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Abstract

Rate- and state-dependent friction laws for velocity-step and

healing are analysed from a thermodynamic point of view. As-

suming a logarithmic deviation from steady-state, a unification

of the classical Dieterich and Ruina models of rock friction is

proposed.
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1 Introduction

The rock experiments of sliding friction are understood by the

so-called rate- and state-dependent friction laws. The equations

of these laws unify the results obtained from two types of rock

experiments; the first one is the time dependence of the coef-

ficient of static friction [1] and the second one is slip velocity

dependence of the coefficient of kinetic or sliding friction [2].

The properties of dynamic friction are the following [3]:

1 frictional coefficient in stable sliding conditions with a con-

stant load-point velocity depends on the logarithm of the load-

point velocity. 1;

2 the magnitude of the instantaneous jump of the frictional co-

efficient depends on the change of the logarithm of the quo-

tient of the corresponding load-point velocities;

3 the following evolution of the frictional coefficient to new

value in stable sliding also depends on the instantaneous

change of the load-point velocity;

4 oscillation occurs in some cases (e.g., large load-point veloc-

ity, polished surfaces, thin sand interface layer between the

samples) (see e.g., [4]).

In healing experiments2 the properties of static friction are:

1 recovery magnitude is proportional to the logarithm of heal-

ing time;

2 larger velocity or larger elasticity increases the recovery mag-

nitude of the static friction.

These properties can be reproduced by using two classical

equations. The first one is the constitutive law Eq. (1), express-

ing the relation between frictional coefficient µ and slip velocity

V with an additional variable, called state variable θ. The second

1 Load-point velocity is the velocity of the point of the sample, where the

load is applied. This can be measured more exactly, than the velocity of the

sliding surfaces.
2Stationary sliding is followed by a particular period when the load point

velocity is zero and then sliding with the initial velocity.
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one is the evolution law Eq. (2) expressing the time evolution of

the state variable depending on the slip velocity [5]:

µ =
τ

σ
= µ∗ + a ln

(
V

V0

)
+ b ln

(
V0θ

L

)
, (1)

dθ

dt
= 1 −

Vθ

L
, (2)

where τ is the shear stress, σ is the normal stress, µ∗ is the

constant frictional coefficient for steady-state slip at reference

slip velocity V0, a and b are material parameters, L is a material

parameter called the critical slip distance, and t is time.

An important improvement is the evolution equation of Ruina

[6]:

dθ

dt
= −

Vθ

L
ln

(
Vθ

L

)
. (3)

Experimental data of static friction is better reproduced by

the equations of the Dieterich law [5] (Eqs. (1) and (2)), and of

dynamic friction by the equations of Ruina law [6] (Eqs. (1) and

(3)). A comparison with experimental data is given in the works

[3, 7]. In particular, the Dieterich law assumes time-relaxation

and therefore it is asymmetric for upward and downward jumps

in displacement, contrary to the experiments. On the other hand,

the experimentally observed time dependent healing is properly

reproduced by the Dieterich law and is not reproduced by the

Ruina law. Thus other versions have been proposed (e.g., [7–9])

in order to reproduce the experimental data better. However,

none of them are completely satisfactory.

Nakatani reformulated the Dieterich-Ruina law introducing a

new variable [10]:

θ =
L

V0

exp

(
Θ

b

)
. (4)

Then the constitutive law is linearized with this variable:

µ =
τ

σ
= µ∗ + a ln

(
V

V0

)
+ Θ , (5)

and the evolution laws of Dieterich and Ruina become

dΘ

dt
=

b

L

(
V0e−

Θ
b − V

)
, (6)

dΘ

dt
= −V

(
b

L
ln

(
V

V0

)
+

Θ

L

)
, (7)

respectively. Nakatani suggested this modification together

with a particular interpretation of Θ as strength and interpreted

the modified evolution equation of Dieterich in the framework

of thermal activation theory. He did not investigate the modified

form of Ruina law Eq. (7).

2 Thermodynamics of the frictional layer

A thermodynamic approach of Mitsui and Ván introduced a

minimal model of rock friction by using permanent and recov-

erable parts of the total observed displacement as state variables

in the spirit of continuum plasticity [11].

They interpreted the state variable of the rate- and state-

dependent friction law as the elastic part of the displacement.

