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Abstract

Shaking-table experiments of relatively large-scale specimens

play a fundamental role in deepening our understanding of seis-

mic response of existing structures and verification of numerical

models. However, and in apparent contradiction, the prepara-

tion of such a dynamic laboratory experiment requires a-priori

advanced numerical simulations, necessary to both fine-tune the

test specimen properties and calibrate the input motion, as a

function of the objectives of the test and capabilities and char-

acteristics of the shaking table. This research thus concerns the

development of a fibre-based finite elements model of a half-

scale 3D reinforced concrete frame tested under dynamic con-

ditions at the European Centre for Training and Research in

Earthquake Engineering (EUCENTRE, Pavia, Italy). Since this

reduced-scale specimen is very much based on a full-scale coun-

terpart previously tested under pseudo-dynamic conditions at

the European Laboratory for Structural Assessment (ELSA) of

the Joint Research Centre (JRC, Ispra, Italy), the first part of

the work consisted in verifying that the software tool employed

in the numerical simulations was capable of duplicating the

pseudo-dynamic real test results. Having successfully met the

latter objective, the second part of the work consisted in the at-

tempted numerical simulation of the shaking table tests, with a

view to ascertain that the response of the model will be within

the envisaged response targets and that the necessary input mo-

tion is compatible with the shaking-table characteristics.
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1 Introduction

Recent major earthquakes in the Italian territory have reaf-

firmed the seismic vulnerability of reinforced concrete (RC)

buildings typical of the past Italian building practice, highlight-

ing structural deficiencies observed during previous events and

mostly related to the transfer of the horizontal forces between

structural, non-structural elements and horizontal diaphragm

(Belleri et al. [1]). On site investigations explained the major

structural deficiencies of RC structures and facilities, emerged

from the 1998 Adana-Ceyhan (Adalier and Aydingun [2]) and

1999 Kocaeli and Duzce earthquakes (Saatcioglu et al. [3];

Sezen and Whittaker [4]), by means of inadequate stiffness and

strength and/or problems caused by insufficient connections de-

tailing. More recently, in the Italian context, the 2009 L’Aquila

earthquake highlighted many criticalities, confirming the need

of considering infill panel-to-structure connection failures as a

further limit state to be controlled in conventional design proce-

dures (Toniolo and Colombo [5]; Brunesi et al. [6]; Augenti and

Parisi [7]). Similar deficiencies were observed by Ghosh and

Cleland [8] during the 2010 Chilean earthquake. The Emilia

earthquakes (Lauciani et al. [9]; Belleri et al. [1, 10]), May 20th

and 29th 2012, reaffirmed the seismic vulnerability of RC build-

ings typical of the past Italian building practice (Bellotti et al.

[11]).

As a consequence, in the European seismic countries the as-

sessment of existing structures is a priority (Mpampatsikos et

al. [12]), since the vast majority of the residential buildings

was designed according to out-of-date seismic codes (or even

to non seismic codes). In most of these structures, the uncer-

tainties about the nonlinear behaviour are relevant: generally,

the presence and location of potential inelastic zones, as well

as their ductility capacity, are not known. As a consequence

of major earthquakes, the continuous occurrence of heavy dam-

ages, underline the need of reliable methodologies for analy-

sis, modelling, and assessment of existing constructions, tak-

ing into account the complex interaction between structural and

non-structural elements to obtain more accurate informations on

the non linear dynamic response of the buildings (Caprili [13]).

Two different approaches may be used in the seismic verification
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of infilled three dimensional RC frames: empirical methods and

mechanical methods as clearly defined by Calvi et al. in [14].

Empirical methods are mostly valid for a qualitative vulnera-

bility analysis in terms of damage probability matrices - DPM

(Whitmann et al. [15]), numerical vulnerability indexes (Facci-

oli et al. [16]) or fragility curves (Sabetta et al. [17]; Casotto

et al. [18]) which are continuous functions expressing the prob-

ability of exceeding a given damage state, given a function of

the earthquake intensity. Mechanical methods, instead, provide

more accurate and quantitative definition of the seismic vulner-

ability and are very useful for the vulnerability analysis in large

areas (Singhal and Kiremidjian [19]). They provide vulnerabil-

ity assessment algorithms with direct physical meaning, that not

only allow detailed sensitivity studies to be undertaken, but also

cater to straightforward calibration to various characteristics of

building stock and hazard. On the other hand, to the purpose of

obtaining more specific information about the effective seismic

response of an existing RC structure, more detailed numerical

approaches should be used (Cosenza et al. [20]) based on de-

tailed structural and geometrical surveys and subsequently on

the execution of nonlinear dynamic analysis (time history anal-

ysis) (Masi [21]; Sousa et al. [22]).

