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Abstract

In this paper a numerical method is developed to find the

eigenvalues of the Laplacian matrix for near-regular graph

models. Considering the similarity between the pattern of the

Laplacian matrix of a graph and the stiffness matrix of a struc-

ture, the method can be used for the eigensolution of struc-

tural/mechanical systems. Previously, using graph product rules

algorithms for the swift solution of the equation F = K∆ in

structural/mechanical systems were developed. In this study,

using a purposeful ordering along with partitioning the Lapla-

cian/stiffness matrix, a decomposable pattern is achieved. The

decomposed parts are solved using combined graph product

rules and numerical solutions. While the eigensolution of regu-

lar patterns has been traditionally considered as an approxima-

tion for near-regular patterns, here the solution of the regular

pattern is utilized as an appropriate initial starting point for the

solution of near-regular pattern. Furthermore, solving the de-

composed regular part using graph product rules reduces the

computational complexity of the method.
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1 Introduction

Although the advent of powerful computers have smoothened

the way for the swift computations structural/mechanical sys-

tems, the analysis of complicated systems are still laborious and

time-consuming. Many algorithms for the solutions of large-

scale structural/mechanical systems have been developed over

the past three decades. These algorithms have mainly aimed

to find efficient solutions for the structural governing equations

(i.e. F = K∆) and/or eigensolution of a system (i.e. frequen-

cies of free vibration). However, due to the variety of sys-

tems and lack of general patterns, most algorithms are lim-

ited to partial applications. The most successful advancements

were achieved in the solution of symmetric and regular pat-

terns wherein linear algebra, graph products, group theoretical

method, U-transformation etc. were employed to divide com-

plicated large problems into sub-systems and solve the smaller

parts with less computational complexity and then combine the

solutions (i.e. divide and conquer methods) [1–7].

There are various structural/mechanical systems with geome-

tries close to those of regular structures, but not satisfying the

required mathematical conditions to be considered as regular. A

model is called regular if it can be considered as the product of

two or three graphs [1]. A near regular model consists of a reg-

ular submodel with limited number of members and/or nodes

being added or removed. Recent efforts have been devoted to

realize, classify and solve these near-regular patterns efficiently

through the available solution of the regular part [8–12]. While

several flexibility and stiffness methods, and finite difference

and finite element formulations were developed to solve the fi-

nal governing equation F = K∆, less success were achieved for

the eigensolution of the near-regular systems [8–12]. Compared

to the solution of F = K∆, eigenvalue problems are more sensi-

tive to the algebraic manipulations. This often leads to matrices

with general patterns that cannot usually be solved using specific

efficient solvers.

In this paper a numerical algorithm is presented for obtaining

the eigenvalues of near-regular structures. In this method utiliz-

ing the decomposition of block matrices, a determinant equation

is obtained. This equation includes separate submatrices corre-

A Numerical Method for Eigensolution of Near-Regular Structural and Mechanical Systems 2472016 60 2

http://dx.doi.org/10.3311/PPci.8192
http://creativecommons.org/licenses/by/3.0/


sponding to the regular and irregular parts of the system. The

equation is then solved with a numerical method. The swiftness

of the solution corresponds to: 1) Appropriate initial starting

point of the solution (i.e. the eigenvalues of the regular struc-

ture) and 2) Efficient solution of the separated matrix (corre-

sponding to the regular system), in each iteration, using graph

product rules.

2 Eigenvalues for the regular graph products

Sufficient conditions for converting Hermitian matrices A1

and A2 into upper triangular ones using one orthogonal matrix

are [11, 13, 14]:

A1A2 = A2A1 or A2
1 = A2

2 (1)

Consider the matrix M to be the sum of two Kronecker prod-

ucts:

M = A1 ⊗ B1 + A2 ⊗ B2 (2)

If one of the conditions in Eq. (1) holds, the eigenvalues of

the block matrix M are obtained as follows:

λM =

n⋃
i=1

eig (Mi); Mi = λi (A1) B1 + λi (A2) B2 (3)

In this equation, the dimension of matrices A1 and A2 is equal

to n, and the dimension of matrices B1 and B2 is equal to m.