It was argued that the constitutive and the evolution laws are

originated in a thermodynamic framework. Their calculation of

the entropy production was the following.

Fig. 1. Sliding thermomechanical body. Experimental realisations try to re-

strict the deformation to the neighbourhood of the sliding surfaces. Our figure is

simplified in this respect.

The general setting is a sliding body on a horizontal surface

with mass m. There are two forces that determine the motion of

the body: the external force Fe, and the damping force Fd, due

to friction (Fig. 1). The position of the body is denoted by x. The

body is not considered completely rigid, however one assumes

that one particular material point of the body characterize its

instantaneous position. The equation of motion is

mẍ = Fe − Fd. (8)

Moreover, the work of the external force changes the energy

of the body, E. Therefore

Ė = Fe ẋ. (9)

In this case thermodynamics requires that the damping force

contributes only to the internal energy of the body. It is assumed

that the external force accelerates the body and also that the body

is deformable. In this homogeneous model, the deformation is

expressed by the recoverable displacement, r. Accordingly, the

kinetic and and elastic energies of the body are distinguished.

This particular interpretation from [11] is not necessary, r may

denote a general internal variable.

The internal energy, U, is the difference of the total energy,

E, the kinetic energy and a quadratic contribution of the internal

variable. This form follows from the condition of thermody-

namic stability in the state space [12]. That is

U = E − m
ẋ2

2
− k

r2

2
, (10)

where k is a parameter like Young’s modulus in elasticity.

One assumes a particular kinematic condition in order to intro-

duce an interpretation of r. When the instantaneous position of

the body is the sum of a permanent and a recoverable displace-

ment then a convenient method of their distinction is an additive

separation of the displacement rates:

V = ẋ = ṙ + z, (11)
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where V is the rate of the position x, and z is the rate of the

permanent displacement. This rate type kinematical condition

is convenient when distinguishing permanent and recoverable

changes. Eq. (11) is analogous to the condition used in plas-

ticity for the distinction of plastic and elastic strains (see e.g.,

[13, 14]). However, in friction the internal variable is not neces-

sarily identical to the recoverable strain. The background phys-

ical mechanisms may contribute to the displacement, but do not

represent a completely recoverable, elastic change.

Entropy production, including the consequent dissipation, can

be calculated by the entropy balance, assuming that the entropy

is the function of the internal energy only:

Ṡ (U) =
1

T

(
Fe ẋ − mVV̇ − krṙ

)
≥ 0

⇒ TṠ = FdV − krṙ ≥ 0.

(12)

The damping force and the rate of the internal variable ṙ are

the constitutive quantities to be determined in accordance with

the requirement of nonnegative entropy production. We con-

nect the first term to friction interaction and the second term

to frictional healing. In the vicinity of thermodynamic equilib-

rium, where both forces and fluxes are zero, the usual linear

relationship is a consequence of Lagrange’s mean value theo-

rem [15, 16]. V and r are thermodynamic state variables, conse-

quently they can be considered as thermodynamic forces, while

µ and κṙ are to be determined constitutively, as being thermo-

dynamic fluxes. The standard linear approximation results in

equations that reflect well the thermodynamic admissibility of

both velocity weakening and strengthening, but do not incorpo-

rate the observed direct effect (logarithmic relaxation) [11].

However, in velocity-step experiments dynamic friction is a

steady state phenomenon so we are looking for a deviation of

the frictional coefficient from a fixed value, µ0, at a given V0

reference velocity. On the other hand, the internal variable is

expected to be zero, when its time derivative is zero that is, in

thermodynamic equilibrium. Hence, we face at a mixed, partial

steady state and partial equilibrium situation. Unfortunately, the

dissipation inequality Eq. (12) may not characterize the devia-

tion from steady state. What we need is an estimation of the

deviation of the entropy production from its steady state value.

In our framework, the steady state means a constant displace-

ment rate, denoted by V0. Therefore the internal energy should

be determined accordingly

U = E0 − m
(V − V0)2

2
− k

r2

2
, (13)

where E0 is the energy of the body moving with the velocity

V0
3. Then the calculation of the entropy production results in

TṠ (U) = FeV − m(V − V0)V̇ − krṙ =

= FeV0 + Fd(V − V0) − krṙ ≥ 0.
(14)

We can introduce a friction specific entropy production with

Amontons’ law:

T

FnA
Ṡ = Σ = µ0V0 + ∆µ(V − V0) − κrṙ ≥ 0, (15)

where µ0 = Fe / (AFn) is the external shear stress divided

by the normal force, ∆µ = Fd / (AFn) is the frictional stress

divided by the normal force, and κ = k
AFn

.