Basing on these observations and following the advanced nu-

merical model procedure, with the objective of deepening the

understanding of the seismic response of typical existing RC

structures in the European context, a shaking-table experiment

on a half-scale three dimensional irregular frame has been car-

ried out at European Centre for Training and Research in Earth-

quake Engineering (EUCENTRE, Pavia, Italy). This reduced-

scale specimen is based on a full-scale prototype previously

tested under pseudo-dynamic conditions at the European Lab-

oratory for Structural Assessment (ELSA) of the Joint Research

Centre (JRC, Ispra, Italy), for which reason the first part of the

work consists in verifying that the software that will be em-

ployed in the calibration and fine-tuning of the shaking-table

experiment is able to reproduce the response of the already full-

scale tested prototype. Once the latter is achieved, the second

part of the work then considers the numerical simulation of the

shaking table tests on the scaled specimen, with a view to as-

certain that the response of the scaled model will be within the

envisaged targets and that the necessary input is compatible with

the shaking-table characteristics.

2 Analyzed prototype building

The full-scale prototype structure, as mentioned above, is a

full-scale three-storeys building constructed and tested at the

ELSA Laboratory under the framework of the European re-

search project SPEAR (“Seismic PErformance Assessment and

Rehabilitation of existing buildings”). The specimen was “de-

signed” and constructed following the gravity loads-only de-

sign and construction practice typical of the Southern European

countries in the early 70’s Fardis [23]: use of smooth reinforc-

ing bars, existence of slender columns with large spaced stirrups,

inclined shear reinforcement in beams, column lap splices in po-

tential plastic hinges area, lack of detailed shear reinforcement

in beam-column connections, inadequate anchorage of stirrups

and irregular plan layout with a evident torsional behaviour

(Coelho et al [24]). These buildings are very common because

they were constructed during the European “economic boom”

period, and it is thus not feasible, both from a social and an eco-

nomic point of view, to replace them all with new construction.

Still, however, acceptable seismic risk levels to the society must

be reached, for which reason these existing structures must be

assessed and retrofitted. The structural configuration of the pro-

totype building is typical of non-earthquake resistant construc-

tion of the early 70’s, in Southern Europe and other parts of the

world with similar construction practices. A side view of the

building and the plan of a typical repetitive floor are presented

in Figs. 1(a) and (b), respectively.

The storey height is equal to 3 m and the structure is regular in

elevation. The plan configuration is non symmetric in two direc-

tions (Fig. 1(b)) with 2-bay frames spanning from 3 to 6 metres.

There is the presence of a balcony on the right side; further-

more the presence of a part of the structure 1 m along x-direction

(weak direction) and 0.5 m along x-direction (strong direction)

longer than the rest increases the plan irregularity. This means

the shifting of the centre of stiffness away from the centre of

mass. Details on structural beam member dimensions and cor-

responding reinforcing bars were taken from Fardis and Negro

[25]: eight out of nine columns have a square 25 by 25 cm cross

section; the ninth column (number 2 in Fig. 1(b)) has a cross

section of 25 by 75 cm. Exemplificative drawings of beams 2

and 5 (see Fig. 1b) are given in Fig. 2, whilst cross-section de-

tails of typical beams and columns can be found in Fig. 3 (refer

to Fig. 1b for guidance on beam and column numbering).

The concrete compression strength was considered as equal

to 26.4 N/mm2 (Jeong and Elnashai [26]). The steel mechanical

properties, on the other hand, depend on the re-bars’ diameter:

