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Abstract

Tensile strength is one of the important mechanical proper-

ties of concrete. Indirect methods have been used up till now

for its measurement. These methods though widely accepted, do

not furnish the true tensile strength of concrete. In this paper,

a compression to tensile load transformer device is developed

to determine direct tensile strength of concrete. The cubic con-

crete samples with dimension of 15*19*6 cm containing internal

hole with dimension of 75mm is prepared using the mixture of

cement, fine sand and water. This model is subjected to direct

tensile loading by special loading device. A series of finite el-

ement analysis were performed using FRANC2D to analyse the

effect of hole diameter on the stress concentration around the

hole and to render a suitable criteria for determination of real

tensile strength of concrete. Concurrent with direct tensile test,

Brazilian test is performed to compare the results of two meth-

ods. Results obtained by this test are quite encouraging and

shows that the direct tensile strength is clearly lower than the

Brazilian test. The difference between the Brazilian and direct

tensile strengths is about 33%.
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1 Introduction

The tensile strength of concrete is a crucial design parameter

in structures such as concrete dams, airfield runways, concrete

roads and pavements, and other slabs. Therefore, many experi-

mental and theoretical studies have been carried out to determine

the tensile strength of concrete [1–10]. It is known that the stress

obtained by breaking a specimen which is subjected to uniaxial

loading, shows the real tensile strength of concrete (Fig. 1), but

the tensile strength of concrete is obtained by indirect methods

as splitting and flexural tests.

Fig. 1. Specimen under uniaxial tensile loading

A non-uniform state of stress is superimposed over the local

stress fluctuations that are caused by the material structure it-

self. Because of this, these methods have disadvantages [11].

However, the tensile strength obtained from the uniaxial tensile

test is more reliable than that of other test methods. But this test

method requires much more care compared to indirect methods.

Particularly, after the production of strong epoxy based adhe-

sives, the uniaxial tensile tests are done with few troubles. Many

experimental researches conducted in the past to determine the

uniaxial tensile strength failed because of unexpected crushing

which occurred as a result of local stress concentrations. An-

other difficulty in uniaxial tensile tests is that the test specimen

is under the influence of moment effects during the tensile test

due to eccentricity. Gomez [12] and Mier [13] reported that

an increase in load eccentricity may decrease the tensile stress.

Swaddiwudhipong et al. [14] studied the strain capacity in di-

rect tension and the tensile strength of concrete produced with

different types of cement at early ages in their tests.

Zain et al. [15] proposed some equations that indicate the

splitting tensile strength of high strength concretes based on the
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compressive strength of concretes of any age.

The objective of this paper is to develop a new loading de-

vice called compression-to-tension transformer to apply a ten-

sile stress to the concrete-like specimen. The proposed device

will be designed and fabricated for use with most commercially

available compression loading machines. It should be durable,

inexpensive and easy to use. The concept is to apply compres-

sive loads to the top and bottom of the hole and hence the spec-

imen can subject to uniaxial tensile stress.

2 Experimental test

2.1 Compression-to-tension load converter devices

A compression-to-tension load transformer device (CTT) was

developed to determine the tensile strengths of specimens with

a hole in the middle. The primary design requirement is to al-

low alternating between the application of tensile load and com-

pressive load on the same specimen while placing in a conven-

tional compression machine. The Compression-to-tension load

transformer device comprises several parts (Fig. 2). The part

number 1 which has “U” shape has been built from stainless

steel (Fig. 2a). This part is divided to two separate segments i.e.

“L” and “l” shape segments. The part number 2 which have “I”

shape is undividable (Fig. 2b). Dimension of these two parts is

shown in Fig. 2 a and b.

The parts number 3 comprises two semi cylindrical stain-

less steels with dimension of 75 mm× 10 mm× 60 mm (Fig. 2c).

The parts number 4 is composed of two similar blades with di-

mension of 20 mm× 10 mm× 190 mm (Fig. 2d).

The set up procedure of CTT device is consisted of six stages,

as shown in Fig. 3. Firstly, the parts number 3 are inserted into

hole (Fig. 3a). Secondly, the “L” shape segment of part number

1 is situated in left side of the specimen (Fig. 3b). Thirdly, the

first blade of part number 4 go through the hole so its upper sur-

face is in contact to cylindrical steel, i.e. part of number 3, and

its lower surface is in contact to “L” shape segment (Fig. 3c).

Fourthly, the part number 2 is situated in right side of the spec-

imen (Fig. 3c). Fifthly, the second blade of part number 4 go

through the hole so its lower surface is in contact to cylindrical

steel, i.e. part of number 3, and its upper surface is in contact

with “I” shape segment, i.e. part of number 2 (Fig. 3d). Sixthly,

the “l” shape segment is screwed to the “L” shape segment of

part number 1 and the apparatus set up is completed. Therefore

the upper cast is in contact with the lower cylindrical steel and

the lower cast is in contact with upper cylindrical steel (Fig. 3e).

