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Abstract

Several different seismic active control algorithms have been

proposed in the last decades, most of these studies are based

on the applications of the traditional linear quadratic regula-

tor control (LQR). This paper develops a new control algorithm

for SDOF structures based in Lyapunov method. This algorithm

uses Lyapunov’s direct approach for stability analysis in design

of feedback controller. The approach requires the use of Lya-

punov function candidate, which must be a positive definite func-

tion of the states of the system. The controller is designed so as

to make the derivative of the Lyapunov function negative semi-

definite. Numerical simulations using one story frame structure

modeled as shear building structure subjected to earthquake ex-

citations have been performed to evaluate the effectiveness of

the proposed algorithm.
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1 Introduction

The application of modern control techniques to mitigate the

effects of seismic loads on civil engineering structures offers an

appealing alternative to traditional earthquake resistant design

approaches, and enhances safety of structures under extreme

conditions, especially for strategic buildings. There has been

a large amount of research effort devoted to the theoretical and

practical development of structural control, especially in coun-

tries where earthquakes are active [1, 2]. Structural control can

be applied to mitigate the vibration amplitudes by using appro-

priate devices and control techniques [3]. The key element in

successful use of these devices and techniques is an effective

control algorithm to compute loads to be applied to the struc-

ture, and it demonstrated that the performance of the controlled

system is highly dependent on the choice of algorithm [4]. An

effective control algorithm has to be robust and functional under

various dynamic conditions. Various control algorithms have

been proposed, and based in different optimization procedures

including linear quadratic regulator (LQR) [5,6]. The LQR con-

trol is among the well-known optimal algorithms mainly due to

its simplicity and ease of implementation. Then, it is regarded

as a baseline in modern control theory [6]. Even though it can be

used to reduce vibrations, it suffers from a number of shortcom-

ings, such as being susceptible to parameters uncertainty and

modelling error. Another drawback is the difficulty to study the

stability of controlled structures [6]. However, for the practi-

cal application of an active control method to civil engineering

structures, the problem of stability and robustness is one of the

major issues and it has been examined in several studies [7].

Design of a stable and robust controller is possible by using

Lyapunov stability theory. This approach requires the defini-

tion of Lyapunov function which must be positive definite [7–9],

and the corresponding controller is designed so as to make the

derivative of the Lyapunov function negative semi-definite [7,9].

The importance of this approach is the fact that it allows the sta-

bility of the system to be controlled without solving the differ-

ential equation explicitly. Lyapunov’s second method has today

become the method of choice in determining the stability of a

control design for a dynamical system [9, 10].
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In general, there is no standard method or systematic proce-

dure to determine an appropriate Lyapunov function that ensures

that its derivative is negative semi definite [10]. Therefore, there

are a Lyapunov functions in quadratic form often used.

Although Lyapunov’s direct method is efficient for stability

analysis, it is of restricted applicability due to the difficulty in

determining a Lyapunov function

Wu and Soong proposed a modified bang-bang control using

Lyapunov’s direct method [11]. Min and al. formulated a prob-

abilistic control algorithm, which determines the direction of a

control load by the Lyapunov controller design method [7, 12].

Lee and al proposed a modified sliding mode control algorithm

using a target derivative of the Lyapunov function [7]. Hiramoto

and al. presented an inverse Lyapunov method in bang-bang

semi active control for civil engineering structures [13].

In this paper, a Lyapunov based seismic control algorithm is

developed for a single degree of freedom (SDOF) civil engi-

neering structures subjected to a seismic ground motion. It is

important to note that for its application, this proposed control

algorithm needs to know the mass, damping and stiffness of the

structure.

The Lyapunov function candidate is a quadratic function of

displacement and velocity. The control law is determined so to

make the rate of change of the Lyapunov function as negative as

possible.

To evaluate the effectiveness of the proposed algorithm, nu-

merical simulations on controlled and uncontrolled seismic be-

havior of a single story shear building structure have been con-

ducted. The structure analysis and control design are carried out

using a computer program developed with MATLAB [14].

