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Abstract

This paper describes the mechanical modeling of rapeseed

using the 3D Discrete Element Method (DEM). We investigated

rapeseeds as a set of granular material points using a lin-

ear elastic material model with Coulomb friction and cohesive

bonds. The parameters of the model were determined through

physical and mechanical investigations. The mechanical prop-

erties were validated against actual measurement results using

a single-axis compression box and a direct shear box. The

investigations yielded the following micro-mechanical param-

eters: normal particle stiffness (Kn): 437 kN/m; particle shear

stiffness (Ks): 100 kN/m; particle-to-particle friction coefficient

(µ) 0.5; particle-to-wall friction coefficient (µ) 0.2; wall normal

stiffness (Kn): 1311 kN/m; wall shear stiffness (Ks): 300 kN/m;

local damping coefficient (γ): 0.7. The results proved that the

DEM method is suitable for simulating the macro-mechanical

behavior of rapeseed for the pressing process.
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1 Introduction

Our planet’s fossil energy resources are finite, so renewable

energy resources, including biofuels like biodiesel, play an in-

creasingly vital role. Biodiesel is made from vegetable oils, and

one of its key base materials is rapeseed oil pressed from rape-

seed (Brassica napus L.). Rapeseed oil is used both as a fuel

and as a base material in the food and chemical industry. Efforts

are made in the production process to improve the properties of

the resulting oil. The properties of the oil can be improved by

cross-breeding, genetic modifications, more efficient plant care,

pretreatment of harvested seeds, improved oil extraction tech-

nologies and physical/chemical post-treatment of the extracted

oil. During mechanical processing, the most important prop-

erty is the material behavior of rapeseed under normal and shear

stresses applied during processing.

From a mechanical engineering point of view, the focus is on

the extraction process where different methods can be used to

separate the oil from the solid parts [1]. The mechanical designs

used rely on an empirical or experimental basis that, however,

does not provide detailed insights into what exactly happens dur-

ing the process [2]. In order to create more efficient designs, new

procedures need to be developed. Owing to its granular material

properties, rapeseed exhibits a characteristic mechanical behav-

ior [3].

The particle geometry of granular agricultural materials

greatly determines their technological processing [4]. A com-

plete description of the generally irregular grain shape would re-

quire too many measurement data. However, practice teaches us

that a good approximation of particle geometry can be achieved

using well-selected orthogonal sizes for length, width, and

thickness. An objective measure of grain shape is its spheric-

ity, a measure that has various definitions. For smaller grain

sizes, the simplest and most plausible method is to determine

the largest inscribable and smallest circumscribable circle [5].

According to experience, certain properties of natural sets like

granular agricultural materials show a Gaussian distribution, al-

though log-normal distributions can also be found. The geome-

try is also characterized by the particle surface, which is impor-

tant when studying the micro-mechanics of pressing, notably
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surface adhesion. Granular materials can also be characterized

by the volume, density, or unit weight of its particles. Materials

with small grain sizes are usually characterized by their volume

density (or unit weight) which, per definition, is mass per unit

volume. Another property of granular materials is their porosity

(void ratio), calculated as the ratio of voids (pore volume) to the

total volume of the material [6].

The mechanical properties and behavior of biological materi-

als are controlled by a host of factors [7]. Due to this complexity,

theoretical approaches can only be used to approximate real-life

behavior in special cases where certain conditions are met [8].

Therefore, empirical methods are mainly used, where the accu-

rate recording of the factors determining material property and

behavior is of key importance [9].

A number of researchers have investigated the parameters of

material models using the Finite Element Method [10–12] and

the Discrete Element Method [13,14] for simulating agricultural

soils [15–17]. Simulations using the Finite Element Method

(FEM) to account for grain-to-grain phenomena in rapeseed do

not provide sufficient accuracy.

In contrast, mechanical processes occurring during the pro-

cessing of granular material can by analyzed with sufficient ac-

curacy using a properly calibrated Discrete Element Method.

DEM models used for this purpose were designed to fit the char-

acteristics of the studied phenomenon and the properties of the

materials to be simulated. The need to decrease resource re-

quirements and simulation runtime justify the use of specialized

models, but their usability for studying the various material phe-

nomena is severely limited. While rapeseed material models de-

signed in previous research were not validated with simulated

multi-axis mechanical stresses, it is important to consider such

stresses in order to account for the significant normal and shear

stresses that occur during the extrusion pressing of rapeseed

[18]. In order to investigate these more mechanically complex

phenomena, more complex rapeseed models are needed that can

be used to analyze multi-axis stresses within the grains. Earlier

work in this field did not study complex multi-axis stress cases.

