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Abstract
There can be a significant amount of moment redistribution 
in steel concrete composite frames due to cracking, creep and 
shrinkage in concrete. In the present study, neural network 
models have been developed for rapid prediction of the ine-
lastic moments (typically for 20 years considering cracking, 
creep and shrinkage in concrete) in high rise composite frames. 
The possibility of sagging moment being developed at ends of 
beams due to the substantial differential shortening of adjacent 
columns has also been taken into account. Closed form expres-
sions, based on the weights and biases of the trained neural 
networks, are proposed to predict the inelastic moments from 
the elastic moments (neglecting cracking and time effects). The 
expressions are verified for example frames of different num-
ber of spans and storeys and errors are found to be small. The 
expressions require computational effort that is a fraction of 
that required for the available methods.
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1 Introduction
There has been an extensive use of steel-concrete construc-

tion in high-rise building frames. The monolithic action of con-
crete slab and steel beams leads to the composite beam action 
(Fig. 1). There may be cracking of concrete slab of compos-
ite beams near interior joints where moments are higher than 
cracking moments. The time effects of creep and shrinkage in 
the concrete may lead to further progressive cracking and aging 
moment redistribution. Creep and shrinkage result in increase 
in elastic moments at joints [1–3]. The increase in moments at 
joints is primarily due to shrinkage, the contribution of creep 
being much smaller [1–3]. However, cracking in concrete 
results in lesser increase in moments as the portion of the con-
crete undergoing creep and shrinkage reduces [4–6].

Fig. 1 Cross-section of composite beam

Methods are available in the literature for instantaneous and 
time-dependent analysis of the beams and frames, which take 
into account these moment redistributions. For instantaneous 
analysis, conventionally either an incremental or an iterative 
approach [1] is used which requires subdivisions and thereby 
numerical integration. The computational effort required in 
numerical integration may be considerable in case of large 
structures. For time-dependent analysis of composite struc-
tures, a large number of methods are available in the literature 
and they may be categorized in two types. Type 1 methods are 
numerical in nature and require large computational effort [6–9] 
and Type 2 methods are analytical in nature and are computa-
tionally efficient but these methods do not take into account all 
the aspects [4–5, 10]. A hybrid analytical-numerical procedure 
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has been developed by the authors to take into account the non-
linear effects of concrete cracking and time-dependent effects 
of creep and shrinkage in composite frames [3]. The procedure 
is efficient but the computational effort may again become con-
siderable for large composite building frames. This effort may 
be many times more than that required for the elastic analysis 
(neglecting cracking and time effects in concrete). The use of 
neural network models may be made to drastically reduce the 
computational effort in such cases.

Soft computing techniques (neural networks, genetic algo-
rithms etc.) have been extensively used in the field of struc-
tural engineering for prediction of the parameters without any 
rigorous analysis and experiments [11–15]. Many researchers 
have proposed the closed form expressions using the weight 
matrices and activated function of the trained neural network. 
Some of the closed form expressions obtained from the trained 
neural networks include determination of distortional buckling 
stress in cold-formed steel members [16], estimation of ulti-
mate pure bending of fabricated and cold-formed steel circular 
tubes [17], prediction of base shear of steel frame structures 
[18], estimation of distortional buckling stress in elliptical hol-
low section tubes [19], evaluation of deflections in composite 
bridges considering flexibility of shear connectors, concrete 
cracking and shear lag effect [20] and prediction of effective 
moment of inertia in reinforced concrete beams [21]. Such 
closed form expressions are useful to predict the parameters 
in every day design with acceptable accuracy. These studies 
reveal the strength of neural networks in predicting the solu-
tions of different structural engineering problems.

Neural networks have been used to predict the design quan-
tities in steel-concrete composite structures also including 
bending moments and deflections in continuous composite 
beams considering concrete cracking [22–23], deflections in 
continuous composite beams and frames considering crack-
ing and time effects in concrete [24–25]. Pendharkar et al. [26] 
have developed the neural networks for prediction of bending 
moments in composite frames considering cracking and time 
effects in concrete. However, these neural networks do not take 
into account the sagging moments developed in beams due to 
the substantial differential shortening of adjacent columns of 
high rise frames. The neural networks are therefore valid for 
low to moderately high frames and have limited applicability.

