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Abstract

In this paper, the effect of rock bridge surface on the shear be-

havior of planar non-persistent joints under low and high nor-

mal loads has been investigated using particle flow code in 2

Dimensions. PFC2d was calibrated with respect to the data

obtained from experimental laboratory tests to ensure the con-

formity of the simulated numerical models response. The mod-

els consisting non-persistent joint were simulated and tested by

shear loading under low and high normal loads. The discrete

element simulations demonstrated that the failure pattern was

mostly influenced by normal load, while the shear strength was

linked to the failure pattern and failure mechanism. The fail-

ure patterns were found reasonably similar to the experimentally

observed trends.
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1 Introduction

The shear sliding of non-persistent joints are important fac-

tors in controlling the mechanical behaviour of rock masses

(Einstein [1], Wong [2]). As known, it is difficult and costly

to perform field tests to investigate the mechanical behavior of

jointed rock masses. Therefore, laboratory tests are commonly

conducted to study the influence of joint geometry configura-

tions on the mechanical behavior of jointed blocks [3–6]. The

crack initiation, propagation and coalescence of jointed speci-

mens with less than three open flaws under uniaxial or biaxial

compression [7–9] have been investigated by many researchers.

In these studies, both tensile and shear cracks have been ob-

served [7–11]. Lajtai [12, 13], tensile wing cracks were found

to first appear at the tips of horizontal joints, followed by the

secondary shear cracks propagating towards the opposite joint.

Mughieda et al. [14] made a thorough analysis on the Frac-

ture mechanisms of offset rock joints. Gehle and Kutter’s [15]

investigation on the breakage and shear behaviour of intermit-

tent rock joints under direct shear loading condition showed that

joint orientation is an important influential parameter for shear

resistance of jointed rock.

In laboratory tests, it is difficult to measure the failure mech-

anism of rock bridge during the loading process. Numerical

simulation is another common approach that has been used to

investigate the failure mechanism and the mechanical behav-

ior of non-persistent joints using techniques such as the finite

element method, realistic failure processing analysis, particle

flow code), displacement discontinuity method, boundary ele-

ment method, distinct element method, and a hybridized indi-

rect boundary element method) [16–22]. Particle flow code,

a distinct element method first induced by Cundall and stark

[23], models the mechanical behavior of rock and soils. The

materials are envisioned as an assembly comprised of arbitrary

spherical particles (in 3D case) or circular disks (in 2D case) in

the PFC program. Kulattilake et al [24] were the pioneers in

providing a realistic calibration procedure for micro-mechanical

parameters of PFC3D for a contact bonded particle model. They

also established a jointed rock model by using closed flaws and

investigated the relation between micro-parameters and macro-
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parameters, and the mechanical behavior of jointed rock model

under uniaxial loading. Deleting of some particles in a PFC2D

model is another way to generate joints in a bonded particle

model; this procedure creates open flaws. Zhang [25] and Zhang

and Wong [26, 27] studied crack initiation, propagation and co-

alescence using one, two or three open flaws. Many types of

crack initiation and crack coalescence observed by numerical

tests have been similar to the ones observed in laboratory tests.

The smooth-joint is a better way to model the mechanical behav-

ior of a joint in PFC modeling. Bahaaddini et al. [28] used the

smooth-joint in a bonded particle model to investigate the effect

of joint geometrical parameters on the mechanical properties of

a non-persistent jointed rock mass under uniaxial compression.

Many PFC users have reported the successes, failures and dif-

ficulties encountered during PFC usage. In this work, PFC2D

is used to study the Shear Behaviour of Non Persistent Joints

under Low and High Normal Loads.

For this purpose, using an inverse-modelling calibration ap-

proach, the laboratory results of the uniaxial, Brazilian and tri-

axial tests were used to obtain the estimates of the intact rock

micromechanical parameters used in the simulation. A valida-

tion of the simulation was then performed by comparison be-

tween the shear behaviour of rock bridges in PFC2D and that of

the non-persistent joint tested under direct shear loading in the

laboratory. The validated numerical model was used to further

studying the mechanical behaviour of the jointed models with

different joint persistency.

2 Laboratory tests

2.1 Model Material Preparation

The model material used in preparing the intact samples and

jointed blocks was a mixture of plaster (37.5 %), cement (25

%) and water (37.5 %). The procedure of mixing, casting and

curing of specimens were introduced in detailed in Sarfarazi et

al. [29]. The mechanical properties of the physical models are

summarized in Table 1.