2 Problem formulation and mathematical modeling

Consider a single degree of freedom (SDOF) structure sub-

jected to a seismic ground excitation ẍg (t). The equation of mo-

tion of this structure is expressed as:

mẍ + cẋ + kx = −mẍg(t) (1)

Where:

m Mass of the structure,

c Damping of the structure,

k Stiffness of the structure,

x Floor displacement,

ẋ Floor velocity,

ẍ Floor acceleration.

Assuming that a control force u(t) is applied to the structure,

the equation of motion becomes:

mẍ + cẋ + kx = −mẍg(t) + u(t) (2)

Using the state space concept, Eq. (2) can be written as:

Ż(t) = AZ(t) + Buu(t) + Br ẍg(t) (3)

Where:

Z(t) State vector given by:

Z(t) =

 x(t)

ẋ(t)

 (4)

A System state matrix given by:

A =

 0 1

− k
m
− c

m

 (5)

Bu Control location vector given by:

Bu =

 0
1
m

 (6)

Br Excitation application vector given by:

Br =

 0

−1

 (7)

The control force u(t) will be determined using Lyapunov sta-

bility theory.

3 Lyapunov based control design

In this study, the Lyapunov’s direct method is considered for

feedback controller design. The idea is that, by first choosing a

Lyapunov function candidate and then the feedback control law

is determined such that it makes the derivative of the specified

Lyapunov function candidate negative semi definite. This way

of designing control is called Lyapunov design. Lyapunov de-

sign depends on the selection of Lyapunov functions. It’s known

that an important class of candidate Lyapunov function is that of

the quadratic ones [10].

3.1 Control algorithm

Let’s assume a control law in the form of state feedback as:

u(t) = −GZ(t) = −
[
gd gv

]  x(t)

ẋ(t)

 (8)

Where:

G Control gain matrix, x(t)

ẋ(t)

 State vector.

When the input to a system depends on that system’s output,

the resulting closed loop control is referred to as feedback con-

trol.

For a closed loop control, Eq. (3) is expressed as:

Ż(t) = AcZ(t) + Br ẍg(t) (9)

Where:

Ac = A − (BuG) =

 0 1

− k
m
−

gd

m
− c

m
−

gv

m

 (10)
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For a controller design, let us consider the Lyapunov function

candidate as:

V(z1, z2) =

(
β2

4
+ α

)
z2

1 +

(
z2 +

βz1

2

)2

(11)

Where:

z1 = x(t) (12)

z2 = ẋ(t) (13)

For the sake of simplicity, α and β are defined as:

α = ω2 + Gd

β = 2ξω + Gv

(14)

Where:

ω2 =
k

m
(15)

2ξω =
c

m
(16)

Gd =
gd

m
(17)

Gv =
gv

m
(18)

The function given in (11) can be written in quadratic form as

the following:

V = ZT PZ (19)

Where:

P =

 (
β2

2
) + α β

2
β
2

1

 (20)

For the Lyapunov function candidate given in Eq. (11), its

time derivative is defined as:

V̇ =
∂V

∂t
= ż1

∂V

∂z1

+ ż2

∂V

∂z2

(21)

Where:

∂V

∂z1

= 2

(
β2

4
+ α

)
z1 + (2z2 + βz1)

β

2
(22)

∂V

∂z2

= 2

(
z2 +

β

2
z1

)
(23)

ż1 = z2 (24)

ż2 = −
(
ω2 + Gd

)
z1 − (2ξω + Gv)z2 − a(t) (25)

a(t) = ẍg(t) (26)

By substituting Eq. (22) to (26) into Eq. (21), it results V̇ as:

V̇ = −β

(
z2 +

a(t)

β

)2

− αβ

(
z1 +

a(t)

2α

)2

+
a2(t)

β
+
βa2(t)

4α
(27)

It can be verified that to make a Lyapunov function, given

by Eq. (11), positive definite, the parameter α must be positive,

V > 0 If α > 0. Also, to make its derivative, given by Eq. (27),

negative, the parameters α and β must be positive, V̇ < 0 If

α, β > 0

The control force u(t) is determined based on the parameters

α and β.