In this paper, a methodology has been presented for rapid 
prediction of inelastic moments in high-rise composite frames. 
The closed form expressions, obtained from the trained neu-
ral networks, are proposed to predict the inelastic moments, Mi 
(typically for 20 years, considering cracking and time effects 
in concrete) from elastic moments, Me (neglecting cracking 
and time effects in concrete). Me can be obtained from any 
of the readily available software and requires little computa-
tional effort. The training, validating, and testing data sets are 
generated using an analytical-numerical hybrid procedure of 

analysis [3]. The expressions also take into account the sagging 
moments developed in beams due to the substantial differen-
tial shortening of adjacent columns in high-rise frames. The 
proposed expressions are verified for example frames of dif-
ferent number of spans and storeys and errors are shown to be 
small. The expressions can be used in every day design as they 
enable a rapid prediction of inelastic deflections with reason-
able accuracy for practical purposes without detailed complex 
analysis and require computational effort that is a fraction of 
that required for the available methods in the literature.

2 Analysis of composite frames
For generalized and efficient neural networks, a huge number 

of training data sets are required; for the generation of which, 
a highly efficient method is desirable. A hybrid analytical-
numerical procedure has therefore been adopted which takes 
into account the nonlinear effects of concrete cracking near inte-
rior joints and time-dependent effects of creep and shrinkage in 
composite frames [3]. The procedure is analytical at the elemen-
tal level and numerical at the structural level. A cracked span 
length beam element, consisting of two cracked zones of length 
xA and xB at the ends A and B respectively and an uncracked zone 
in the middle (Fig. 2), has been used in the procedure [3]. For a 
completely cracked span length beam element of total length L, 
xA and xB would be equal to L/2 and for a completely uncracked 
beam element xA and xB would be equal to zero. Slip at the 
interface of the concrete slab and the steel section is neglected 
assuming that shear connectors are at a sufficiently close spac-
ing. The effect of slip has been reported to be small in compari-
son to the time-dependent deformations [27].

Fig. 2 Cracked span length beam element

The analysis in the hybrid procedure is carried out in two 
parts. In the first part, an instantaneous analysis is carried out 
using an iterative method. In the second part, a time-dependent 
analysis is carried out by dividing the time into a number of 
time intervals to take into account the progressive nature of 
cracking of concrete (Fig. 3). As shown in figure, crack lengths 
are assumed to be constant in a time-interval and revised at the 
end of each time interval. The aged-adjusted effective modu-
lus method, AEMM [28] is used for predicting the creep and 
shrinkage effects which has been used earlier also for com-
posite frames [29]. CEB-FIP 90 [30] is used for predicting the 
short term as well as time-dependent properties of the concrete.

BA BxL

Cracked 
Uncracked 

Cracked 

Ax



284 Period. Polytech. Civil Eng.		              U. Pendharkar, K. A. Patel, S. Chaudhary, A. K. Nagpal

Fig. 3 Progressive nature of cracking

The procedure has been validated by comparison with the 
experimental, analytical, and finite element method results [3].

3 Probable structural parameters
As stated earlier in section 1, instantaneous cracking in 

composite beams of high-rise frames occurs in the end por-
tions (where hogging moments occur) when tensile stresses are 
higher than the tensile strength of concrete. This instantaneous 
cracking may further progress due to time effects. The elastic 
bending moment, Me at an instantaneous stage gets redistrib-
uted due to cracking and there is a further redistribution owing 
to time effects of creep and shrinkage leading to Mi at a final 
stage (typically 20 years). 

Consider an intermediate floor of a frame with the loading 
(Fig. 4a). The nature of elastic moment diagram and inelastic 
moment diagram at a joint, j of an intermediate floor of a frame 
is shown in the Fig. 4b. 