• for ϕ 8 mm bars: yield strength fy = 467 N/mm2, ul-

timate strength fu = 583.67 N/mm2, elastic modulus

E1 = 206000 N/mm2 and post-yield hardening ratio

E2 / E1 = 0.0044

• for ϕ 12 mm bars: yield strength fy = 458.67 N/mm2,

ultimate strength fu = 570.33 N/mm2, elastic modu-

lus E1 = 206000 N/mm2 and post-yield hardening ratio

E2 / E1 = 0.0032

• for ϕ 20 mm bars: yield strength fy = 376.67 N/mm2,

ultimate strength fu = 567.33 N/mm2, elastic modu-

lus E1 = 206000 N/mm2 and post-yield hardening ratio

E2 / E1 = 0.0056

The ELSA laboratory features a reaction wall that coupled

with a strong floor allows mono-direction pseudo-dynamic tests

to be readily carried out (for information on this testing tech-

nique readers may refer, for instance, to the overview found in
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(a)

(b)

Fig. 1. (a) Side (x-transversal direction) and (b) typical floor views of the

real building (geometrical dimension in cm; Fardis [23])

(a) (b)

Fig. 2. Geometrical and reinforcement characteristics of (a) beam 5 and (b)

beam 2 as defined in Fig. 1

(a) (b)

(c) (d)

Fig. 3. Details of (a) edge sections of beam 5, (b) mid-span section of beam

5, (c) column 2 cross-section and (d) cross-sections of all other columns (section

has been selected with reference to Fig. 2)

Pinho and Elnashai [27] or Sullivan et al. [28]). For the test-

ing of this torsion-sensitive structure, however, it was envisaged

that bi-directional loading should be introduced, the reason for

which an additional perpendicular reaction braced buttress was

constructed and used to cater for bi-directional pseudo-dynamic

testing of the building (Mola and Negro [29]; Molina et. al.

[30]). The testing campaign consisted of the following four

stages:

1 preliminary impulse-triggered low-amplitude testing, during

which the initial dynamic properties of the structure were ob-

tained (this phase served also the purpose of checking the

correct functioning of the complete testing apparatuses and

instruments);

2 the Herceg-Novi bi-directional accelerogram (registered dur-

ing the Montenegro 1979 earthquake, and shown in Fig. 4)

was applied to the structure in three runs of increasing ampli-

tude (0.02 g, 0.15 g and 0.20 g): under the starting level the

structure responded elastically, whist the subsequent two in-

tensities lead to heavy damage;

3 the structure was retrofitted with FRP fibres in those locations

were damage was particularly evident, and then was tested

again;
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4 a final selective strengthening was applied to the most dam-

aged members and another testing campaign was conducted

on the re-repaired structure, under intensity seismic input lev-

els that eventually lead to a near-collapse response state.

(a)

(b)

Fig. 4. Herceg-Novi record used in the test of the full scale building: (a)

x-direction longitudinal component and (b) y-direction transverse component.

3 Finite element modelling of the prototype structure:

verifying the nonlinear analysis tool

As stated above, herein, and in order to verify the accuracy

of the numerical tool used in the calibration of the shaking-table

testing, an attempt is made to reproduce the results obtained in

the aforementioned phases 1 and 2 of the prototype testing, with

particular reference to the storey horizontal forces measured by

the load cells of the actuators and the floor displacements reg-

istered at the numerous transducers located at every single floor

slab. Other researchers (e.g. Jeong and Elnashai [26]; Franchin

et al. [31]; Fajfar et al. [32]) have already used the results of

the SPEAR testing campaign to verify different nonlinear analy-

sis computer codes readily available within the earthquake engi-

neering community. However, in this study, all the time history

and pushover analyses will be carried out using SeismoStruct

(SeismoSoft [33]), a fibre element-based program for seismic

analysis of framed structures featuring a graphics user interface

that caters for a relative straightforward creation of error-free

models, even by inexperienced users. This computer code in-

corporates both local (beam-column effects) and global (large

displacements/rotations effects) sources of geometric nonlinear-

ity as well as the interaction between axial force and transverse

deformation of the element. The employed program has been

extensively verified through comparison with experimental re-

sults (e.g. Pinho [34]; López-Menjivar [35]; Casarotti and Pinho

[36]; Pietra et al. [37]), to model structural frames in seismic

analyses of steel structures (Fagà et al [38], Grande and Rasulo

[39], Wijesundara et al. [40–42]), RC buildings (Mpampatsikos

et al. [12], Sousa et al. [22]), masonry infill panels (Smyrou et

al. [43]) and connections (Brunesi et al. [44, 45]). A finite ele-

ment model of the SPEAR prototype building was thus created

(Fig. 5).