When this set up is situated between the uniaxial loading frames,

the upper loading frame compress the upper cast so the lower

part of the hole is compressed. In similar condition, the lower

loading frame compresses the lower cast so the upper part of the

hole is compressed. Compression of upper and lower parts of

the hole brings the specimen to tensile loading (Fig. 3f).

Fig. 2. The components of compression to tension converter load device.

Fig. 3. The set up procedure of CTT device
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2.2 The technique in preparation of the specimens

The material mixture was prepared by mixing water, fine

sand and Ordinary Portland Cement in a blender (Fig. 4a).

crushed-limestone sand with 2.57 g/cm3 of specific gravity and

2.75 cm2/g of fineness was used as fine aggregate.

The mixture was then poured into a fiberglass cast with inter-

nal dimension of 15× 19× 6 cm (Fig. 4b). The cast consists of

two discrete cubes, bolted together. The cast containing fresh

mixture was vibrated (Fig. 4c) and then stored at room temper-

ature for 8 h afterward, the specimens unmolded. Then a core

with diameter of 7.5 cm and height of 60 cm remove from the

centre of the samples using dry drilling (Fig. 4d) so the ratio of

hole diameter (7.5 cm) to sample wide (15 cm) is 0.5.

Fig. 4. The technique in preparing the internally hole specimens; a) mixing

materials in a blender, b) a fiberglass cast, c) the fresh mixture is vibrated and d)

drilling a core from the centre of the cubic sample.

2.3 Tensile strength test procedure

Fig. 5 shows test arrangement for direct tensile strength test-

ing. The CTT device with a specimen is installed in a compres-

sion load frame (Fig. 5). A 30-ton hydraulic load cell applies

compressive load to the CTT end plates. An electronic load cell

is used to measure the increase of the applied load. To isolate

the effect of loading rate from the results a constant loading of

0.02 MPa/s was applied for all specimen. This rate is within

the range recommended for the Splitting tensile strength test-

ing by Denneman [16]. Three specimens are tested under direct

tensile loading and three specimens are subjected under Split-

ting test. All specimens cracked along a horizontal line through

the center of the hole when subjected to a vertical force. The

failure is a splitting tensile failure because the failure happened

intentionally along the horizontal axis with the help of two semi

cylindrical steels (Fig. 6). Also Fig. 7 shows the tensile failure

of specimen in Splitting test.

For calculation of far field tensile stress in direct tensile test,

the far field failure load is divided to involve surface area of part

number 4 which is 2 cm× 6 cm. But according to the Kirsch

theory, whereas the far field tensile stress is distributed non-

uniformly in sides of the hole therefore the far field tensile stress

Fig. 5. Compression load frame.

Fig. 6. The tensile failure pattern in samples.

could not be a proper agent for tensile strength of concrete ma-

terial. The numerical simulation is necessary to determine a re-

lationship between far field tensile stress, the ratio of hole di-

ameter to sample wide and stress concentration at corners of the

hole. The output of numerical simulation is a criterion which

gives the real tensile strength of concrete block.

3 Finite Element Simulation

A two-dimensional finite element code named FRANC2D/L

(FRacture ANalysis Code for 2-D Layered structures) was used

to do the numerical modeling work. This code was originally

developed at Cornell University and modified for multi-layers

at Kansas State University, and is based on the theory of lin-

ear and nonlinear elastic fracture mechanics (Wawrzynek and

Ingraffea, [17]). The general methodology starts with the pre-

processing stage, where the geometry, mesh, material properties,

and boundary conditions are specified. The modeling continues

with post-processing stage where loading conditions, crack defi-

nition and crack growth process are specified. Fig. 8 shows finite

mesh with boundary and loading conditions. The up and down

sides of the model are fixed in x direction and left and right sides

of the model are fixed in y direction. To obtain detailed distribu-

tion of the induced stresses up to 400 elements have been used

in the models. Specimens with four different W/B rations; 0.15,

0.25, 0.375, and 0.5; were prepared. These models were sub-

jected under internal tensile stress of 10 MPa. The analyses are

Fig. 7. Tensile failure of specimens in Splitting test.
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made on samples assuming that the concrete is linearly elastic

and isotropic. The elastic modulus and Poisson’s ratio of the

specimens used in the model were assumed to be 25 GPa and

0.20, respectively.