In structural engineering block diagonal matrices, especially

tri-block diagonal matrices, are of great importance. Some regu-

lar forms of these matrices were solved previously [13,15]. The

following two forms correspond to the stiffness matrices of reg-

ular structures:

Fn (Am,Bm,Cm) =



Am Bm

Bm Cm Bm

Bm

. . .
. . .

. . . Cm Bm

Bm Am


;

Gn (Am,Bm,Cm) =



Am Bm Bm

Bm Cm Bm

Bm

. . .
. . .

. . . Cm Bm

Bm Bm Am



(4)

The solved patterns consist of the forms Gn (Am,Bm,Am),

Fn (Am,Bm,Am) and the form Fn (Am,Bm,Cm) with the condi-

tion Am − Bm = Cm. While the forms Gn (Am,Bm,Cm) and the

form Fn (Am,Bm,Cm) with the condition Am − Bm , Cm are not

completely regular to be swiftly solved.

3 Decomposition of partitioned block matrices

This section is devoted to some techniques of partitioned

block matrices. Manipulating a partitioned matrix is a basic and

helpful approach in matrix analysis. The applied methods in

partitioned matrices are similar to those of ordinary numerical

matrices in some ways. Consider a 2× 2 matrix as

A =

 a b

c d

 , a, b, c, d ∈ C (5)

Using a basic row operation, the second row of the matrix

multiplied by 2 can be added to the first row so that the determi-

nant of the matrix does not change: 1 2

0 1

  a b

c d

 =

 a + 2c b + 2d

c d

 (6)

This row or column operation can be generalized to parti-

tioned block matrices as

1 Interchanging two block rows or columns,

2 Multiplying a block row or column from the left or right by a

matrix of proper size,

3 Multiplying a block row or column by a matrix and then

adding it to another row or column.

It should be noted that for maintaining the symmetry of the

matrix, these operations are performed simultaneously on rows

and columns and therefore the determinant does not change.

Now using the above three basic rules one can convert a two-

block matrix into a two-block diagonal matrix so that the deter-

minant does not change:

 In 0

−M21M−1
11

Im

  M11 M12

M21 M22

  In −M−1
11

M12

0 Im

 =

=

 M11 0

0 M22 −M21M−1
11

M12

 (7)

where M11 is an invertible matrix of dimension n and M22 is

a matrix of dimension m

Consequently we will have

∣∣∣∣∣∣∣ M11 M12

M21 M22

∣∣∣∣∣∣∣ = det M11det
(
M22 −M21M−1

11 M12

)
(8)

For finding the eigenvalues of the partitioned matrices, the

matrix M11 is changed to the matrix M11 − λIn and the matrix

M22 is changed to the matrix M22 − λIm ,

∣∣∣∣∣∣∣ M11 − λIn M12

M21 M22 − λIm

∣∣∣∣∣∣∣ = det (M11 − λIn) ·

· det
(
M22 − λIm −M21 (M11 − λIn)−1 M12

) (9)
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Equating this determinant to zero, results in:

det (M11 − λIn) = 0 (10)

and

det
(
M22 − λIm −M21 (M11 − λIn)−1 M12

)
= 0 (11)

Considering the condition of the decomposition where M11 in

Eq. (8) or M11 − λIn in Eq. (9) is invertible, Eq. (10) does not

hold. Consequently, for finding the eigenvalues of the two-block

matrix, only Eq. (11) should be solved.