Since cracking and creep and shrinkage effects, in the type 
of frames being considered, are confined to beams only, it may 
be postulated based on the studies on the composite frames 
[26], that in order to establish redistribution of moment at a 
joint j with sufficient accuracy, cracking at the joint and adja-
cent joints (joint j and joint j + 1) only needs to be considered. 
Keeping this in view, the following input parameters for an 
internal joint j of a frame are identified as:

1.	 Cracking moment ratio on the right side of joint j – 1, 
( ),

1 1
r e r cr
j jR M M− −= ,

2.	 Cracking moment ratio on the left side of joint j , 
( ),l e l cr

j jR M M= ,
3.	 Cracking moment ratio on the right side of joint j , 

( ),r e r cr
j jR M M= ,

4.	 Cracking moment ratio on the left side of joint j + 1 , 
( ),

1 1
l e l cr
j jR M M+ += ,

5.	 Stiffness ratio of adjacent spans at joint j , Sj–1/Sj  
(Sj = EIun / lj, where E = modulus of elasticity of concrete, 
and Iun = transformed moment inertia of composite section 
about top fiber, the reference axis),

6.	 Load ratio of the adjacent spans at joint j , wj–1/wj , ,

7.	 Composite inertia ratio, Icr / Iun  (Icr = transformed moment 
of inertia of steel section and reinforcement about top 
fiber, the reference axis),

8.	 Age of loading, t0,
9.	 Grade of concrete, Gr.

Fig. 4 (a) An intermediate floor of a frame with the loading, and (b) natures of 
elastic and inelastic bending moments

Fig. 5 Schematic representation of input and output parameters

These nine input parameters are schematically shown in Fig. 
5. The two outputs for the neural network model for an internal 
joint, j , are considered as , ,e l i l

j jM M (inelastic moment ratio to 
the left of joint j ) and , ,e r i r

j jM M (inelastic moment ratio to the 
right of joint j ).

The practical ranges for the different structural parameters 
are considered as: 1

r
jR − , l

jR , r
jR , 1

l
jR +  = -4.0 to 4.0; Sj–1/Sj  

 = 0.25 to 4.0; wj–1/wj  = 0.25 to 4.0; Icr / Iun = 0.38 to 0.54; t0 = 7 
days to 21 days; Gr = 20 N/mm2 to 40 N/mm2. In order to incor-
porate sagging moments developed in beams due to the sub-
stantial differential shortening of adjacent columns which are 
likely to be observed in high rise frames, the negative values 
of the structural parameters 1

r
jR − , l

jR , r
jR , 1

l
jR +  are considered. 

It may be noted that the ratio of beam stiffness to column 
stiffness is not taken as an input parameter; since in the output 
parameters , ,/e l i l

j jM M
 
and , ,/e r i r

j jM M , both Me  and  Mi may be 
assumed to be affected approximately to the same degree by 
variation in ratio of beam to column stiffness.
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All the neural networks are trained for a particular value of 
relative humidity, RH (= 85%). The output parameter for other 
values of relative humidity can be estimated in a manner simi-
lar to that explained by Pendharkar et al. [26].

4 Architecture of neural network models
The neural networks chosen in the present study are mul-

tilayered feed-forward networks with neurons in all the lay-
ers fully connected in feed forward manner (Fig. 6). Various 
algorithms and activation functions are available in the above 
discussed literature. However, the back propagation algorithm 
has been used successfully for many science and engineering 
applications and is considered as one of the efficient, popular 
and successful algorithm in engineering applications [31-32]. 
Therefore, the back propagation algorithm along with sigmoid 
activation function is used for this study. The back propaga-
tion algorithm updates the weight and bias values to achieve 
a desired input-output relationship in each of the iteration that 
generates output values which are closer to the target values. 
MATLAB Neural Network tool [33] has been used for training, 
validating and testing of the neural networks. One hidden layer 
is chosen and the number of neurons in the layer is decided in 
the learning process by trial and error.

First, consider the neural network model for an internal 
joint. As stated earlier in section 2, the neural network model 
consists of nine input parameters and two output parameters. 
The nine input parameters are: 1

r
jR − , Rj

l , r
jR , 1

l
jR + , Sj-1 / Sj, 

wj-1 / wj, I
cr / Iun, t0 and Gr and the two output parameters are: 

, ,e l i l
j jM M  and , ,e r i r

j jM M .
Next, consider the neural network model for an external joint. 