Now, it is straightforward to introduce a linear approxima-

tion for the increment of entropy production, as for the near-

equilibrium situation. However, in the following we apply a

different starting point. Our fundamental assumption is that the

leading term of the deviation from the steady state is logarith-

mic, while it is linear around equilibrium. We can formulate this

hypothesis analogously to the classical exploitation of the en-

tropy principle introducing the concept of incremental entropy

production. We require that it is minimal at the steady state

∆Σ = Σ − Σsteady = Σ − µ0V0 = ∆µ ln

(
V

V0

)
− κrṙ ≥ 0 (16)

We will call this hypothesis the principle of minimal incre-

mental entropy production.

The required minimality ensures the asymptotic stability of

the steady state if the evolution equations are constructed ac-

cordingly. In this respect, the principle is similar to the role of

the second law near to the equilibrium. On the other hand, this

hypothesis is a modification of the requirement of non-negative

excess entropy production of Glansdorff and Prigogine [18].

The difference from the Prigogine-Glansdorff requirement is the

logarithmic deviation instead of a linear one. (The possibility of

partial steady state, a specific property of friction, is important,

too.) Along with these we want to emphasize that the inequal-

ity here is not a general law of nature, it is to be regarded as a

convenient stability assumption during seeking for an adequate

model [19, 20].

An example of similar logarithmic deviation is the thermo-

dynamics of chemical kinetics, where the entropy production

is a product of the chemical affinity and the reaction rate, but

the Guldberg-Waage kinetic equations introduce an exponen-

tial relation [21]. It is remarkable that chemical equilibrium

is considered as a steady state from a thermodynamic point

of view, when forward and backward reactions are properly

distinguished [22, 23]. Our formula corresponds to a simple

3The proper relation of kinetic and internal energies in a Galilei relativis-

tic framework is a delicate question from a thermodynamic point of view. A

detailed treatment of objective, frame indpendent thermodynamic modeling in

case of single component fluids is given in [17]. A similar approach is required

in our case, too.
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monomolecular reaction, which is actually equivalent to a sin-

gle internal degree of freedom [21]. In friction the logarithmic

deviation may be further motivated according to this chemical

analogy [10].

Finally, we remark that the logarithmic form can be directly

derived assuming that the internal energy is modified by a log-

arithmic velocity dependent term instead of a quadratic one:

U = E0 − mV(ln(V /V0) − 1).

Eq. (16) is similar to the usual entropy production in many

respects. First of all, the two terms are zero in the reference

steady state and we assume that ∆µ is a constitutive function of

the logarithmic deviation, a function of the thermodynamic state

variable. Therefore, in case of smooth functions, the Lagrange

mean value theorem ensures a linear homogeneous relationship

between these constitutive quantities and the related thermody-

namic forces also in this mixed steady-state equilibrium case.

The linear solution of inequality Eq. (16) results in the fol-

lowing expressions:

∆µ = l1 ln

(
V

V0

)
− l12κr, (17)

ṙ = l21 ln

(
V

V0

)
− l2κr. (18)

We will call Eqs. (17) - (18) as thermodynamical aging law.

Eq. (17) is identical to the Nakatani form of the constitutive law

Eqs. (5) and (18) is similar to Eq. (7).

The coefficient matrix may depend on the thermodynamic

forces, in particular, l1, l2, l12 and l21 may depend on the state

variables V and r [24]. In the following we assume a strict lin-

ear relationship, when the coefficient matrix is constant. It is

remarkable that there are no reasons to assume symmetricity or

antisymmetricity of the matrix. The conditions of Onsagerian

statistical background cannot be introduced without a particular

interpretation of the internal variable (more detailed arguments

are given in [25, 26]).

3 Different mechanisms of different relaxations

According to the experimental observations in case of veloc-

ity step and healing experiments, sometimes the internal variable

changes when the surfaces slip, and sometimes its evolution is

seemingly independent of the relative motion of the surfaces.