As a simple example consider the following matrix

M =


0.8147 0.6324 0.9575 0.9572

0.9058 0.0975 0.9649 0.4854

0.1270 0.2785 0.1576 0.8003

0.9134 0.5469 0.9706 0.1419


Using Eq. (9), we will have

det

 0.1576 0.8003

0.9706 0.1419

 − λI−

−

 0.1270 0.2785

0.9134 0.5469

  0.8147 0.6324

0.9058 0.0975

−
−λI)−1

 0.9575 0.9572

0.9649 0.4854

 = 0

The roots of this equation will be the eigenvalues of Matrix

M

λM = {2.4021, −0.0346, −0.7158, −0.4400}

Solving Eq. (9) results in finding the characteristic equation

of the two-block matrix In general, finding the eigenvalues of

matrices using their characteristic equation is not considered as

a time-saving approach because both forming and solving the

characteristic equation are difficult.

4 Computational complexity of eigensolution of near-

regular graphs via solution of characteristic equation

Eigensolution of a matrix by solving the equation

det (M − λI) = 0 includes forming the characteristic equation

and then solving it by an iterative method. In addition to the

difficulties inherent to the formation of characteristic equation,

using an iterative method for calculating eigenvalues makes

the method very complicated. However, when it comes to

near-regular forms, the method changes to an efficient approach

via the application of the features of the regular patterns.

Complexity theory has been well developed in numerical lin-

ear algebra. However, for eigenvalue problems where iterative

methods are required, the complexity of algorithms cannot be

easily obtained since the number of steps for achieving a de-

sirable accuracy is not definite. Another problem is concerned

with the initial starting point that is very important in many it-

erative algorithms which affects the number of iterations and

consequently the computational complexity.

In this study, the difficulties of solving the equation

det (M − λI) = 0, shown in Eq. (9) are smoothened for near-

regular graphs. The method is carried out through

1 Removing the difficulty of inverting the matrix M11 − λIn,

shown in Eq. (9).

2 Decreasing the complexity of the applied iterative method.

As it was mentioned, the matrices in this study are near-

regular matrices composed of regular and irregular parts. Num-

bering the nodes of the graph (structure) is performed in such

a way that the regular and irregular parts are separated. There-

fore the Laplacian (stiffness) matrix will have a two-block ma-

trix form M as shown in Eq. (6), where the block M11 represents

the regular part and the block M22 represents the irregular part.

Such an ordering can be seen in Fig. 1 for a near-regular graph

Fig. 1. A near-regular graph with a suitable ordering

Where the black numbers form the regular block M11 and the

red ones form the irregular block M22. Previously, the inverse

of the Laplacian matrix of regular graphs was obtained using its

eigenpairs [15]:

Ax = b⇒ {ϕ}Tj A{ϕ} jy j = λ jy j = {ϕ}Tj b

y j =
b j

λ j

⇒ {x}n =

n∑
i=1

{ϕ}iyi =

n∑
i=1

{ϕ}i
bi

λi

=

n∑
i=1

{ϕ}i{ϕ}
T
i

λi

b

(12)

Where λi and {ϕ}i are the eigenpairs of the matrix A.

Since the block M11 is regular, M11 − λIn is also regular.

But in references [13–15], the eigenpairs and the inverted ma-

trix were found for a regular matrix filled with numbers. Invert-

ing the parametrical matrix M11 − λIn, solving the parametrical

determinant and finding the characteristic equation is rather dif-

ficult. However, since the characteristic equation should be ul-

timately solved iteratively to find the eigenvalues, in the present

study an approach is utilized in which the iterative method is

applied at earlier stage. In other words, the iterative solution

is directly applied to Eq. (9) without forming the characteristic

equation. The advantage of applying the iterative solution in ad-

vance is that after making an initial guess for λ in Eq. (9), the

numerical matrix M11 − λIn is quickly inverted using Eq. (10)

and subsequently the determinant is solved. The determinant is
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of the dimension of the irregular part (M22). Since in a near-

regular graph we assume the irregular part to be small, the de-

terminant is easily solved iteratively, until stopping criterion is

satisfied. The iteration is performed using a bisection method to

obtain all eigenvalues. Using strong initial guesses for the λis

ensures the convergence of the solution. The Laplacian matrix

for the graph shown in Fig. 1 can be written as

M =

 M11 M12

M21 M22

 ;

(M11)nm = Fn (Cm,Bm,Cm) =

In⊗Cm + Tn⊗Bm

(13)

From Eq. (11) it can be seen that Tn = Fn(0, 1, 0), and obvi-

ously InTn = TnIn,i.e. the condition of Eq. (1) is satisfied and

M has the property of being block diagonalized.