2.2 Preparation, Testing and Results of the rock like model

consisting of non-Persistent Joints

Two specimens with different rock bridge surface of

34 cm2and 68 cm2 were prepared (Fig. 1). Based on the change

in the surface of the non-persistent joints, it is possible to define

the joint coefficient (JC) as the ratio of the joint surface to the

total shear surface, 225 cm2. So this is a new and simpler prop-

erty than joint persistency. The values of JC for two specimens

are 0.85 and 0.7. From each specimen two similar samples were

prepared and tested under two different normal loads; 0.33 MPa

and 2.5 MPa which are 5% and 38% of uniaxial strength of spec-

imen, respectively. The procedures of mixing, casting, curing

and testing of the jointed block were introduced in detailed in

Sarfarazi [29].

The observation results showed that the normal load influence

the failure pattern of the rock bridge. Figure 2 shows the failure

patterns obtained in the direct shear tests.

When JC = 0.85, under low normal load (Fig. 2a), The up-

per tensile crack propagates through the intact portion area and

the lower tensile crack develops for a short distance and then

becomes stable and does not coalesce with the tip of the other

joint. The surface of failure at the bridge area is tensile because

no pulverized materials and evidence of shear movement were

noticed. Also, polished failure surface was other evidence for

splitting tensile failure.

Under high normal load (Fig. 2b), the surface of failure at the

bridge area is shear because crushed materials and evidence of

shear movement were noticed. Also, friction effect was other

evidence for shear failure. The shear surface plane is nearly

horizontal with shear loading direction. The dilation angle is

zero due to smooth pattern of failure surface.

When JC = 0.7, under low normal load (Fig. 2c), the upper

tensile crack propagates through the intact portion area and coa-

lesces with the tip of the other joint. The surface of failure at the

bridge area is tensile because no pulverized materials and evi-

dence of shear movement were noticed. Also, polished failure

surface was other evidence for splitting tensile failure.

Under high normal load (Fig. 2d), the surface of failure at the

bridge area is shear because pulverized materials and evidence

of shear movement were noticed. The shear surface plane is

undulating with asperity angle 15°.

2.3 Numerical Unconfined Compressive Test

Figure 3a illustrates the failure patterns for numerical simula-

tions and experimental tested samples, respectively. The failure

planes experienced numerically and through laboratory testing

are well matched.

Figure 3b compares the stress-strain curves obtained exper-

imentally and numerically, respectively. These two curves are

consistent in general, and the peak strengths are also similar. A

comparison between numerical results and experimental mea-

surements are presented in Table 2.

2.4 Brazilian Test

Figure 4a and b illustrate failure patterns of the numerical and

experimental tested samples, respectively. Failure planes expe-

rienced numerically and with laboratory tests are well matched.

Numerical tensile strength and experimental measurements

are presented in Table 2. A comparison of the brazilian experi-

mental measurements given in Table 2 shows good agreements

with those of the numerical results.

2.5 Biaxial Test

The confined and vertical stresses are applied to the speci-

men by activating the servo-mechanism that controls the ve-

locities of the four confined walls. Fig. 5 shows the fracture

pattern in numerical models under six different confining pres-

sures; i.e. 0.5 MPa, 1 MPa, 1.5 MPa, 2 MPa, 2.5 MPa, 3 MPa and
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Tab. 1. Property values of the intact model material determined experimentally.

value property

6.6 Average uniaxial compressive strength (MPa)

1 Average compressive strength (MPa)

5 Average Young modulus in compression h (MPa)

0.18 Average Poisson’s ratio

20.4 Internal angle of friction

2.2 Cohesion (MPa)

Fig. 1. The specimens with different rock bridge surfaces of a) 34 cm2 and b) 68 cm2

Fig. 2. The failure patterns obtained in the direct shear tests.
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Tab. 2. Macro-mechanical properties of the model material in the experimental tests and PFC2D

PFC2D model

results

Experimental

results

Mechanical

properties

PFC2D model

results

Experimental

results

Mechanical

properties

1.1 1
Tensile strength

(MPa)
5 5

Young modulus

(GPa)

21 20.4 Friction angle 0.19 0.18 Poisson’s ratio

2.2 2.2
Cohesion

(MPa)
6.7 6.6 UCS (MPa)

Fig. 3. a) Unconfined compressive test (cracks described by red/black lines),

Ghazvinian et al. [?35], b) the failure pattern in experimental testing.