The input parameters 1
r
jR − , 1j jS S−  and wj-1 / wj are absent for 

left external joint (j = 1), whereas, the input parameters 1
l
jR + , 

Sj-1 / Sj and wj-1 / wj are absent for right external joint. The input 
parameters for left external joint (joint 1) are: 1

rR , 2
lR , Icr / Iun, t0  

and Gr , whereas, the parameters for right external joint (joint 
n + 1) are: r

nR , 1
l
nR + , Icr / Iun, t0  and Gr . The output parameters 

are , ,
1 1
e r i rM M and , ,

1 1
e l i l
n nM M+ +  for left external joint and right 

external joint respectively.

Fig. 6 A typical neural network model

The training data sets are generated for 37th, 38th, 39th, 40th 
floors of a forty storey-seven bay frame, henceforth designated 
as data generation frame. It is postulated that neural network 
models based on these training data sets are applicable for pre-
dicting , ,/e l i l

j jM M  and , ,/e r i r
j jM M  for frames of any number 

of spans and storeys.
Two neural network models, one each for external joints and 

internal joints and designated as Net-E, and Net-I, respectively, 
are trained. Input data sets are chosen to cover the entire practi-
cal range of parameters and sufficiently large number of values 
of each of the parameters. The training, validating, and test-
ing data sets, typically for interior joint, consist of nine input 
parameters and two output parameters. In order to have speci-
fied values of nine input parameters of a data set, an iterative 
procedure needs to be followed. The variables, for the data 
generation frame, are seven span lengths, seven correspond-
ing loadings on the spans, cross-sectional properties, grade of 
concrete and age of loading in the hybrid analytical-numerical 
iterative procedure [3]. The values of the variables are adjusted 
in such a manner that the specified values of nine input param-
eters are achieved. Similar exercise is done for exterior spans 
with six input parameters.

Total 8,640 and 18,600 data sets, in the practical range of the 
parameters, are generated for Net-E, and Net-I respectively. To 
bring all non fictitious input parameters and output parameters 
in the range -1.0 to 1.0, the input as well as the output param-
eters are divided by the normalization factors given in Table 1.

Table 1 Normalization factors

Parameters
Network

Net-E Net-I

Input

4 4

4 4

4 4

4 4

Sj-1 / Sj - 4

wj-1 / wj - 4

Icr / Iun 1 1

t0 (days) 21 21

Gr (N/mm2) 40 40

Output
- 7 (Bias = 2)

1.3 7 (Bias = 2)

1
r
jR −

l
jR

r
jR

1
l
jR +

, ,/e l i l
j jM M

, ,/e r i r
j jM M
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As stated earlier, the training is carried out using the MAT-
LAB Neural Network tool [33]. For each network, 70% of the 
data sets are used for the training (as training patterns) whereas 
15% of the data sets are used for the validating and testing 
each. For this partitioning, ‘hold out method’ [34], in which 
partitioning is done randomly, has been adopted. For training, 
several trials are carried out with different numbers of neurons 
in the hidden layer. Care is taken that the mean square error 
for test results does not increase with the number of neurons in 
hidden layer or epochs (overtraining). The architectures of the 
two optimum networks (number of input parameters-number 
of neurons in hidden layer-number of output parameters) along 
with the statistical parameters i.e. mean square error (MSE), 
mean absolute percentage error (MAPE), average absolute 
deviation (AAD), square of coefficient of correlation (R2) and 
coefficient of variation (COV) of training, validating and test-
ing data sets are given in Table 2. All parameters indicate a 
good performance.