During our research, we investigated the physical and mechani-

cal properties of rapeseed, and used the results to design a me-

chanical model that reflects real material behavior.

2 Material and method

2.0.1 Measuring physical properties

The measurements were performed on cleaned rapeseed.

Since the mechanical properties of biological materials are sig-

nificantly influenced by their physical properties [19], we first

determined the physical parameters of the sample under investi-

gation [20]. Using a Dickey-john GAC 2100 Agri digital mois-

ture tester, we measured the volume density of the sample as

well as its moisture content and temperature. The size distribu-

tion of the seed sample was determined using a strainer mea-

suring unit (MLW). Based on the geometry simplifications of

the model, it was sufficient to only use loaders with 1.00, 1.25,

1.60, 2.00, 2.50, and 3.00 mm hole diameter for determining the

size distribution required by the model. The masses of parti-

cles remaining on the strainers were measured using a Sartorius

LA12005 digital weighing equipment. The fractions were de-

termined in five measurements.

2.0.2 Single-axis compression tests

Mechanical behavior under single-axis load was investigated

using a piston-operated compaction cylinder with an exter-

nal/internal diameter of 100 / 80 mm [21]. The piston and its IN-

STRON 2525-802 load cell was mounted on the vertically mov-

ing slider of an INSTRON 5581 universal mechanical measure-

ment instrument (UMM), with the compaction cylinder mounted

on the mounting plate in accordance with the horizontal position

of the piston (Fig. 1).

Fig. 1. Single-axis load test configuration (1. Sample tested; 2. Compaction

cylinder; 3. Piston; 4. Load cell; 5. Slider; 6. Displacement sensor).

A desktop PC running the MERLIN software was used to log

the data of the load cell. After loading the sample into the com-

paction cylinder, a constant piston feed rate was used to plot

the compression curves. The measurement was performed there

times, each time at a feed speed of 500 mm/minute. The com-

pression curves so obtained were then averaged for compres-

sion force. Compression data were logged for a force range of

150 N - 30 kN (3.82 MPa).

2.0.3 Shear tests

The mechanical behavior of rapeseed under direct shear stress

was investigated using a Balássy-type shear stress measuring

unit [22] mounted on the UMM (Fig. 2). The first part, a base-

plate with slots and rollers, was fixed to the mounting plate of

the UMM. The movable lower half of the box with the load cell

was placed on top of the baseplate. The top half of the shear box,
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fixed to a pressure plate that could be moved vertically, was po-

sitioned above the lower half of the shear box. The internal di-

mensions of the shear box were W = 200 mm, D = 200 mm and

H = 80 mm. A lever mechanism and applied weights ensured a

constant pressure on the grain sample loaded into the shear box.

The horizontally movable lower part was connected to the slider

of the UMM by a wire reeved through a pulley.

Fig. 2. Shear test configuration (1. Grain sample; 2. Shear box; 3. Load

lever; 4. Load weight; 5. Load cell mounted on the shear box; 6. Pulley; 7.

UMM slider ; 8. Displacement meter).

In order to minimize friction among the device’s own com-

ponents, a clearance of 1 mm was left between the fixed upper

half and the movable lower half. A load cell type HBM U2A

mounted on the lower part measured the traction force acting on

the lower part, and the travel of the lower part was measured us-

ing a displacement meter. Signals from the measuring units were

collected by an HBM Spider 8 data acquisition unit which for-

warded them for storage to a portable computer running the Cat-

man software. During the shear test measurements, a cross sec-

tion of 200 mm x 200 mm of the seeds was investigated apply-

ing four different normal loads (25.75 kPa, 43.50 kPa, 61.00 kPa,

78.75 kPa) at a shear velocity of 3 mm/minute for each load.

Based on the shear curves obtained for the different load val-

ues, we were able to determine the shear strengths, the macro-

mechanical cohesions, and the internal friction angles [23]. In

our evaluation, we also took into account the idle resistance of

the shear box. Three measurements were performed for each

measurement point. Seeds damaged by shearing were not re-

used in subsequent measurements.