(a)

(b)

Fig. 5. Overview of the building: rendered views of the finite element model

used to reproduce the full scale test

The cross-section of the elements was subdivided into lay-

ers of steel and concrete, with the concrete layers following the

nonlinear constant confinement model proposed by Mander et

al. [46] together with the cyclic relations proposed by Martinez-

Rueda and Elnashai [47], whilst the reinforcing steel layers use

a very simple and efficient uniaxial bilinear stress-strain model

with kinematic strain hardening. As previously described, all

columns feature a squared 25× 25 cm2 cross-section, with the

exception of column 2 that is instead 25× 75 cm2 (see Fig. 1b)

and which called for the modelling depicted in Fig. 6. Inertia

mass and vertical loads applied to the model, distributed along

columns and beams, represented the (i) self-weight of the frame,

(ii) a permanent load of 0.5 kN/m2 and (iii) a variable load of

2 kN/m2.

From the onset it was clear that it would be important to some-

how model the horizontal diaphragm effect provided by the slabs

of the building, hence an equivalent horizontal truss system was

devised and introduced. The slab of the SPEAR specimen was
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Fig. 6. Modelling of column 2 and its connection to the beams: two rigid

link used to put the beams in their geometrical real position in order to account

for eccentricity

rigid enough, in order to warrant a correct distribution of iner-

tia forces throughout the structure and also allow an appropriate

control of the pseudo-dynamic test. The cross-section dimen-

sions of these fictitious slab braces were computed by equating

the in-plane stiffness of the slab to the axial stiffness of the truss

element:

Kslab =
1

(L′)3

12Ec J
+ L′

AsGc

= Ktruss =
EtrussAtruss

Ltruss
(1)

where L′ is the main dimension of the slab, J is the in-plane

moment of inertia of the transverse section of the slab, Ec is

the elastic modulus of the concrete, Gc is computed as Gc =

Ec / (2(1 + ν)), As is the in-plane shear area, Etruss and Ltruss

are respectively the elastic modulus and the length of the truss

element.

Firstly, the truss configuration shown in Fig. 7(a), a classical

arrangement in which the truss elements converge into the four

corners of the slab panels, was attempted, however, the pres-

ence of a “free node” between beams 4 and 8 lead to unrealis-

tic in-plane deformations. As a second trial, two extra braces,

shown in Fig. 7(b), were introduced to restrain the aforemen-

tioned “free node”, leading to an improved modelling of the di-

aphragm action of the slab. Nonetheless, it was still noted that

local spurious deformations were taking place in the intersec-

tions between beam 2 and beams 6 and 7. Hence, two further

possible configurations (Figs. 7c and 7d), where the truss ele-

ments are connected to the barycentre nodes of the columns near

the aforementioned beam intersections, were employed.

In Fig. 8, a comparison is made between the x-direction dis-

placement response recorded in node 8 (see Fig. 1b) during

the experiment (for the 0.02 g input motion) and the numerical

predictions obtained considering the initial (Fig. 7a) and final

(Fig. 7d) slab-modelling configurations described above. It is

possible to observe that the employment of the horizontal truss

arrangement depicted in Fig. 7(d) has lead to a considerable im-

provement, with respect to the initial configuration, in the ob-

tained response predictions.

Finally, it is perhaps worth noting that alternative slab mod-

elling strategies, such the one proposed by Brunesi et al. in [48],

consisting of the use of membrane/shell/solid elements avoid

of locking phenomena and spurious energy mode (Nascimbene

(a) (b)

(c) (d)

Fig. 7. Equivalent slab modelling configurations using truss element to con-

sider axial flexibility of the floor

[49,50], DellaCroce et al. [51], Nascimbene and Venini [52]) or

nodal constrains (Lanese [53]), were seen to lead to essentially

identical results with respect to those shown above, obtained us-

ing instead an equivalent horizontal truss system. The latter slab

modelling scheme, slighter faster and numerically more stable

than the former alternatives, was thus adopted for the remaining

stages of the study.

4 Comparison between numerical predictions and ex-

perimental response: prototype structure

As mentioned above, before each test run, low amplitude vi-

bration was introduced in the building, with a view to allow the

identification of the modal properties of the structure, estimated

by means of a real-time algorithm developed by Molina et al.