5 Closed form expressions
For the ease of practicing engineers and users, it is desir-

able to propose simplified closed form expressions for the 
prediction of moments. The trained neural networks may be 
used to develop the required closed form expressions. Since 
the sigmoid function has been used as the activation function, 
the outputs O1 (=

, ,e l i l
j jM M ) and O2  (=

, ,e r i r
j jM M ) are given 

as below [20–21]

where, q is the number of input parameters; r is the num-
ber of hidden neurons; biask is the bias of kth hidden neuron 
(hk); biaso1; biaso2 are the bias of output neurons; ,

ih
j kw  is the 

weight of the link between Ij and hk; ,1
ho
kw  is the weight of the 

link between hk and O1 ; ,2
ho
kw  is the weight of the link between  

hk and O2.
The inelastic moments at left and right side of joints are then 

given as

The value of O1 and O2 may be obtained as given in Appen-
dix A.

Table 2 Statistical parameters on neural networks

Sets Parameters

Network
(Architecture)

Net-E
(5-9-1)

Net-I
(9-14-2)

Training

MSE 0.00151 0.00192

MAPE 4.10259 5.56894

AAD 4.07064 6.36540

R2 0.95750 0.94958

COV 5.29704 6.92775

Validating

MSE 0.00160 0.00197

MAPE 4.11565 5.84112

AAD 4.08460 6.49102

R2 0.94455 0.94114

COV 5.42761 7.05987

Testing

MSE 0.00182 0.00205

MAPE 4.22319 5.00265

AAD 4.17958 6.88144

R2 0.92363 0.93008

COV 5.78874 7.12134

6 Verification of neural networks models
Trained neural networks are verified for two example frames 

of 50 storey-5 bay (EF1) and 20 storey-10 bay (EF2) with a 
wide variation of input parameters (Fig. 7). Example frames 
have been chosen in such a way that none of the combinations 
of input parameters has been used in the training, validating 
and testing. Span lengths and load intensities of the frames are 
given in Fig. 7 and Table 3. The floor height and age of load-
ing are taken as 3.0 m and 10 days respectively for both the 
frames. In both the frames, 1000 mm wide and 70 mm thick 
concrete slab with M32 grade of concrete and a steel I section 
with a cross-sectional area of 5.14 × 10-3 m2, moment of inertia 
of 8.50 × 10-5 m4 about its major principle axis and depth of 
305 mm, form the composite beams at all the floors. The slabs 
of composite beams of the frame have a reinforcement of area 
113 mm2 placed at a distance of 15 mm from the top fibre. The 
columns of the frame EF1 consist of rolled steel sections 914 
× 305 UB 253 for storey 1–20, 610 × 305 UB 238 for storey 
21–40 and 406 × 178 UB 74 for storey 41–50 whereas the col-
umns of the frame EF2 consist of 203 × 133 UB 25 at all the 
floors. The beam to column stiffness varies along the height 
of the frame in frame EF1 wheras it is constant in frame EF2.

O
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Fig. 7 Schematic representation of example frames

Table 3 Details of example frames

Frame Spans
Property

Length (m) Load (kN/m)

EF1

1 5.0 5.0

2 6.0 8.0

3 8.0 6.0

4 6.0 8.0

5 5.0 5.0

EF2

1 5.7 24.5

2 8.9 28.2

3 6.4 25.2

4 5.4 28.2

5 7.9 29.2

6 5.4 28.1

7 7.9 25.9

8 4.4 43.1

9 8.4 23.8

10 6.9 23.9

Results are compared for typical floor levels 10, 30 and 40 of 
the frame EF1 and for typical floor level 15 of the frame EF2. 
The network Net-E is used for external joints, whereas network 
Net-I is used for internal joints. Table 4 shows the values of the 
normalised input parameters for the external and internal joints 
of the frame EF1 and EF2. As stated earlier, these parameters 
are in different permutations than those used in training, vali-
dating, and testing. 

Table 5 shows the values of elastic moments, ,e l
jM  and 

,e r
jM , and inelastic moments, ,i l

jM and ,i r
jM obtained from the 

hybrid procedure and the neural networks for both frames. For 
the frame EF1, the maximum absolute error in the prediction of 
inelastic moments is 4.73% for exterior joints and 10.83% for 
interior joints which is acceptable for practical design. Similarly, 
for the frame EF2, the maximum absolute error in the prediction 
of inelastic moments is 8.06% for exterior joints and 10.23% 
for interior joints which is also acceptable for practical design. 