According to the definition of a near-regular structure, the

regular part is much larger than the irregular part. In other

words, in the computational complexity of a near-regular struc-

ture it is assumed that only the dimension of M11 (the regular

part) approaches to infinity. Consequently, the initial guess is

made using a matrix of the dimension of the matrix M but a pat-

tern similar to the pattern of the regular matrix M11.Therefore,

the following matrix is used for the initial guess

(M∗)lm = Fl (Cm,Bm,Cm) (14)

Since the matrix M∗ has a regular form, its eigenvalues are

easily obtained. The eigenvalues of the matrix M∗ are close to

the eigenvalues of the matrix M. The similarity becomes more

obvious, when the regular part becomes larger.

Another way of finding the matrix M∗ is to obtain the matrix

M through a usual ordering as shown in Fig. 2. We will have

Mnm = Fn (Am,Bm,Cm) (15)

Fig. 2. A near-regular graph with a usual ordering

Since the graph follows the pattern of the strong Cartesian

product, Am − Bm , Cm and it is classified as a near-regular

form. For converting the near-regular matrix M to a regular

one, the block Am is changed to the block Cm. This conver-

sion causes the regular matrix M∗ to be obtained again. In Ref.

[16] it is shown that addition of members around a graph, the

condition Am − Bm = Cm holds and the eigenvaluses of the

expanded graph are not much different with those of the graph

before addition. Thus the eigenvalues of M and M∗ are close to

each other.

Up to now, a proper ordering was considered, the iterative

method was applied in advance, the appropriate initial guess was

made and the inverse of the matrix M11 − λIn was found. Now,

the complexity of the method is evaluated to show it is both

measureable and less complicated. As it was mentioned, the

computational complexity of many iterative methods is not mea-

sureable. The computational complexity of an iterative bisec-

tion method for finding the roots of the relationship f (x) = 0 is

measureable only in the case of finding a certain root in the inter-

val [a, b]. However, while finding the multiple roots of an equa-

tion without having a sense of the domain of the roots, obtaining

the complexity of the method is impossible. The problem gets

worse when the order of the equation (the characteristic equa-

tion in our problems) grows. Growing the order of the equation

is certain because in calculating the complexity of the method

the order of the equation (N) should approaches to infinity.

Now, it is shown why calculating the complexity of the

method in the near-regular structures is possible. In a bisec-

tion method for finding roots in the interval [a, b], the number of

iterations (n) can be obtained as follows:

b − a

2n+1
< ε (16)

where ε is the upper bound for the error of the answer.

Eq. (14) can also be written as

n >
ln (b − a) − ln(ε)

ln(2)
− 1 (17)

Which means for a specific ε, the number of iterations de-

pends on the interval [a, b]. Consequently, the computational

complexity of the method depends on the interval [a, b]. In ob-

taining the computational complexity of an arbitrary character-

istic equation finding the proper a and b is impossible because

one cannot predict the changes of the interval [a, b] when the

order of the equation grows. In many cases, by increasing the

order of the equation, the interval [a, b] grows too with an indef-

inite rate. This way, not only the number of iterations grows, but

also finding the rate of the growth becomes impossible.

However, when we consider near-regular graphs, the interval

[a, b] is limited and measurable. In a near-regular graph the reg-

ular part is the dominant part regarding the definition of near-

regular graphs. Moreover, the eigenvalues of the main struc-

ture are close to those of the corresponding regular part. Con-

sequently, for finding the domain of the problem (the interval

[a, b]), one should obtain the domain of the regular structure,

showing the lower and upper bounds are independent of the or-

der of the equation. In graph product theory, the regular forms

are presented in Kronecker forms, (Eq. 2).