This distinction is connected to the detailed mechanism of fric-

tion, and requires an extension of the modeling framework. In

the following we will investigate the question of slip related in-

ternal variable evolution.

Ruina [6] applied this assumption directly to the relaxation. In

our case that requires the modification of Eq. (18), assuming that

the slip is what makes the internal variable change, and the rate

of the variable is a consequence. In this case the time derivative

in Eq. (18) is substituted by the space derivative and the rate is

obtained as a consequence:

dr

dt
→

dr

dx
=

ṙ

V
. (19)

Performing this substitution in Eq. (18) leads to

ṙ = l21V ln

(
V

V0

)
− Vl2κr. (20)

Eq. (20), together with Eq. (17) will be called thermodynam-

ical slip law. One can see, that the Nakatani transformed Ru-

ina law Eqs. (5), (7) can be obtained if l1 = a, l12 = − 1 / κ,

l21 = − b / L and l2 = 1 / (κL). The number of phenomeno-

logical parameters is increased by one, from three to four, com-

pared to the original Ruina theory. It is because κ appears only

as a multiplier of the cross-coefficients l12 and l21. The slip

governed modification represents a particular quasilinear form

of the strictly linear relations of the thermodynamic aging law

Eqs. (17) - (18).4

The slip condition of Ruina, expressed by Eq. (19) assumes

that V is the relative surface velocity, related to the permanent

parts of the displacement. When introducing a distinction be-

tween permanent and recoverable parts of the apparent displace-

ment beyond the difference of the load point and relative surface

velocities, one may expect that only the permanent part con-

tributes to the entropy production, to the evolution of the internal

variable. For example, an interpretation of the internal variable

as recoverable displacement with the condition Eq. (11) leads to

the following permanent displacement:

xper =

∫ t

t0

z(s)ds = x − r.

Particular mechanisms require that the internal variable influ-

ences the slip. For example, when the internal variable is con-

nected to deformation of surface irregularities then this conclu-

sion is straightforward. Therefore, we assume in general that the

internal variable directly influences the displacement, and the re-

duced part is what influences the (incremental) entropy produc-

tion. Hence, we introduce xred = x − αr, where 0 ≤ α ≤ 1 is

the factor of slip reduction. If α = 1 then the internal variable

can be interpreted as the recoverable part of the displacement

[11].

The evolution equation of the internal variable is obtained by

substituting the time derivative with the slip related change of

the internal variable, as follows:

4In our thermodynamical framework, a slip related change may lead to fur-

ther consequences. In order to keep the integrity of the thermodynamic consid-

erations, the calculation of the entropy rate may be substituted by the calculation

of the slip related entropy change.

For example, with the internal energy Eq. (13), the derivative of the entropy

by the displacement will be the following:

dS

dx
=

1

T

(
Fe

V0

V
+ Fd

V − V0

V
− kr

dr

dx

)
. (21)

Then we proceed assuming logarithmic increment and obtain Eq. (17) and

(20) as a consequence. However, slip and displacement are not the same, the

calculation of slip related changes should distinguish between the permanent

and recoverable parts. Here we do not analyse this possibility further, we accept

the approach of Ruina at this point.
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dr

dt
→

dr

d(x − αr)
=

ṙ

V − αṙ
.

For the sake of simplicity, α is constant. Then a rearrange-

ment leads to the following evolution equation of the internal

variable:

ṙ = V
l21 ln

(
V
V0

)
− l2κr

1 + α
(
l21 ln( V

V0
) − l2κr

) . (22)

Eq. (22) together with Eq. (17) is called thermodynamical

friction law in the following. This is another particular quasi-

linear form of the thermodynamic aging law Eqs. (17) - (18).

In the above thermodynamical models, there is a direct ef-

fect and the conventional step test parameters are a = l1 and

b = l12l21

l2
. In the following we compare the performance of the

obtained thermodynamic models with the classical models and

experiments.

4 Velocity step tests

A comparison of the different rate- and state-dependent fric-

tion laws is shown in Fig. 2. The velocity weakening experiment

is modeled with the following parameters: µ0 = 0.6, V0 = 1 µm/s,

V1 = 10 µm/s, L = 20 µm, a = 0.015, and b = 0.02.

Dieterich and Ruina models are shown by solid thin lines.