This shows the efficacy of developed neural network models for 
high-rise frames with any number of spans and storeys.

7 Conclusions
In this paper, the closed form expressions have been pre-

sented for rapid prediction of the inelastic moments in high-rise 
steel-concrete composite frames, from the elastic moments. 
Two neural network models, Net-E and Net-I, applicable for 
exterior joints and interior joints respectively, have been devel-
oped to obtain the close form expressions. These expressions 
take into account cracking and time-effects (i.e. creep and 
shrinkage) in concrete as well as the sagging moments devel-
oped in beams due to the substantial differential shortening of 
adjacent columns in high-rise frames. The expressions have 
been verified with example high-rise frames. The overall root 
mean square percentage error for both example frames, consid-
ered for validation is 5.66% for all exterior and interior joints, 
which is acceptable for practical design. The proposed expres-
sions can predict the inelastic moments, in high-rise composite 
frames, with reasonable accuracy from the elastic moments, 
which in turn, can be obtained from any of the readily avail-
able software. The computational effort required is a fraction 
of that required for the available methods. The closed form 
expressions are applicable for high-rise composite frames of 
any number of spans and storeys.

The methodology of the present study can be developed 
further for rapid prediction of inelastic deflections in high-rise 
composite frames also where the effect of axial shortening of 
the columns is significant.

Notations
E modulus of elasticity of concrete
Gr grade of concrete
H hidden neuron

I Input parameter

Iun
transformed moment of inertia of 
composite section

Icr
transformed moment of inertia of steel 
section and reinforcement

M bending moment
O1, O2 output parameters

cracking moment ratios

RH relative humidity
S stiffness
l span length
n number of spans/bays
t0 age of loading
w uniformly distributed load

2 1, , ,l l l
j j jR R R+ +

1 1, ,r r r
j j jR R R− +
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Table 4 Details of example frames

 Frame Network
used

Floor
level

Joint
No. Sj-1 / Sj wj-1 / wj Icr / Iun t0 

(days)
Gr

(N/mm2)