2.1 Investigating the mechanical model of rapeseed using

the DEM method

The rapeseed sample was modeled using the PFC3D (Particle

Flow Code in three dimensions) discrete element software [24].

The Discrete Element Method (DEM) is a numerical method

for investigating the mechanical behavior of a large number of

small particles. The method posits that the material consists of

discrete particles that interact with each other though predefined

connections and bonds among them. These bonds may break

and new ones may be formed. Each of the finite number of par-

ticles has its own translational and rotational freedom, enabling

it to perform translations and rotations by a finite amount [25].

The software is based on time steps and uses an explicit time

integration algorithm. The model consists of infinitely rigid reg-

ular spherical particles, but allows particles pushed against each

other to overlap.

Fig. 3. Linear elastic contact model with Coulomb friction.

Connecting particle pairs are assumed to be in point contact.

Contact faces important for studying the phenomenon can be

modeled using planar elements of various types.

The material model for rapeseed was designed in multiple

steps. In conjunction with DEM models, this process is called

calibration [26]. The micromechanical model (the connections

of particle pairs) provides a rough approximation for the be-

havior of the real material. The material model (particle set)

was calibrated based on the results of the macro-mechanical

tests (single-axis compression and shear tests). The immedi-

ate goal was to create a material model whose resistance values

when subjected to macro-level compression and shear are close

to those of the real material over the investigated interval [27].

This was achieved using a relatively simple linear elastic cohe-

sive contact model with Coulomb friction (Fig. 3) and point-like

contacts between pairs of spherical particles larger than the real

seeds. The simplifications used when designing the model were

necessary in order to reduce the runtime and computation inten-

sity of the simulations and to fit the time and resources available

for research.

When creating the model, first we specified the influence

planes by their spatial orthogonal coordinates, then we gener-

ated the particle set consisting of spherical particles defined by

their centers and their diameters. The generated particles and

surface elements were assigned the initial parameters of the

material model, and the gravitational acceleration vector was

defined. The movements of the simulated particles were re-

calculated after each ∆t time step, and its value was crucial to

the usability of the simulation [28]. Depending on the material

properties, the simulation model has a critical time step value,

and choosing a value close to it or higher may cause simulation

to work incorrectly. After each time step, the PFC3D recalcu-

lated this critical time step value. A safety factor smaller than

1 was set to ensure that the value used during the simulation

is a fraction of the critical time step value. With the time step

value set correctly, the simulations yielded sufficiently accurate

results.
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2.2 Model for compression simulation

During calibration, a number of material parameters (cohe-

sion, internal friction angle, friction) needed to be set correctly.

Due to the complexity of the task, we ran the model separately

for the different load cases. While all material properties af-

fected the simulation results, their impact was different depend-

ing on the load case. When considering the effects of compres-

sion and shear, we assumed that the resistance shown by the

particle set would primarily be governed by the rigidity of the

particles during compression and by their friction and cohesiv-

ity during shear. The rolling resistance of regular spheres repre-

senting the seeds is significantly lower than that of real seeds this

effect was compensated for by increasing the inter-particle fric-

tion coefficient and the particles’ shear stiffness. Since compres-

sion load presses the particles together with a significant force,

we could not entirely neglect the resistance caused by friction as

particles slide on each other. We first used a linear elastic non-

cohesive contact model with Coulomb friction to calibrate the

normal stiffness and the internal friction coefficient. The initial

parameters used are shown in Table 1. The particle–wall friction

coefficient was set based on earlier rapeseed research.

Tab. 1. The model initial parameters.

Parameters Values

Min. particle diameter (mm) 6

Max. particle diameter (mm) 7

Density of particles (kg m−3) 1250

Normal stiffness of the particle (kN m−1) 437

Shear stiffness of the particle (kN m−1) 100

Coefficient of friction (particle-particle) (-) 0.20

Coefficient of friction (particle-wall) 0.23

Normal stiffness of the wall (kN m−1) 4000

Shear stiffness of the wall (kN m−1) 1000

Coefficient of local damping (-) 0.7

The influence surfaces of the simulated compression cylin-

der are its internal envelope (Ø100 mm× 80 mm) and its bottom

plate. The particle set, generated randomly into the cylindrical

volume defined by the cylinder envelope (Ø100 mm× 200 mm),

was settled using 9,81 m/s2 gravitational acceleration to arrive at

a steady state. Steady state was considered to have been reached

once the unbalance force acting in the particle set reached

1 x 10−4 N. Particles located above the top rim of the envelope

were discarded, then the surface representing the pressure plate

of the piston was also defined. The model so obtained consisted

of three surface elements and 2292 particles (Fig. 4). The num-

ber of discrete elements used was sufficient, as specifying the

ratio between the largest and smallest particle was sufficient for

describing the particle set. The material model using the chosen

particle sizes (Table 1) was suitable for simulation purposes and

also reduced the computational requirements.