3.2 Gain matrix parameters

To obtain the control gain matrix G, the parameters α and β

must be determined. For this, one makes the function derivative

equal zero, V̇ = 0

V̇ = 0⇒

β

(
z2 +

a(t)

β

)2

+ αβ

(
z1 +

a(t)

2α

)2

=
a2(t)

β
+
βa2(t)

4α

(28)

Equation (28) can be replaced by the following inequalities

system as: (
z1 +

a(t)

2α

)2

≤
1

αβ

(
a2(t)

β
+
βa2(t)

4α

)
(29)

(
z2 +

a(t)

β

)2

≤
1

β

(
a2(t)

β
+
βa2(t)

4α

)
(30)

After rearrangement, inequality (29) becomes(
z1 +

a(t)

2α

)2

≤ a2(t)

(
1

αβ2
+

1

4α2

)
(31)

− |a(t)|

√
1

αβ2
+

1

4α2
≤

(
z1 +

a(t)

2α

)
≤ |a(t)|

√
1

αβ2
+

1

4α2
(32)

− |a(t)|

√
1

αβ2
+

1

4α2
−

a(t)

2α
≤ z1 ≤ |a(t)|

√
1

αβ2
+

1

4α2
−

a(t)

2α
(33)

For the sake of simplicity, D1 is defined as: D1 = 1
αβ2 + 1

4α2

Consequently, (33) can be rewritten as:

− |a(t)|
√

D1 −
a(t)

2α
≤ z1 ≤ |a(t)|

√
D1 −

a(t)

2α
(34)

The ground acceleration can be expressed as

a(t) = |a(t)| sgna(t) (35)

The sgn in equation (35) stands for sign of a(t): sgn a(t) =

+ 1 if a(t) > 0, and = - 1 if a(t) < 0

By substituting Eq. (35) into (34), it results

− |a(t)| sgn a(t)

2α
− |a(t)|

√
D1 ≤ z1 ≤ |a(t)|

√
D1 −

|a(t)| sgna(t)

2α
(36)
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|a(t)|

(
−

sgna(t)

2α
−

√
D1

)
≤ z1 ≤ |a(t)|

(√
D1 −

sgna(t)

2α

)
(37)

Consequently, depending on the sign of a(t), (37) can be ex-

pressed as:

a(t) > 0

⇒ |a(t)|

(
−

1

2α
−

√
D1

)
≤ z1 ≤ |a(t)|

(√
D1 −

1

2α

)
a(t) < 0

(38)

⇒ |a(t)|

(
1

2α
−

√
D1

)
≤ z1 ≤ |a(t)|

(√
D1 +

1

2α

)
(39)

Then, inequalities (38) and (39) can lead to one inequality as:

|a(t)|

(
−

1

2α
−

√
D1

)
≤ z1 ≤ |a(t)|

(√
D1 +

1

2α

)
(40)

Following the same procedure and similarly treatment for in-

equality (30), we obtain

|a(t)|

(
−

1

β
−

√
D2

)
≤ z2 ≤ |a(t)|

(√
D2 +

1

β

)
(41)

Where D2 is defined as:

D2 =
1

β2
+

1

4α
(42)

Inequalities (40) and (41) can be rewritten as:

− |a(t)|

(
+

1

2α
+

√
D1

)
≤ z1 ≤ |a(t)|

(√
D1 +

1

2α

)
(43)

− |a(t)|

(
+

1

β
+

√
D2

)
≤ z2 ≤ |a(t)|

(√
D2 +

1

β

)
(44)

It can be shown that inequalities (43) and (44) can be ex-

pressed by using the peak ground acceleration (PGA)

amax, maximal displacement and maximal velocity of the

structure z1 max and z2 max respectively as amax

(
1

2α
+
√

D1

)
= z1 max

amax

(
1
β

+
√

D2

)
= z2 max

 (45)

The parameters α and β will be obtained by equation (45).