Fig. 4. The failure pattern in the a) numerical model, b) experimental sam-

ples, Ghazvinian et al. [3]

3.5 MPa. When confining pressure is 0.5 MPa, one failure sur-

face is responsible for sample failure but when confining pres-

sure is 3.5 MPa, several crossover failure surfaces bring sample

to failure. These failure patterns are similar to the failure pat-

terns that occurred in physical samples. A comparison of these

experimental results given in Table 2 demonstrates suitably good

agreement with those of the numerical measurements.

2.6 Numerical Direct Shear Tests on the Non-Persistent

Open Joint

2.6.1 Preparing the Model

After calibration of PFC2D, direct shear tests for jointed rock

were numerically simulated by creating a shear box model in

the PFC2D (Fig. 6). The PFC specimen had the dimensions of

76 mm ×60 mm. A total of 11179 disks with a minimum ra-

dius of 0.27 mm were used to make up the shear box specimen.

The particles were surrounded by four walls. The planar non-

persistent joints were formed by deletion of two non-persistent

vertical bands of particles from the model. The opening of these

notches is 1 mm (Fig. 6). To create the shear test condition, two

horizontal narrow bands of particles, with the width of 1 mm,

were deleted from both the upper left side and the lower right

side of the model at a distance between the joint walls and the

shear box wall (Fig. 6). In total four specimens containing two

planar edge-notched joints with different lengths were set up

to investigate the influence of joint separation on the shear be-

haviour of rock bridges. For different specimens, the lengths

of these edge-notched joints were different, while in the same

specimen, the lengths of those two joints were the same, and

they are both arrayed in the vertical middle plane. The joint

length (b) has a range from 12 mm to 25.5 mm with an increment

of 4.5 mm, while the joint separation or ligament length (l) de-

creases from 36 to 9 mm with a negative change value of 9 mm.

Based on the change in the length of planar non-persistent joints,

it is possible to define the joint coefficient (JC) as the ratio of the

joint surface to the total shear surface, i.e. 2b / (T + 2b). The

value of JC increases from 0.4 to 0.85 with an increment of 0.15.

2.6.2 Loading Set Up

Both the upper and left walls of the shear box were fixed

(Fig. 6). Shear loading was applied to the sample by moving

the lower wall in the positive Y-direction, with an adequate low

velocity (i.e., 0.016 m/s) to ensure a quasi-static equilibrium,

while the normal stress was kept constant by adjusting the right

wall’s velocity using a numerical servo-mechanism. The normal

stresses applied to the rock bridges in the numerical tests was the

same as in the laboratory tests (i.e., 0.3 MPa and 2.5 MPa). The

shear force was registered by taking the reaction forces on the

wall 2 in Fig. 6.

3 Results and Discussion

3.1 Influence of normal load on the Failure Behaviour of the

Rock Bridge

Figures 7, 8, 9 and 10 illustrate the shear behaviours of rock

bridge under two different normal load for JC = 0.85, 0.7, 0.55

and 0.4, respectively. In each figure, the fracture patterns at three

stages of shear loading (i.e. at the crack initiation stress stage of

I, at the peak stress of II, and after the peak shear stress of III

that have been shown in these figures) have been shown. At each
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Fig. 5. The fracture pattern in numerical models, Ghazvinian et al. [3]
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Fig. 6. Illustration of the direct shear test simulation scheme in PFC.

stage of the simulation, the crack orientation and the number of

shear and tension induced cracks were determined.

3.1.1 JC = 0.85

Stage I: When normal load is 0.3 MPa, before the peak shear

stress is reached (Fig. 7a (I)), only tensile fractures are initiated

at the tip of the joints as a result of the release of tensile force.

They propagate in a curvilinear path to form the so-called “wing

cracks.” These cracks are categorized in the major fracture set

of F1 with a mean orientation of 65.5°. Since the force intensity

at the unbroken bonds is not enough to rupture the contacts, the

cracks develop in a stable manner.

When normal load is 2.5 MPa, before the peak shear stress is

reached (Fig. 7b (I)), only tensile fractures are initiated within

the rock bridge and propagated for a short distance as a result of

the release of tensile force. These cracks are categorized in the

major fracture set of F1 with a mean orientation of 30°.

Stage II: When normal load is 0.3 MPa, at the peak shear

stress (Fig. 7a (II)), the new tensile cracks are developed along

the fracture set of F1 and propagate for a large distance. The

mean orientation of the fracture set, F1, is 56.2°. The number of

cracks in this step is 27 that are 32% of total number of cracks

propagated in stage III. It means that when 32% of total cracks

developed within the rock bridge, the shear strength is decreased

and unstable crack growth is reached.