During the simulations, the normal force acting on the piston

face as a function of its displacement was determined at a con-

stant piston feed rate of 500 mm/min. Data were logged for a

Fig. 4. The uniaxial compression test device, and the simulated oedometer

test device in standby state (100 mm x 80 mm).

load range of 150 N - 29.3 kN . We then reset the parameters of

the material model and ran simulations to set the different cali-

bration points defined by different combinations of normal stiff-

ness [kN] and particle-particle friction coefficient [-] (300, 0.4;

400, 0.2; 400, 0.3; 400, 0.4; 400, 0.5; 500, 0.4; 600, 0.4). Using

the particle set and its parameters, we determined the relation-

ship between stiffness and friction, and calibrated the normal

stiffness and the particle-particle friction coefficient.

2.2.1 Model of the direct shear test

The shear resistance of the material model was mainly deter-

mined by the particle-particle friction coefficient and the normal

(Cn) and shear (Cs) cohesional strength, with the latter two in-

creasing the rolling resistance of the spherical particles. The

friction coefficient was already set during the first stage, so the

second stage was used to set the normal and shear parameters

of the contact model positing point-like contacts. By increas-

ing shear cohesion, we could increase the rolling resistance and

also influence the internal friction angle of the material model.

Setting the normal cohesion, we could define the proper macro-

mechanical cohesion. The initial values of the material model

used for the simulations are shown in Table 2.

Tab. 2. Parameters of shear simulation.

Parameters Values

Min. particle diameter (mm) 6

Max. particle diameter (mm) 7

Density of particles (kg m−3) 1230

Normal stiffness of the particle (kN m−1) 384

Shear stiffness of the particle (kN m−1) 100

Normal strength of cohesion (N) 1.5

Shear strength of cohesion (N) 3.0

Coefficient of friction (particle-particle) (-) 0.34

Coefficient of friction (particle-wall) 0.23

Normal stiffness of the wall (kN m−1) 4000

Shear stiffness of the wall (kN m−1) 1000

Coefficient of local damping (-) 0.7

The influence surfaces of the shear box consisted of the inter-

nal surfaces of the two box halves (200 mm× 200 mm× 80 mm),

their rims (200 mm× 40 mm), and the pressure plate. Once

again, the particle set was randomly generated in the model

space. Steady state was considered to have been reached once
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the unbalance force acting in the settled particle set reached

1 x 10−3 N. The upper pressure plate was introduced into the

model after settling, and discarding the surplus particles. The

model so obtained consisted of 12 surface elements and 9805

particles (Fig. 5).

Fig. 5. The direct shear test equipment with the PC used for data acquisition,

and the shear test model (200 mm× 200 mm× 80 mm).

In the first stage of the simulation, we applied a load equal to

the real-life test through the upper compression plate. Once the

upper compression plate reached its stationary state, we started

pulling the bottom half of the box at a constant speed. Since

the contact model did not include a viscosity component, we ne-

glected the speed-dependence of the material’s behavior. The

runtime needed to simulate the relatively large number of par-

ticles could be decreased significantly by increasing the shear

speed (300 mm/min), leaving the time step unchanged. Com-

pared to the value used for shear tests (3 mm/min), the differ-

ence was relatively large, but the shear process was still too

slow. The shear force was a signed sum of the normal and shear

forces acting on the surfaces of the bottom half-box. Shear force

values were recorded as a function of translation. The simula-

tions lasted until a translation of 30 mm was reached. The points

needed for calibration were defined by value pairs of normal

(Cn) and shear (Cs) cohesional strength: 0.5, 3.0; 1.5, 2.0; 1.5,

3.0; 1.5, 4.0; 2.5, 3.0. For each of these combinations, sim-

ulations were run for the largest and smallest load (78.75 kPa

and 25.75 kPa, respectively). The shear strength values were

then determined based on the plotted shear curves and used to

determine the macro-mechanical cohesion and the internal fric-

tion angle for each value combination. We then compared the

results of the simulations with the actual measured results and

calibrated the cohesion parameters of the model.