EF1

Net-E

40th
1 - - 0.4700 -0.2076 - - 0.4332 0.4762 0.8000

6 -0.2076 0.4700 - - - - 0.4332 0.4762 0.8000

30th
1 - - 0.4377 -0.1862 - - 0.4332 0.4762 0.8000

6 -0.1862 0.4377 - - - - 0.4332 0.4762 0.8000

10th
1 - - 0.2595 -0.0641 - - 0.4332 0.4762 0.8000

6 -0.0641 0.2595 - - - - 0.4332 0.4762 0.8000

Net-I

40th

2 0.4700 -0.2076 0.3853 -0.2213 0.3000 0.1563 0.4332 0.4762 0.8000

3 0.3853 -0.2213 0.0836 0.0836 0.3333 0.3333 0.4332 0.4762 0.8000

4 0.0836 0.0836 -0.2213 0.3853 0.1875 0.1875 0.4332 0.4762 0.8000

5 -0.2213 0.3853 -0.2076 0.4700 0.2083 0.4000 0.4332 0.4762 0.8000

30th

2 0.4377 -0.1862 0.3619 -0.1841 0.3000 0.1563 0.4332 0.4762 0.8000

3 0.3619 -0.1841 0.0962 0.0962 0.3333 0.3333 0.4332 0.4762 0.8000

4 0.0962 0.0962 -0.1841 0.3619 0.1875 0.1875 0.4332 0.4762 0.8000

5 -0.1841 0.3619 -0.1862 0.4377 0.2083 0.4000 0.4332 0.4762 0.8000

10th

2 0.2595 -0.0641 0.2398 0.0148 0.3000 0.1563 0.4332 0.4762 0.8000

3 0.2398 0.0148 0.1639 0.1639 0.3333 0.3333 0.4332 0.4762 0.8000

4 0.1639 0.1639 0.0148 0.2398 0.1875 0.1875 0.4332 0.4762 0.8000

5 0.0148 0.2398 -0.0641 0.2595 0.2083 0.4000 0.4332 0.4762 0.8000

EF2

Net-E 15th
1 - - 0.3397 0.3099 - - 0.4332 0.4762 0.8000

11 0.5880 0.5292 - - - - 0.4332 0.4762 0.8000

Net-I 15th

2 0.3397 0.3099 0.9846 0.9519 0.3904 0.2172 0.4332 0.4762 0.8000

3 0.9846 0.9519 0.4419 0.4103 0.1798 0.2798 0.4332 0.4762 0.8000

4 0.4419 0.4103 0.3515 0.3042 0.2109 0.2234 0.4332 0.4762 0.8000

5 0.3515 0.3042 0.7999 0.7621 0.3657 0.2414 0.4332 0.4762 0.8000

6 0.7999 0.7621 0.3485 0.3004 0.1709 0.2598 0.4332 0.4762 0.8000

7 0.3485 0.3004 0.7018 0.6655 0.3657 0.2712 0.4332 0.4762 0.8000

8 0.7018 0.6655 0.3522 0.2637 0.1392 0.1502 0.4332 0.4762 0.8000

9 0.3522 0.2637 0.7489 0.7117 0.4773 0.4527 0.4332 0.4762 0.8000

10 0.7489 0.7117 0.5879 0.5292 0.2054 0.2297 0.4332 0.4762 0.8000

1
r
jR − Rj

l r
jR 1

l
jR +

Subscript

j support or span number

p number of input parameters/neurons 

q number of hidden neurons 

Superscript

cr cracking

e elastic

i inelastic

l left side of a joint

r right side of a joint
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Table 5 Comparison of inelastic moments for example frames

Frame Floor level Joint No.
j

Elastic moment (kNm)
Inelastic moment (kNm)

Neural network Hybrid procedure

EF1

40th

1 - 61.58 - 68.65 - 65.78

2 -27.21 50.49 -16.31 70.17 -17.53 65.31

3 -29.00 10.95 -13.15 31.05 -12.89 30.26

4 10.95 -29.00 28.52 -13.87 30.26 -12.89

5 50.49 -27.21 70.65 -16.33 65.31 -17.53

6 61.58 - 68.65 - 65.78 -

30th

1 - 57.36 - 65.13 62.19

2 -24.39 47.42 -12.63 66.81 -13.52 63.66

3 -24.13 12.61 -9.88 31.77 -9.24 31.76

4 12.61 -24.13 28.32 -9.63 31.76 -9.24

5 47.42 -24.39 67.41 -12.54 63.66 -13.52

6 57.36 - 65.13 - 62.19 -

10th

1 - 34.00 - 43.27 - 43.64

2 -8.40 31.42 10.81 42.48 9.93 47.00

3 1.94 21.47 17.02 38.07 16.25 39.19

4 21.47 1.94 40.21 15.28 39.19 16.25

5 31.42 -8.40 43.09 9.14 47.00 9.93

6 34.00 - 43.27 - 43.64 -

EF2 15th

1 - 64.26 - 69.56 - 71.02

2 58.62 186.25 71.41 200.23 69.78 181.65

3 180.06 83.58 184.15 90.26 178.82 89.94

4 77.61 66.49 88.36 75.33 84.75 74.72

5 57.54 151.32 70.44 162.92 71.39 150.54

6 144.17 65.92 148.82 73.69 146.43 74.50

7 56.82 132.76 69.33 143.15 69.95 133.06

8 125.88 66.63 131.18 74.08 129.10 76.23

9 49.88 141.66 60.97 152.63 67.07 142.71

10 134.62 111.22 138.87 118.14 137.58 120.56

11 100.10 - 121.11 - 112.08 -

,e l
jM ,e r

jM ,e l
jM ,e r

jM ,e l
jM ,e r

jM
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Appendix A 
Closed form expressions for O1 and O2

A.1. Right exterior joints

A.2. Left exterior joints

The value of O1 for left exterior joints can be obtained by replacing r
jR  and 1

l
jR +  in Eq. (A2) with r

jR and 1
r
jR −  respectively.

A.3. Interior joints
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