Since the matrices A1 and A2 represent the number of sec-

tors in a graph, in comparison with the unchanged matrices B1

and B2 which represent the dimension of each sector, the matri-
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ces A1 and A2 are the basic matrices and their dimension will

increase when the graph M expands.

Therefore, the matrices A1 and A2 control the bounds of the

eigenvalues. Consider the Fig. 3

Fig. 3. A near-regular structure with a suitable ordering

In such a near-regular structure the black nodes form the reg-

ular matrix M11 as

M11 = F (C,B,C) = I ⊗ C + T ⊗ B;

T = F(0, 1, 0)
(18)

The dimension of the matrices I and T represent the number

of regular sectors that is equal to 4 in this example and the matri-

ces B and C represent the number of nodes in each sector that is

equal to 3 here. When the graph shown in the Fig. 3 grows, the

number of sectors grows (I and T), while the number of nodes in

each sector does not change (B and C). Thus the basic matrices

A1 and A2 control the bounds and computational complexity.

The known basic matrices in graph products include two

groups: 1) tri-diagonal matrices 2) Circulant matrices

Consider the following tridiagonal matrix for the first group:

Zn =



−α + b c 0 0 . . . 0 0

a b c 0 . . . 0 0

0 a b c . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . a −β + b


n×n

(19)

The eigenvalues of such a matrix is presented in [17] using

the following equation:

λ = b + 2
√

ac cos θθ , mπ,mεZ (20)

Where θ is calculated as follows:

ac sin (n + 1) θ+(α + β)
√

ac sin nθ+αβ sin (n − 1) θ = 0 (21)

In a regular graph α and β are equal to zero and a = c, then

Eq. (19) is converted to

a2sin (n + 1) θ = 0 (22)

And Eq. (18) changes to the following:

λ = b + 2acosθθ , mπ,mεZ (23)

Consequently, in a regular graph when the number of sectors

increases, according to Eq. (21) the lower and upper bounds of

the eigenvalues does not change. This is because n in Eq. (20)

influence only the cosθ in Eq. (21) which is always in the interval

[-1, 1]. Therefore the lower and upper bounds of the eigenvalues

in Eq. (21) are found. Using Eq. (3), the eigenvalues for a block

tri-diagonal matrix is obtained.

Now, we consider the second basic group so-called circulant

matrices:

P =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
...

...

0 0 0 . . . 1

1 0 0 . . . 0


n×n

(24)

The eigenvaluse of such a matrix are obtained via solving

det (P − λI) = λn − 1 = 0 (25)

The lower and upper bounds of the λ in Eq. (23) are simply

obtained in the interval [-1, 1] for real values. These bounds are

independent of the magnitude of the n. Again, using Eq. (3) the

eigenvalues of a three-block diagonal matrix are found.

Now, according to Eq. (15), since the value of ln(b − a)

is measurable and limited, the number of iterations are deter-

mined for a regular graph with any arbitrary dimension. There-

fore, the computational complexity of the iteration method is

related to the number of roots that is n roots in a graph of di-

mension n and consequently the complexity of the iteration step

is O(n). It was mentioned that regular graphs hold the relation-

ship A1A2 = A2A1. These matrices are tri-block diagonal ma-

trices holding the patterns of Gn(AmBmCm) and Fn(AmBmCm)

that decompose to n blocks of dimension m. Therefore, only n

times the eigenvalues of matrices of dimension m should be ob-

tained. Then, the inverse of the matrix M11 − λIn is obtained

using the eigenvalues. It was mentioned as the dimension of the

matrix M11 − λIn approach to infinity, m (the number of nodes

in a sector) does not change and only n as the number of sec-

tors grows. As a result, the complexity of inverting the matrix

M11 − λIn is also O(n). Again, consider the main equation as

det
(
M22 − λIm −M21 (M11 − λIn)−1 M12

)
= 0 (26)