[54]. In Table 1, the experimental periods of vibration recorded

before the very first test are compared with their corresponding

numerical counterparts. As observed, the numerical model is

slightly stiffer that the test specimen, as was expected given that

the latter had suffered some light damage (i.e. cracking) during

the transportation from the outside, where it was built, into the

inside of the laboratory, where it was tested (e.g. see Jeong and

Elnashai [26] or Fajfar et al. [32]).

Tab. 1. Periods of vibration of prototype structure

Experimental Analytical Difference

T1 0.85 0.80 5.9%

T2 0.78 0.72 7.7%

A comparison between the numerical and experimental max-

ima envelopes for floor displacement (Fig. 9a) and interstorey
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(a) Initial slab-modelling configuration (Fig. 7a)

(b) Final slab-modelling configuration (Fig. 7d)

Fig. 8. Experimental-numerical comparison between initial (a) and final (b)

slab-modelling configurations

drift (Fig. 9b) profiles is carried out herein. The agreement be-

tween is very good for 0.02g (error not greater than 2%) and

0.15g (error less than 7%) intensity levels. On the other hand,

a non-negligible underestimation of the displacement and inter-

storey drift values for the 0.20g accelerogram is visible, this be-

ing caused by the fact that, as reported in Jeong and Elnashai

[26], the response/deformation mode of the column under these

intensity levels was dominated by bar slippage at the beam-

column joints (it is recalled that smooth bars were employed in

the construction of the test model), something that had not been

incorporated in the assembled numerical model.

(a) (b)

Fig. 9. Numerical and experimental (a) displacement and (b) interstorey

drift profile envelopes

In addition to envelope values, also the numerical and ex-

perimental displacement response histories at the top/roof level

were compared. Whilst the full set of results and comparisons

may be found in the work of Lanese [53], herein, and for the

sake of brevity, only the displacement histories of node 3 in x-

direction and node 10 in y-direction (see Fig. 1b) are shown,

in Fig. 10, below. It is observed that the numerical predictions

match relatively well the experimental recordings, even if dis-

placement transducers were actually not placed exactly at the

columns/nodes barycentre.

(a) PGA = 0.02 g X-direction (b) PGA = 0.02 g Y-direction

(c) PGA = 0.15 g X-direction (d) PGA = 0.15 g Y-direction

(e) PGA = 0.20 g X-direction (f) PGA = 0.20 g Y-direction

Fig. 10. Experimental and numerical comparison in terms of displacements

in X and Y direction corresponding to three level of PGA

A fourth comparison regards the shear forces mobilised by the

structure. As in the previous case, an approximation in the com-

parison is unavoidable because, at each floor level, experimental

forces come only from the 4 load cells placed on the heads of the

actuators, whilst numerical forces are computed at each column.

The two experimental forces for each floor where added and the

comparison with the sum of all the numerical shear forces in

the same direction was conducted. The agreement between the

experimental and numerical values is always good, as shown in

Fig. 11.

5 Finite element modelling of the half-scale structure:

shaking-table testing of the scaled specimen

For practical reasons, bound to the maximum shaking-table

dimensions (5.6× 7.0 m2) and payload (140 ton), a real scale

model was not feasible, hence a geometric scale factor λ= 2 was

considered instead. This implies not only a 50% reduction of the

geometrical dimensions of the test specimen, but also that a time

reduction factor of λ− 1 / 2 (i.e. 0.707) and a mass scaling factor

of λ−2 (i.e. 0.25) must be introduced in order to respect scal-

ing similarity laws (e.g. Sullivan et al. [28]). In this way, it is

ensured that response acceleration values and material stresses

in the scaled model are identical to those that would have been

measured on the prototype. Having validated above the numeri-

cal tool through comparisons between the analytical predictions

and experimental results of the prototype, a finite element model

of the scaled specimen is now created with a view to obtain a

realistic prediction of its expected shaking table response, and

in this way ensuring that it respects the limits of the shaking

table, especially in terms of mobilised total base shear, which
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(a) PGA = 0.02 g X-direction (b) PGA = 0.02 g Y-direction

(c) PGA = 0.15 g X-direction (d) PGA = 0.15 g Y-direction

(e) PGA = 0.20 g X-direction (f) PGA = 0.20 g Y-direction

Fig. 11. Experimental and numerical comparison in terms of base shear

force

cannot exceed the capacity of the shaking table actuator, equal

to 1700 kN (see Calvi et al. [55] for further details on Eucentre’s

shaking table).