But when normal load is 2.5 MPa, at the peak shear stress

(Fig. 7 b (II)), the new tensile cracks are developed along the

fracture set F1 and propagate for a large distance. In this stage,

four shear bands propagate within the rock bridge. The mean

orientation of the fracture set, F1, is 30°. The number of cracks

in this step is 53 that are 57% of total number of cracks propa-

gated in stage c. It means that when 57% of total cracks devel-

oped within the rock bridge, the shear strength is decreased and

unstable crack growth is reached.

Stage III: When normal load is 0.3 MPa (Fig. 7aIII), a new

tensile fracture set, F3, develops in the vicinity of the fracture

set of F1 and propagates out of the zone of maximum compres-

sive force till coalescence with the joint tip. This coalescence

leaves an elliptical core of intact particles. The mean orienta-

tion of the two fracture sets of F1 and F2 is 56.2°and 149.4°,

respectively. The propagation length of fracture set F1 in this

stage is equal to the length of F2 fracture set. As can be seen

from Fig. 2a, nearly the same failure pattern has occurred in the

physical sample when JC = 0.85.

When normal load is 2.5 MPa (Fig. 7b (III)), a new tensile

fracture set of F2 develops in the vicinity of the fracture set of F1

but in opposite direction and propagates for a short distance. The

propagation length of fracture set F1 in this stage is 2 - 3 times

more than the length of F2 shear bands. The mean orientation of

the two fracture sets of F1 and F2 is 30°and 320°, respectively.

As can be seen from Fig. 2b, nearly the same failure pattern

has occurred in the physical sample when JC = 0.85.

3.1.2 JC = 0.7

Stage I: When normal load is 0.3 MPa (Fig. 8a (I)), the upper

and lower tensile cracks (in the fracture set, F0) develop with

a mean orientation of 48.8°from the notch tips and propagate

for a considerable distance. Also, a few tensile cracks with the

mean orientation of 27.8°(in the fracture set, F1) develop within

the rock bridge. These fracture sets turn stable because of the

release of tensile force with the development of tensile cracks.

When normal load is 2.5 MPa (Fig. 8b (I)), the upper and

lower tensile cracks (in the fracture set, F0) develop with a mean

orientation of 60°from the notch tips and propagate for a short

distance.

Stage II: When normal load is 0.3 MPa (Fig. 8a (II)), the new

tensile cracks which form the fracture set of F1 develop at the

midst of the rock bridge. Also a few tensile cracks develop near

the fracture set F0. The mean orientation of the two distinct

fracture sets of F0 and F1 is 48.8°and 26.1°, respectively. The

number of cracks in this step is 70 that are 41% of total num-

ber of cracks which propagate in stage III. It means that when

41% of total cracks developed within the rock bridge, the shear

strength is decreased and unstable crack growth is reached.

When normal load is 2.5 MPa (Fig. 8 b (II)), the new tensile

cracks which form the fracture set of F1 develops at the midst

of the rock bridge. The mean orientation of fracture set of F1

is 35°. In this stage, the number of newly developed tensile

cracks existing in the fracture set F1 is more than that in the

fracture set F0. This means that the maximum tensile force has

been transmitted within the rock bridge so several shear band

develops in this area. The number of cracks in this step is 125

that are 59% of total number of cracks which propagate in stage

III. It means that when 59% of total cracks developed within the

rock bridge, the shear strength is decreased and unstable crack

growth is reached.

Stage III: In the final stage of the shear loading, when normal

load is 0.3 MPa (Fig. 8a (III)), the tensile cracks develop near the

fracture set, F1. Also the tensile fracture set F2 develops within
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Fig. 7. Development of cracks and mean orientation of particle cracks dur-

ing the three stages of shear loading of I, II and III; a) under low normal load of

0.3 MPa, b) under high normal load of 2.5 MPa.

the rock bridge and coalesces with the joint tip so that the intact

bridge area gets split with an uneven shear failure surface. It is

worth noting that a few shear cracks are observed in each frac-

ture set. The mean orientation of two fracture sets, F1 and F2,

is 26.1°and 158.3°, respectively. The length and orientation of

fracture set F0 remain constant after the first stage. It means that

the external shear load has no effect on the force concentration

near the fracture set F0 after the first stage of shear loading. The

propagation length of fracture set F1 in this stage is nearly equal

to the length of F2 fracture set. As can be seen from Fig. 2c,

nearly the same failure pattern has occurred in the physical sam-

ple when JC = 0.7.