After obtaining the value of (M11 − λIn)−1 for a specific λ in

an iteration the complexity of the term M21 (M11 − λIn)−1 M12

should be obtained. This is multiplication of three matrices in

which the computational complexity is O(mn2) Since m is lim-

ited, the computational complexity is O(n2) which is the largest

and dominant complexity in solving this equation. Thus, an ef-

ficient complexity is gained using the present method for the

near-regular graphs. It is less complicated than other efficient

known methods such as the method which uses a combination

of Householder and QR methods with the complexity of O(n3)

Now, the present method is outlined in the following steps:
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1 Ordering the near-regular graph so that first the regular part is

numbered and then the irregular part.

2 Forming the Laplacian (stiffness) matrix for the graph (struc-

ture). The matrix will have the pattern of the two-block matrix

M because of the mentioned ordering.

3 Forming Eq. (9) as the main equation.

4 Forming a Laplacian (stiffness) matrix named M∗ of the di-

mension n + m (similar to the dimension of matrix M) but

with the pattern of matrix M11 .In other words, forming a reg-

ular matrix corresponding to the near-regular matrix with the

same dimension (see Eq. (12)).

5 Finding the eigenvalues of the regular matrix M∗ through a

quick solution using Eq. (3). These eigenvalues are used as

the suitable initial guesses as they are close to the eigenvaluse

of the near-regular graph. The eigenvalues are in an interval

[a, b] which is independent of the dimension of the matrix

M∗.

6 Solving Eq. (9) through an iterative bisection method without

forming the characteristic equation. The eigenvalues found in

step 5 are used as initial guesses in this step. Applying the

iterative method in advance makes the opportunity of solving

(M11 − λIn)−1 quickly using Eq. (10), decreasing the com-

plexity of the method.

Previously, the inverse of the stiffness matrix of near-regular

structures was found. The inverted matrix can be calculated for a

near-regular structure convertible to a regular form. These kinds

of near-regular structures were presented in the references [8,9].

In Eq. (9), the ordering is performed so that the matrix M11 −

λIn is regular and the condition A1A2 = A2A1 holds. There-

fore, inverting this matrix using the eigenpairs and Eq. (10) is

possible. However, since the stiffness matrix of near-regular

structures can be efficiently inverted [8, 9], ordering of the ma-

trix can also be performed so that the block M11 is a near-regular

matrix. Thus, the matrix M11 − λIn is swiftly inverted while the

condition A1A2 = A2A1 does not hold. This way the present

solution gets more generalized where the matrix M11 can be

both regular and near-regular. The efficiency of the method is

shown using some examples.

5 A Simple Illustrative Example

For the truss shown in the Fig. 4, the eigenvalues of the stiff-

ness matrix are calculated. For all members the elastic modu-

lus is considered as 210 kN/mm2 and the cross section areas are

taken as 15 cm2.

Based on the present algorithm, first a proper ordering is per-

formed. According to Fig. 5, the truss is composed of regular

and irregular parts that are shown in green and red colors, re-

spectively.

Ordering of the regular part is performed sector by sector as it

is shown in Fig. 5. In this structure each five nodes form a sec-

tor, for example the first sector is composed of the nodes 1, 2,

Fig. 4. The truss under study

Fig. 5. The truss composed of regular and irregular parts with a suitable or-

dering

3, 4 and 5. Thus, the matrix M11 contains 7 blocks (each sector

represents a block) of dimension 10 (each sector consists of 5

nodes with each node having two degrees of freedom). The last

regular sector does not belong to the matrix M11 since it has 2

nodes in common with the irregular part (the nodes 38 and 40)

that causes this sector not to follow the pattern of other regu-

lar sectors. Consequently, the sector number 8 is considered as

a part of the matrix M22 as well as the irregular part shown in

the red color. The matrix M22 contains 7 nodes and is of dimen-

sion 14. Using this partitioning, the reduced stiffness matrix will

have the following form:

M =

 M11 M12

M21 M22


84×84

where M12,M21 and M22 are matrices of dimensions 70× 14,

14× 70 and 14× 14, respectively, and

M11 = F70×70 (C,B,C) = I ⊗ C + T ⊗ B

where B and C are matrices of the dimension 10.