As a first check on the accuracy of the reduced-scale model,

the modal characteristics of the latter are compared in Table 2

with those its prototype counterpart, where it is observed that a

relatively good agreement is obtained.

Tab. 2. Periods of vibration of prototype and scaled model

Prototype Scaled model
Difference

(numerical results) (numerical results ×
√

2)

T1 0.804 0.826 2.7%

T2 0.720 0.741 2.9%

Since the dynamic testing of the scaled model will be car-

ried out in one direction only, the corresponding nonlinear time-

history analysis are also undertaken in mono-direction fash-

ion (in direction y, according to the global axis convention

adopted in Fig. 1, above). Fig. 12 shows the comparison be-

tween the base shear forces computed for the prototype and for

the scaled specimen, when subjected to an accelerogram with a

peak ground acceleration of 0.2 g (it is noted that for the scaled

model results, time quantities have been multiplied by a factor

λ½whilst the shears were increased by a factor λ2).

It is observed that whilst the response of the two structures

is quite similar in terms of frequency content, the scaled model

tends to lead to lower values of total base shear in the initial

part of the response (first 8 seconds), and to higher values of

response in the final part of the response history. This change

of response trend has been related to issues of damage accu-

mulation in scaled models during transportation (Fig. 14). In

Fig. 12. Comparison between base shear forces in the full and reduced nu-

merical models.

any case, and for what the planning of shaking-table test is con-

cerned, it is reassuring to observe that the mobilised maximum

shear forces (around 115 kN, which corresponds to the maxi-

mum capacity of the models, as concluded from the capacity

curves of Fig. 13) are very much below the aforementioned ca-

pacity of the table.

(a) Uniform and Modal in (b) Uniform and Modal in

y-positive direction y-negative direction

Fig. 13. Pushover curves for the scaled model using two different pushover

force distributions

(a) (b)

Fig. 14. Scaled specimen (a) during and (b) after construction

For the sake of completeness, a comparison of response dis-

placements and accelerations between the prototype and scaled

models is also shown here (Table 3), even if these results are of

reduced importance for what concerns the capacity of the table.

It is again observed that the maximum response values of the

two structures are similar, attesting once more the adequacy of

the scaling and modelling carried out.

It is noted that the final version of the half-scale real structure

has been endowed with light infill panel as reported in Fig. 15

and experimentally described by Pavese et al [56].

Different kind of infill panels are widely used as partitions,

internally and externally to the buildings, but usually they are

treated as non-structural elements and are not included in the

process of analysis, verification and design. The strong inter-

action between the infill and the structural frame highly influ-

ences the behaviour of the infilled frame by consistently alter-

ing globally and locally the load-resisting mechanisms [57, 58].
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Tab. 3. Comparison between the prototype and the scaled numerical models

Displacement (PGA = 0.20 g) Acceleration (PGA = 0.20 g)

Prototype half-scaled Prototype half-scaled

[mm] [mm] [m/s2] [m/s2]

Y – dir. ± 111 ± 54 ± 4 ± 3.9

X – dir. ± 61 ± 30 ± 3.6 ± 3.3

Fig. 15. Scaled specimen with infill panels

A validated model in order to represent the overall response of

the infill masonry-frame system as well as the interaction be-

tween the infill masonry and the reinforced surrounding frame

has been used and based on the research done in the past by

Klingner and Bertero [59], Panagiotakos and Fardis [60] and

Crisafulli [61]. The advanced nonlinear cyclic model for ma-

sonry panels proposed by Crisafulli [61] offers the possibility to

model the material with different levels of accuracy taking into

account the local phenomena caused by the interaction between

infill panel and surrounding frame using an equivalent strut ap-

proach. The comparison between experimental and analytical

results is shown in Fig. 16.

Fig. 16. Experimental and analytical results: a comparison

6 Closing Remarks

In this manuscript, the analytical work carried out in support

of an envisaged shaking-table testing campaign was described.

The numerical tool that was to be employed in the prediction

of the shaking-table response of the specimen was first veri-

fied against experimental data from earlier tests on the prototype

structure. The validated FE code was then employed to check if

the scaled model was responding as envisaged (i.e. to verify if

the geometric/time/mass scaling had been appropriately carried

out) and also if the required base shear input was compatible

with the table characteristics. Once this preliminary modelling

work was completed, the final version of the half-scale infilled

frame has been tested and comparison with the numerical model

has been carried out.
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