not specified. 
The cross-sectional area of every member according to Refs. 
[46, 47] was selected on a discrete set of 16 values ranging 
from 0.1 in.2 to 1.6 in.2. Each member may be deleted. Members 

Fig. 4 Resultant topology for the size/shape/topology design of a 10-bar base truss with cross-sectional areas (in.2)
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were not separated into groups. It is known that the theoretical 
minimum value of V for this discrete problem is 240 in.3 [49]. 
As a result of 100 runs, we obtained only this value of V. It 
required from 104 to 158 iterations in more than 90 % of runs; 
in the remainder of cases it required more iterations, but less 
than 1200. Here 6 topologies were obtained in total. They are 
presented in Fig. 8 and in Table 8.

Fig. 7 Base structure for a 15-bar truss

Only one variant of the cross-sectional areas of bars was 
obtained for every topology. It should be pointed out that topol-
ogies 1 and 2 are practically the same. Topology 6 was obtained 
also in Ref. [46]. In Ref. [47], 19 topologies including those 
given in Fig. 8 were obtained for this task, but the volume of 
members there was ranging from 240 in.3 to 255 in.3.

Table 6 Loading for the 25-bar space truss

Node
Axial force (kips)

x y z

1 1.0 -10.0 -10.0

2 0 -10.0 -10.0

3 0.5 0.0 0.0

6 0.6 0.0 0.0

Table 5 Comparison for the 200-bar truss

Group

Optimal cross-sectional areas (in2)

Members Toğan & 
Daloğu [44]

Thierauf 
& Cai [48]

This work

Solution 1 Solution 2

1 1, 2, 3, 4 0.347 0.1 0.1

2 5, 8,11,14,17 1.081 0.954 1.081

3 19, 20, 21, 22, 23, 24 0.1 0.1 0.1

4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177 0.1 0.347 0.1

5 26, 29, 32, 35, 38 2.142 2.142 2.142

6 6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31, 33, 34, 36, 37 0.347 0.347 0.347

7 39, 40, 41, 42 0.1 0.539 0.1

8 43, 46, 49, 52, 55 3.565 2.8 3.565

9 57, 58, 59, 60, 61, 62 0.347 0.539 0.1

10 64, 67, 70, 73, 76 4.805 3.813 4.805

11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68, 69, 71, 72, 74, 75 0.44 0.954 0.347

12 77, 78, 79, 80 0.44 0.1 0.347

13 81, 84, 87, 90, 93 5.952 5.952 5.952

14 95, 96, 97, 98, 99, 100 0.347 0.1 0.347

15 102, 105, 108, 111, 114 6.572 6.572 6.572

16 82, 83, 85, 86, 88, 89, 91, 92, 103, 104, 106, 107, 109, 110, 112, 113 0.954 0.539 0.954

17 115, 116, 117, 118 0.347 0.954 0.1

18 119, 122, 125, 128, 131 8.525 8.525 8.525

19 133, 134, 135, 136, 137, 138 0.1 0.1 0.1

20 140, 143, 146, 149, 152 9.3 9.3 9.3

21 120, 121, 123, 124, 126, 127, 129, 130, 141, 142, 144, 145, 147, 148, 150, 151 0.954 1.174 0.954

22 153, 154, 155, 156 1.764 0.44 0.1

23 157, 160, 163, 166, 169 13.33 13.33 10.85

24 171, 172, 173, 174, 175, 176 0.347 1.081 0.1

25 178, 181, 184, 187, 190 13.33 13.33 13.33

26 158, 159, 161, 162, 164, 165, 167, 168, 179, 180, 182, 183, 185, 186, 188, 189 2.142 2.142 0.954

27 191, 192, 193, 194 4.805 3.565 6.572

28 195, 197, 198, 200 9.3 8.525 13.33

29 196, 199 17.17 17.17 13.33

Weight (lb) 28544.0 29737 27701.7 27910.7
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Table 7 Comparison for the 25-bar space truss

Variables Optimal cross-sectional areas (in.2)

Coello 
Coello et 
al. [49]

Erbatur et 
al. [16]

Camp
[10]

Kaveh et 
al.

[51]
This work

A1 0.1 0.1 0.1 0.1 0.1

A2 0.7 1.2 0.3 0.3 0.3

A3 3.2 3.2 3.4 3.4 3.4

A4 0.1 0.1 0.1 0.1 0.1

A5 1.4 1.1 2.1 2.1 2.1

A6 1.1 0.9 1.0 1.0 1.0

A7 0.5 0.4 0.5 0.5 0.5

A8 3.4 3.4 3.4 3.4 3.4

Best weight (lb) 493.94 493.8 484.85 484.85 484.85

Average weight (lb) 485.10 484.90 484.85

5 Conclusions
A mixed strategy of constructing a genetic algorithm for the 

optimization of trusses has been developed. For various individ-
uals of a population, removal is performed if specified limita-
tions are not satisfied. Significant penalties are provided for the 
remaining individuals in this case. A combined mutation scheme 

is also applied by means of random selection of parameter val-
ues of all admissible quantities or random transfer to values 
which are close to the current state of varied variables. Then, the 
general procedures of selection according to the roulette-wheel 
method and crossover are carried out. Such approach to form 
a genetic algorithm allows one to provide exact satisfying of 
the limitations, with relatively high stability and convergence 
rate. Two sets of problems have been considered to evaluate the 
performance of the algorithms: optimization of 15 unimodal, 
multimodal, rotated, shifted and shifted and rotated benchmark 
mathematical functions and several standard tasks for size, size/
topology and size/shape/topology optimization of trusses. The 
average results for the benchmark functions have been com-
pared with the three effective discrete optimization algorithms: 
NMBPSO, BGSA and BHTPSO-QI. Solutions on trusses 
are compared with the well-known numerical results. On the 
basis of these comparisons, we can conclude that the proposed 
approach is better in terms of accuracy for benchmark functions 
than other considered algorithms and provides the obtaining of 
new results for trusses having for discrete design variables less 
value of an objective function than results of other authors, or 
the best of those published in literature.

Table 8 Optimization results for Kirsch’s example

Number of 
topology

Cross-sectional areas (in.2) for the member
V (in.3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 - - 0.3 - 1.0 1.1 0.8 1.0 - 0.2 0.2 - 0.4 - 0.4

240

2 - 0.3 - - 1.0 0.8 1.1 1.0 0.2 0.2 - 0.4 - 0.4 -

3 - 0.3 0.3 - 1.0 0.8 0.8 1.0 0.2 - 0.2 0.4 - - 0.4

4 0.3 - - 0.3 1.0 0.8 0.8 1.0 0.2 - 0.2 0.4 - - 0.4

5 - - - - 1.0 1.1 1.1 1.0 - 0.4 - - 0.4 0.4 -

6 0.1 0.2 0.2 0.1 1.0 0.8 0.8 1.0 0.2 - 0.2 0.4 - - 0.4

Fig. 8 Optimal topologies for Kirsh’s example
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