Fig. 8. Finite mesh with boundary and loading conditions

Objective of the model analyses is to determine that no com-

pressive stress exists at the mid-length of the specimen. The

specimen fails under tensile loading before failure by shear

stress occurs at both ends of the specimen. The failure under

tensile loading occurs at the mid-length of specimen. Fig. 9

shows tensile stress distribution in the samples for different ra-

tios of hole diameter to sample wide. Fig. 9 Shows concentrated

tensile stress at the left and the right sides of hole

Fig. 9. Tensile stress distribution in the samples when W/B is; a) 0.125, b)

0.25, c) 0.375, d) 0.5.

The compressive stress is also concentrated at top and bottom

of the hole. Whereas the tensile strength of material is less than

its compressive strength therefore these models have failure in

left and the right sides of hole before failure under compression

load at the vertical-section.

Fig. 10 shows distribution of the normalized tensile stress

(S2) and shear stress (S) by far field tensile stress (Pt) versus

horizontal distance from centre of circle.

The maximum shear and tensile stress occurs near the applied

load areas. Also the value of tensile stress at the corner of the

circle is more than shear stress in all samples. Whereas the ten-

sile strength of material is less than its shear strength therefore

these models have tensile failure at the corner of specimen be-

fore failure under shear load at the centreline.

Fig. 10. The variation of normalized stress versus horizontal distance from

circle center; the ratio of circle diameter to sample wide is a) 0.125, b) 0.25, c)

0.375 d) 0.5.

From the results of numerical analysis it can be concluded

that the model with internal bore is suitable for use with the

compression-to-tension load transformer (CTT). Whereas dis-

tribution of tensile stress at the model is more than the far field

tensile stress, therefore the far field tensile stress could not be

used directly as tensile strength of concrete material. For deter-

mination of the real tensile strength of concrete, the relationship

between concentrated tensile stress, far field tensile stress and

hole diameter should be specified.

Fig. 11 shows the variation of normalized tensile stress con-

centration at the corners of the hole to the ratio of circle diameter

to sample width.

Fig. 11. The variation of normalized tensile stress consecration (S2/Pt) to

the ratio of circle diameter to sample width (W/B).

The regression equation [i.e., Eq. (1)] can be used to predict

S2/Pt for any W/B ratio between 0.125 and 0.5:

S 2

Pt
= 3

W

B
+ 1 (1)

This equation shows that when far field tensile load (Pt) is

applied in the intact sample (W = 0.0), the tensile stress distri-

bution in the model, s2, is equal to Pt. this means that the ten-

sile load is distributed uniformly in the model in absence of the

hole which is logically acceptable. This equation shows that

when far field failure stress (Pt) is applied to fine hole (W ~ 0),

the tensile stress concentration in the model, S2, is equal to Pt.

This means that, internal stresses in a fine hole act similar to the

point loading with constant stress around the hole. The stress
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concentration around the hole increases by increasing the diam-

eter (Fig. 11). This finding is in a good accordance with Kirsch

solution results (Brady [18]).

From other point of view, this equation shows that when the

model are loaded under far field tensile stress, the tensile stress

concentration in the side of the hole can be calculated using

Eq. (1). For example, when far field failure stress of 1.24 MPa

is applied in the CTT physical test with W / B = 0.5, the tensile

stress concentration at the hole corners (S2) is 3.1 MPa accord-

ing to Eq. (1). When S2 reach to 3.1 MPa, it can overcome to

the tensile strength of material. Therefore the ultimate tensile

stress side of the hole (S2) was registered as real tensile strength.

Based on this finding, Table 1 shows the comparison between

real tensile strength of CTT test and Splitting tensile strength.

Tab. 1. Results of direct tensile strength and Splitting strength test.

Sample No. Direct tensile Splitting tensile

(W / B = 0,5) strength (MPa) strength (MPa)

1 3,1 4,5

2 3,1 4,7

3 2,9 4,4

Average 3,03 4,53

4 Comparison of the strength results

Table 1 compares the tensile strength results obtained from

two methods. The Splitting tension test yields the highest

strength values due to the high stress gradient along the incipi-

ent crack plane (Zain et al. [14]). It is interesting to note that

the difference between the Splitting and direct tensile strengths

is about 33%. The difference of the tensile strength from the

two methods may therefore be partly governed by tensile stress

distribution on the failure surface.

5 Conclusions

The CTT device is designed to obtain a direct tensile strength

under uniaxial tensile and to induce extension failure under a

true uniaxial tensile stress. The hole diameter at the mid-section

of specimen is 75mm, which may raise an issue of circle size

on the measured strengths. The effect of hole size on tensile

strength of a concrete block was determined using numerical

simulation. It has been concluded that as the circle size in-

creases, the tensile stress concentration in the side of the hole

along the horizontal axis increases in constant far field stress.

The real concrete tensile strength is calculated based on Eq. (1).

It is recognized here that the direct tensile strength is lower than

the Splitting tensile strength so the difference between the Split-

ting and direct tensile strengths is about 33%.
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