For finding the initial guesses and the interval [a, b] the ma-

trix M∗ should be formed. It was mentioned that this matrix

should have dimension identical to that of the matrix M. But,

since the dimension of the matrix M is 84, the matrix M∗ cannot

be formed because it is composed of blocks of dimension 10. In

other words, this matrix just can have dimensions of the multi-

ples of 10 such as 80 or 90. To overcome the problem, 6 rows

and columns filled with zeros are added to the matrix M to get

the dimension 90. These zeros do not affect the eigenvalues of

the matrix M and only add 6 additional zero eigenvalues to the

final answer. This new matrix is named M
′

M
′

=


M

... 084×6

· · · · · ·

06×84

... 06×6


90×90
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The matrix M∗ of the dimension 90 (9 blocks of the dimen-

sion 10) is formed as:

M∗= F (C,B,C) = I ⊗ C + T ⊗ B

In fact the matrix M∗ is the stiffness matrix of the regular

structure of Fig. 6.

Fig. 6. A regular structure used for appropriate initial guesses

The supports in the right side are chosen so that the last sector

is similar to the other sectors.

Now using Eq. (3), the eigenvalues of the matrix M∗ are ob-

tained. There are 90 eigevalues for the matrix M∗. Typical

eigenvalues λ11 to λ20 are written in the following:

λM∗ = 106[1.7329, 1.8604, 2.0003, 2.0649,

2.4029, 2.4228, 2.9563, 3.4094, 3.5748, 3.9336]

Since for the matrix M∗, λmin = λ1 = 0.2951× 106 and

λmax = λ90 = 63.461× 106 and regarding the six zero eigenval-

ues added to the main structure, the interval used in the bisection

method is chosen as [0 65× 106].

The initial guesses and the interval are ready to be utilized in

the bisection method. All terms in the equation

det
(
M22 − λIm −M21 (M11 − λIn)−1 M12

)
= 0

were calculated. Now, the equation is solved in each step

using the bisection method. The eigenvalues λ11 to λ20 are found

as

λM = 106[1.5934, 1.8151, 1.9138, 2.1311,

2.2158, 2.7474, 3.1877, 3.3628, 3.5226, 3.9020]

It can be observed that λ∗
M

is an efficient initial guess for λM.

In order to obtain more precise answers, one can use

Rayleigh-Ritz relationship by means of which having the ap-

proximate eigenvalues and eigenvectors, one can get closer to

the eigenvalues and eigenvectors of the main problem.

6 Numerical Examples

In this section different examples are studied to show the effi-

ciency of the present method.

Example : In this example the frequencies of the free vibra-

tion of the double layer grid, shown in the Fig. 7 are calculated.

A real case of such a grid can be seen in Fig. 8. For all mem-

bers the elastic modulus is taken as 200 kN/mm2 and the cross

section areas are 10 cm2. The mass is equal to 7.8 kg for the ver-

tical and horizontal members and 11.0 kg for the diagonal ones.

The plan of the structure and its lateral view can be seen in the

Figs. 9 and 10 respectively.

Fig. 7. A double layer grid with near regular pattern

Fig. 8. A real double layer grid

Fig. 9. The plan of the grid

To find the frequencies of the structure, the following equa-

tion should be solved:

(
K − ω2

i M
)
{∅}i = {0}

Multiplying the two sides by M−1, we will have

(M−1K − ω2
i I) {∅}i = {0}

And then

det (M−1K − ω2
i I) = 0
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Fig. 10. Lateral view of the grid

The structure is geometrically regular. However, it is consid-

ered as a near-regular structure mathematically using a suitable

nodal ordering. In this paper, a graph or structure is considered

as regular if the pattern of its Laplacian matrix or stiffness ma-

trix follows graph product rules. A graph or structure with just

a regular geometry is not considered as regular. The structure

is composed of a central regular part shown in green and an ir-

regular part shown in red, Fig. 11. Using a proper ordering and

considering M−1K = S, the matrix S of the dimension 192 with

the following pattern is obtained:

S =

 S11 S12

S21 S22


where S11 is the block of the regular green part, and S22 cor-

responds to the block of the irregular red part.