For this, let’s introduce a factor D defined as:

D =
1

αβ2
+

1

4α2
(46)

Using the factor D, the system (45) can be rewritten as: amax

(√
D + 1

2α

)
= z1 max

amax

(√
αD + 1

β

)
= z2 max

 (47)

The system (47) is rearranged in such a manner to have an

algebraic equation system with α and β as unknowns: amaxz1 maxβ
2 − z2

1 max
αβ2 + a2

max = 0

a2
maxβ − 4z2

2 max
αβ + 8amaxz2 maxα = 0

 (48)

From the first equation of the system (48), we obtain expres-

sion of the parameter α as:

α =
a2

maxβ

4z2
2 max

β − 8amaxz2 max

(49)

By substituting Eq. (49) into the second equation of the sys-

tem (48), it results the expression of the parameter β as:

aβ3 + bβ2 + cβ + d = 0 (50)

Where

a = a2
maxz2

1 max
− 4z2

2 max
z1 maxamax

b = 8a2
maxz1 maxz2 max

c = − 4a2
maxz2

2 max

d = 8a3
maxz2 max

Once the Eq. (50) is resolved, the gain matrix will be deter-

mined as a feedback control law.

4 Numerical example and simulation

Aldemir and Bakioglu [5] proposed a closed loop control al-

gorithm by forcing the rate of change of the system energy to

be negative as possible. This control algorithm has been de-

veloped for a single degree of freedom structure and a linear

quadratic regulator control is used for results comparison. Mo-

tivated by these considerations, the single story frame structure

used by Aldemir and Bakioglu [5] is considered to evaluate the

effectiveness of the proposed algorithm. The behavior of this

structure is analyzed for the cases of uncontrolled, LQR control

and this proposed Lyapunov based control.

Let’s remind briefly how the linear quadratic regulator (LQR)

is applied for the system represented in equation (3).

In this case, the control gain matrix is determined as:

G = − 1
2

R−1BT
u p (51)

Where:

R Weighting matrix for the control force vector,

p Solution of Ricatti equation given as:

AT p + pA − 1
2

pBuR−1 BT
u p + 2Q = 0 (52)

Where:

Q Weighting matrix for the state vector,

The structure considered is a one story shear building. The

structural mass and stiffness have been concentrated in floor and

columns respectively. The structural parameters are m = 50 tons,

k = 47000 kN/m, c = 90 kN s/m.
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The simulations were performed under three historical earth-

quake excitations with different frequency content:

• El Centro 1940 accelerogram with peak ground acceleration

(PGA) of 3.417 m/s2.

• Northridge 1994 accelerogram with PGA of 5.926 m/s2;

• Mexico 1978 accelerogram with PGA of 2.993 m/s2.

These records have been extensively used in various research

studies and practical control applications throughout the world.

Their accelerograms are shown in Figure 1.

(a) El Centro ground motion

(b) Northridge ground motion

(c) Mexico ground motion

Fig. 1. Excitation accelerograms

To evaluate the control algorithm in terms of reduction

of peak responses, the following evaluation criteria adopted

from [15, 16] are considered:

1 Story displacement ratio

(a) Story displacement

(b) Story acceleration

(c) Story base shear

Fig. 2. Uncontrolled and controlled structure responses under El Centro

record

J1 =
max |yc|

max |yu|

Where

yc Controlled story displacement,

yu Uncontrolled story displacement.

2 Story acceleration ratio

J2 =
max |ÿc|

max |ÿu|

Where

ÿc Controlled story acceleration,

ÿu Uncontrolled story acceleration.
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Tab. 1. Maximum displacement, acceleration and base shear

Displacement (cm) Acceleration (m/s2) Base Shear (kN)

El-Centro 1940

Uncontrolled 0.82 7.62 384.25

LQR control 0.52 5.20 245.95

Lyapunov based control 0.25 3.48 117.42

Northridge 1994

Uncontrolled 0.99 9.39 465.29

LQR control 0.74 7.15 346.53

Lyapunov based control 0.19 5.92 86.99

Mexico 1978

Uncontrolled 0.66 6.28 311.90

LQR control 0.57 5.53 267.13

Lyapunov based control 0.13 3.15 61.180

Tab. 2. Responses Ratios (evaluation criteria)