The parameters of the thermodynamic friction model are cali-

brated to give the proper step conditions and relaxation speed:

l1 = a, l2 = 1/L, l12 = b, l21 = l2. There are two additional

parameters, the static recovery strength κ, analogous to a spring

constant, and the factor of slip reduction α. The dotted curve

runs exactly over the line obtained by the Ruina model because

thermodynamic slip model recovers the Ruina case when κ = 1

and α = 0. One obtains highly asymmetric relaxation curves

choosing higher values of the slip reduction parameter α, and

with a proper choice one calculates curves that are close to the

Dieterich model. E.g., the thick dashed curve was calculated

with κ = 0.85 and α = 8. Moreover, one can obtain symmet-

ric relaxation curves close to either the down or up relaxation

curves of the Dieterich model with an appropriate choice of the

parameters. For example, the thick dotdashed line was calcu-

lated using κ = 0.7 and α = 2.

The thermodynamic aging law produces asymmetric curves,

similar to the Dieterich law.

5 Healing

The interpretation of healing is contradictory, here we have

chosen the experiments and strategy of Beeler an Tullis [3, 27]

for demonstration. They performed healing experiments with

various machine rigidities. One of them, k = 0.002, was the

natural elasticity of the experimental device, and in this case the

load point velocity was V0 = 1µm/s. With the k = 0.074 ser-

vocontrolled value the load point velocity was V0 = 0.316µm/s.

In both cases the rock parameters were L = 3µm, a = 0.009,

and b = 0.008. The data points in the first and second cases

Fig. 2. Simulation of a velocity step test with various friction laws. The

Dieterich and Ruina laws are drawn by solid thin lines. The thermodynamic

friction law leads to the dotted line with κ = 1 and α = 0 parameters running

over the line of Ruina law. The dashed line with parameters κ = 0.85 and

α = 8 runs close to the Dieterich law. For the dotdashed line the parameters are

κ = 0.7 and α = 2.

are shown on Fig. 3 by circles and rectangles, respectively. The

simulation used the experimental rock parameters of Beeler et

al. [27], and the additional parameters were chosen as α = 0.75

and κ = 0.9. Then we have obtained the dashed curve for the

k = 0.074 case and the dotted one for k = 0.002.

Fig. 3. Simulation of the healing experiments of Beeler et al. [27]. The ex-

perimental data for the k = 0.002 case is shown by the big circles and for the

k = 0.074 case by the rectangles. The dotted curve is calculated by the thermo-

dynamic friction model for k = 0.002. The k = 0.074 parameter resulted in the

dashed curve.

Figures 4 and 5 show the effect of changing the initial ve-

locity and the machine rigidity. In Fig. 4 the simulation of the

healing experiment with the more rigid machine is shown, where

the parameter values are k = 0.002, V0 = 1µm/s, L = 3µm,

a = 0.009, b = 0.008, α = 0.75 and κ = 0.9 (dotted curve in

Fig. 3). Increasing the velocity to V0 = 2µm/s pushes the curve

upward and parallel to the original one, shown by the dashed

curve. In Fig. 5 the effect of softening is demonstrated, the

dashed curve is calculated with k = 0.02. The dotted curve is

identical to the one in Fig. 4. The increase of the healing effect

qualitatively corresponds to the experimental observations.

6 Conclusions

A non-equilibrium thermodynamic model with a single inter-

nal variable of rate- and state-dependent friction was proposed.

The model introduced the following basic assumptions:
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Fig. 4. The effect of larger steade state velocity for healing. V0 = 1µm/s,

dotted curve, V0 = 2µm/s, dashed one.

Fig. 5. The effect of softened machine for healing. k = 0.002, dotted curve,

k = 0.02, dashed one.

• The deviation from the steady state is logarithmic.

• The change of internal variable is due to a reduced slip, and

the reduction is proportional to the value of the internal vari-

able.

The obtained thermodynamic friction model generalizes the

well-known Dieterich and Ruina laws with two additional pa-

rameters.

• For velocity step tests, it interpolates between the Dieterich

and Ruina laws. The form of the relaxation depends on the ad-

ditional parameters. One can obtain symmetric up and down

relaxation curves that are either close to the curves of Ruina

relaxation or are close to the Dieterich type relaxation, but

with less apparent linear part.

• Simulations show promising results for healing experiments,

both quantitavely and qualitatively.
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