Using the blocks of the matrix , the main equation is formed

det

(
S22 − ω

2Im − S21

(
S11 − ω

2In

)−1
S12

)
= 0

The solution of this equation using the present algorithm re-

sults in finding the values of ω. The first 10 frequencies are

obtained as

ω = 104[0.8791, 1.1253, 1.3324, 1.6811, 1.9371,

2.0916, 2.2983, 2.4577, 2.7348, 3.0060]

Fig. 11. The regular and irregular parts of a double layer grid.

Example : An important practical application of the present

method is in the analysis of structures with constructional im-

perfection. Consider the structure shown in Fig. 12. Because of

constructional imperfection the nodes 31 and 35 are not in the

right place as shown in Fig. 13. The amount of their deviation

is seen in Fig. 13. For all members, the elastic modulus is taken

as 210 kN/mm2 and the cross section areas are 15 cm2. The spe-

cific gravity of steel is equal to 7800 kg/m3. The frequencies of

the real structure are found.

The frequencies of the regular ideal structure shown in Fig. 12

are swiftly found using graph products. However, due to the

constructional imperfection, the real structure changes into a

near-regular one composed of regular and irregular parts as

shown in Fig. 14.

Fig. 12. The ideal form of the truss under study

Fig. 13. The real form of the truss including constructional imperfection

Fig. 14. Constructional imperfection of the last story

To solve the real structure, the frequencies of the regular ideal

structure can be used as an initial guess. The main equation is

written as

det

(
S22 − ω

2Im − S21

(
S11 − ω

2In

)−1
S12

)
= 0
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Fig. 15. A structure composed of regular and irregular parts

where the matrix S11 with dimension 50, represents the green

regular part, and S22 with dimension 20, represents the red ir-

regular part. Using Eq. (3), the frequencies of the ideal structure

are calculated. The frequencies ω61 to ω70 are obtained as

ω = 104 [15.3324, 15.7053, 16.1053, 16.4158, 16.7371,

17.0850, 17.3017, 17.5989, 17.7348, 17.9126]

Now, these frequencies are used as the initial guess in the

bisection stage of the present algorithm. The frequencies ω61 to

ω70 of the real structure are obtained as

ω = 104 [15.6824, 15.9358, 16.2489, 16.5298, 16.8626,

17.2007, 17.4611, 17.7218, 17.9346, 18.1043]

7 Concluding Remarks

In this paper an efficient algorithm is presented to calculate

the eigenvalues (frequencies of free vibration) of near-regular

structures composed of regular and irregular parts. The method

is a combination of both exact and iterative solutions. The reg-

ular and irregular parts get separated using a proper ordering

and thus a two block matrix is obtained. This matrix is then de-

composed using the rules of the partitioned block matrix and the

main equation is obtained. The solution of the gained equation

results in the eigenvalues. Instead of forming the characteris-

tic equation and then applying the iterative method, the main

equation is directly solved using an iterative bisection method.

This direct solution provides the opportunity for applying the

graph product rules for a swift solution. The efficiency of the

method depends on the computational complexity of the itera-

tive method. For an arbitrary matrix where the graph product

rules do not hold and there is no effective initial guess for the

iterative method, the method is as efficient as the other existing

approaches. However, when near-regular structures are consid-

ered, since the graph product rules are set in the regular part and

the initial guesses with limited bounds are available, the method

is less complex than other approaches. The presented method

is applicable to calculating the vibrational frequencies of near-

regular structures, rehabilitated structures, structures with con-

structional imperfection and similar problems.
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