J1 J2 J3 J4

El-Centro 1940

LQR control 0.6401 0.6830 0.5474 0.5664

Lyapunov based

control
0.3056 0.4573 0.2149 0.3482

Northridge 1994

LQR control 0.7448 0.7616 0.7367 0.7596

Lyapunov based

control
0.1870 0.6313 0.1970 0.5341

Mexico 1978

LQR control 0.8565 0.8810 0.7621 0.7916

Lyapunov based

control
0.1962 0.5019 0.2759 0.5040

3 Root mean square (RMS) story displacement ratio

J3 =
~yc

~yu

~yc, ~yu are calculated from:

~y = std(y) ∗

√(
Ts/T f

)
Where

Ts Sampling time,

T f Total excitation duration,

std Standard deviation.

4 Root mean square (RMS) story acceleration ratio

J4 =
~̈yc

~̈yu

~̈yc, ~̈yu are calculated from

~̈y = std(ÿ) ∗

√(
Ts/T f

)
4.1 Results

Table 1 provides the peak responses of the structure for the

cases of uncontrolled, linear quadratic (LQR) control and pro-

posed Lyapunov based control for all three considered ground

motions. It is noted from this table, that the reduction in the

peak story displacement without control compared with the

LQR control is 36.58%, 25.25% and 13.63% under El Centro,

Northridge and Mexico earthquakes respectively, and the cor-

responding reductions compared with the proposed Lyapunov

control are 69.51%, 80.80% and 80.30%. Reductions in peak

acceleration in uncontrolled case compared with the LQR are

31.75%, 23.85% and 11.94% under El Centro, Northridge and

Mexico earthquakes respectively, and the corresponding reduc-

tions compared with the proposed Lyapunov control are 54.33%,

36.95% and 49.84%.

The base shear reduction under El Centro, Northridge and

Mexico earthquakes is 36%, 25.52% and 14.35% respectively

compared with the LQR control and 69.44%, 81.30% and

80.38% compared with Lyapunov control.

From these results, the proposed Lyapunov control is showing

better control of responses under all considered ground motions.

Comparisons of evaluation criteria between the LQR case and

proposed Lyapunov control are summarized in Table 2. As can

be seen from the table, all the corresponding ratios with the

proposed Lyapunov control are much smaller than with LQR

control under the three records. Reduction ratios are 52.25%,

33.05%, 60.74% and 38.52% in displacement, acceleration,

RMS displacement and RMS acceleration, respectively under
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(a) Story displacement

(b) Story acceleration

(c) Story base shear

Fig. 3. Uncontrolled and controlled structure responses under Northridge

record

El Centro record. The corresponding reduction ratios under

Northridge record are 74.89%, 17.10%, 73.25% and 29.68%.

Under Mexico record, the reduction ratios are 77.09%, 43.03%,

63.79% and 36.33%.

Responses of the structure for the cases of uncontrolled, LQR

control and proposed Lyapunov control, in terms of displace-

ment, acceleration and base shear, under the three considered

earthquake excitations are depicted in Figures 2, 3 and 4. The

figures indicate response reduction for both control algorithms,

however it is more significant in case of the proposed Lyapunov

control for the three earthquake records.

(a) Story displacement

(b) Story acceleration

(c) Story base shear

Fig. 4. Uncontrolled and controlled structure responses under Mexico

record

5 Conclusions

In this study, a new control algorithm based in Lyapunov’s

stability theory is proposed for SDOF building structures under

seismic loading. For its application this proposed control al-

gorithm needs to know the mass, damping and stiffness of the

structure. A quadratic Lyapunov function has been considered

to develop the control algorithm. The performance of this algo-

rithm is demonstrated by numerical simulations on a single story

shear building structure subjected to three historical ground mo-

tions, El Centro 1940, Northridge 1994 and Mexico 1978 which

still used in research studies and practical control applications.

Simulation results and the evaluation criteria show the effective-

ness of the proposed Lyapunov controller in reducing displace-
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ment and acceleration considerably. Further reduction in base

shear is also obtained. Another advantage of this method is that

the stability of the structure can be verified without solving the

dynamic equation explicitly.

As future work, the proposed Lyapunov based control will be

extend to two and multiple story building (MDOF).
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