3 Results and discussion

3.1 Measurement results

The investigated rapeseed sample had a volume density (ρ) of

651± 3 kg/m3, a temperature (t) of 24.3± 0.5 °C, and a mois-

ture content (W%) of 5.5± 0.1 percent. Based on the results

obtained using the strainer measuring unit, we determined the

actual density function of the sample’s particle sizes as well as

the relative frequencies of particle sizes (Fig. 6). The results

show that the majority of the particles fell into the size range of

1.7 - 2.0 mm. Considering the largest particle size of 7 mm used

in the rapeseed material model, this corresponds to a 6 - 7 mm

size range with linear distribution. The measured physical pa-

rameters agree with the results published in literature [2, 18].

Fig. 6. Empirical rapeseed density function and fraction frequencies.

The compression curves obtained by applying a feed speed

of 500 mm/min are shown in Fig. 7. While our study re-

sults obtained for single-axis compression could not be directly

compared with results published in literature [21], because the

measurement parameters used were different, the characteristic

curves and the measured results were close to those obtained by

other researchers, validating our tests. Since the curve points

were plotted using the same x coordinates for all curves, aver-

aging was performed based on the forces that caused the dif-

ferent deformation values. The curve obtained can be closely

approximated using a second-order polynomial. In order to im-

prove the approximation, the polynomial does not start from the

origin. The resulting error caused in the origin was neglected.

Because the polynomial is determined primarily by the linear

and the quadratic coefficients, we used these two values during

calibration for characterizing the curve.

Fig. 7. Rapeseed compression curves (v = 500 mm/min).

The shear strength values were determined based on the

stationary segments of the curves obtained from shear tests

performed using different normal loads and a feed speed of

3 mm/min. The shear strength plotted as a function of nor-

mal stress defined the failure curve of the rapeseed (Fig. 8).

Based on the line obtained, we could determine the macro-

mechanical cohesion (C = 11.41 kPa) and the internal friction

angle (Φ = 28.10°). Cohesion among the initially dry seeds was

caused by oil seeping to the seed surface as the sample was

compressed. Using the material parameters determined by shear
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tests yielded realistic results.

Fig. 8. The resulting σ - τ line of the direct shear test (v = 3 mm/min).

3.2 Calibration results of the rapeseed material model

The first calibration step was to set the volume density. In

the compression model, the volume density of the settled and

stationary sample was 661 kg/m3, obtained using the initial pa-

rameters. In order to arrive at the desired value of 651 kg/m3,

we increased the particle density to 1230 kg/m3.

The progressive characteristics of the curves obtained from

compression simulation matched the measured values, but the

deformation values of the simulated curves for a load of 150 N

were larger than the measured ones. This difference was mainly

caused by the simplicity of the model; the initial discarding of

particles reaching above the cylinder rim resulted in a significant

gap between the compression plate and the uppermost layer of

the remaining particles. While this shifted the curves of com-

pression simulation, the overall difference was less than 5% rel-

ative to the height of the simulated particle set. During anal-

ysis, the deformation values of the curves at a load of 150 N

were assumed to be zero. Similarly to the measured compres-

sion curves, the simulated compression curves can be closely

approximated using second-order polynomials (R2 > 0.95).

The curves were characterized using the linear and quadratic

curve coefficients (Fig. 9). At the calibration points defined by

value pairs of normal strength (Fig. 9a) and internal friction co-

efficient (Fig. 9b), the dependencies of the linear and quadratic

curve coefficients were examined separately.

A planar regression surface could be fitted on each set of

plotted points. The quadratic equations describing the surfaces

can be assigned the corresponding coefficients of the measured

curve. Equating the equations and the coefficients, we obtained

an equation system with two unknown quantities. Solving these

equations yielded a normal strength (Kn) of 384 kN/m and an

internal friction coefficient (Φ) of 0.34. This concluded the com-

pression calibration of the linear elastic cohesive contact model

with Coulomb friction (Fig. 10).

(a)

(b)

Fig. 9. Linear and quadratic curve coefficients of the second-order polyno-

mials used to approximate the curves obtained from compression simulations,

shown as a function of a, normal strength and b, internal friction coefficient.

Fig. 10. The curve obtained after calibration based on measured and simu-

lated compression tests.

3.3 The calibration of shear simulations

The shear simulations yielded degressive shear curves that

matched the measured curves. The shear curves were evaluated

using the method described for the measured curves. We deter-

mined the shear strengths for the different curves and plotted the

values as a function of normal stress, enabling us to determine

the macro-mechanical cohesion (C) (Fig. 11a) and the internal

friction angle (Φ) (Fig. 11b).

At the calibration points defined by value pairs of normal

strength and internal friction coefficient, we separately inves-

tigated the macro-mechanical cohesion and the tangent of the

internal friction angle (Fig. 11).

Linear regression planes were fitted on the calibration points

for both sets. The equations describing the surfaces can be as-

signed the macro-mechanical cohesion and the tangent of the
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(a)

(b)

Fig. 11. The macro-mechanical parameters characteristic for the failure

curves (a, cohesion; b, internal friction angle) obtained from shear simulations,

shown as a function of the normal (Cn) and shear (Cs) cohesion components.

internal friction angle determined from the measurements. Solv-

ing the equation system with containing unknown quantities

yielded 1.32 N for the normal component and 3.17 N for the

shear component. The simulations run using these parameters

approximated the measured failure curve, but the results were

not satisfactory, so we fine-tuned the normal component of the

model using linear interpolation between the calculated value

pair and the 0.5, 3.0 calibration point. We finally obtained a

rounded value of 1.1 N for the normal component and 3.2 N for

the shear component. The results of the validate run are shown

in Fig. 12 Shear simulations validated that the cohesive bond

model can be used effectively for increasing the rolling resis-

tance of spherical particles.

Fig. 12. Failure curves obtained using the model calibrated based on the re-

sults of measured and simulated shear tests.

As a last phase of calibration, the model was re-checked by

running a compression simulation. The results show that the co-

hesive material model closely approximates the calibrated non-

cohesive model (Fig. 13). The most noticeable difference be-

tween the curves is seen at a load value of 150 N. Due to the

cohesion keeping the simulated particles together, the model be-

gins to deform at a smaller load, but the curves still touch be-

cause the cohesion parameters can not be determined for single-

axis load.

Fig. 13. Compression simulation results obtained for cohesive and non-

cohesive material models.

4 Conclusions

Our research proved that the linear elastic cohesive contact

model with Coulomb friction and point-like contacts can be used

to create a material model that gives a good approximation of

the macro-mechanical behavior of rapeseed. The physical and

mechanical tests enabled us to calibrate the model for both com-

pression and shear loads such that it exhibited a sufficiently good

approximation of real-life behavior.

We also succeeded in determining the parameters based on the

relationships among the calibration points. The DEM-based ma-

terial model designed for rapeseed (studied at a temperature of

T = 24.5°C and a moisture content of w = 5.5%) was validated

for a maximum combined compression/shear load of 80 MPa,

and for a maximum compression stress of 3.8 MPa. Since the

contact model did not include a viscosity component, its me-

chanical behavior was not speed-dependent.

Using the micro-parameters obtained during calibration, a

particle diameter of 7 mm, and a particle density of 1250 kg/m3,

we performed the oedometer test and validated a particle nor-

mal stiffness (Kn) of 437 kN/m, a particle shear stiffness (Ks)

of 100 kN/m, a particle-particle friction coefficient (µ) of 0.5,

and a particle-wall friction coefficient (µ) of 0.2. The validated

results, i.e. the already mentioned micro-parameters of the di-

rect shear box test were as follows: particle-particle cohesion

strength in normal direction (Cn): 1.5 N; particle-particle shear

strength (Cs): 3.1 N; wall stiffness in normal direction (Kn):

1311 kN/m; and wall shear stiffness (Ks): 300 kN/m, using a

damping coefficient γ= 0.7.

The DEM modeling system is able to simulate many mechan-
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ical principles of materials consisting of particles, making it pos-

sible to accurately analyze real-life phenomena. The 3D DEM

method is suitable for the highly accurate simulation of a rape-

seed set, as borne out by laboratory investigations.

We conclude that the DEM method is useful for modeling

rapeseed as a set of particles in a linear elastic material model

with Coulomb friction and point-like cohesive bonds. The re-

sults prove the accuracy and reliability of the DEM method, and

the model we designed helps reduce the number of expensive

measurements.
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