Wong et al. [2] gained similar related results showing that

‘fish eye’ mode coalescence occurs in a critical range of joint

coefficients (JC = 0.7) in experiments using plaster modelling

material under direct shear tests.

When normal load is 2.5 MPa (Fig. 8b (III)), tensile cracks

develop near the fracture set, F1. Also the tensile fracture set F2

develops within the rock bridge and coalesces with the fracture

set F1 so that the intact bridge area fractured hardly with sev-

eral shear bands. The mean orientation of two fracture sets of

F1 and F2 is 40°and 330°, respectively. The propagation length

of fracture set F1 in this stage is nearly 2-3 times more than the

length of F2 fracture set. The length and orientation of frac-

ture set F0 remain constant after the first stage of shear loading.

It means that the external shear load does not induce any force

concentration near the fracture set F0 during the different stages

of shear loading (stages of I and II) As can be seen from Fig. 2d,

nearly the same failure pattern has occurred in the physical sam-

ple when JC = 0.7.

3.1.3 JC = 0.55

Stage I: When normal load is 0.3 MPa, before the peak shear

stress is reached (Fig. 9a (I)), two distinct tensile fracture sets

of F0 and F1 are identified in the bridge area with a mean ori-

entation of 61.3°and 29.5°, respectively. The upper and lower

tensile wing cracks (in fracture set, F0) develop at the notch tips

and propagate for a short distance. Also the fracture set of F1

develops at the midst of rock bridge as several short shear bands

because of the low stress interaction between the joints.

When normal load is 2.5 MPa (Fig. 9b (I)), the tensile fracture

set of F1 is identified in the bridge area with a mean orientation

of 45°. This fracture set initiate near the joint tips where the ten-

sile stress concentration is high. The fracture set F1 propagate
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Fig. 8. Development of cracks and mean orientation of particle cracks dur-

ing the three stages of shear loading of I, II and III; a) under low normal load of

0.3 MPa, b) under high normal load of 2.5 MPa.

for a short distance and become stable.

Stage II: When normal load is 0.3 MPa, as the shear stress

reaches the peak strength (Fig. 9a (II)), the new tensile cracks

develop along the fracture set F1, and so the shear bands prop-

agate for a large distance. The mean orientation of fracture set

F1 is equal to 25°The numbers of cracks in this step are 109

that are 46% of total number of cracks which propagate in stage

III. It means that when 46% of total cracks developed within the

rock bridge, the shear strength is decreased and unstable crack

growth is reached.

When normal load is 2.5 MPa (Fig. 9b (II)), the number of

tensile fracture set F1 is increased. These shear bands propagate

for a large distance. The mean orientation of fracture set F1 is

equal to 50°. The numbers of cracks in this step are 223 that

are 62% of total number of cracks which propagate in stage III.

It means that when 62% of total cracks developed within the

rock bridge, the shear strength is decreased and unstable crack

growth is reached.

Stage III: When normal load is 0.3 MPa, in the final stage of

the shear loading (Fig. 9a (III)), the short tensile fracture set F2

develops between the shear bands so that the intact bridge area

gets broken with an unsymmetrical shear failure surface. The

mean orientation of fracture set F2 is 158.6°. It is important to

note that only the two fracture sets of F1 and F2 are responsible

for the breakage of the rock bridge. The length and orientation

of fracture set F0 remain constant after the first stage of shear

loading. It means that the external shear load does not induce

any force concentration near the fracture set F0 during the dif-

ferent stages of shear loading (stages of I and II). The propaga-

tion length of fracture set F1 in this stage is nearly 1.5 - 2 times

more than the propagation length of F2 fracture set.

When normal load is 2.5 MPa (Fig. 9b (III)), the short tensile

fracture set F2 develops between the fractures set F1 so that the

intact bridge area gets broken with an unsymmetrical shear fail-

ure surface. The mean orientation of fracture set F2 is 340°. The

propagation length of fracture set F1 in this stage is nearly 2 - 3

times more than the propagation length of F2 fracture set.

Period. Polytech. Civil Eng.524 Vahab Sarfarazi, Abdolhadi Ghazvinian, Wulf Schubert



Fig. 9. Development of cracks and mean orientation of particle cracks dur-

ing the three stages of shear loading of I, II and III; a) under low normal load of

0.3 MPa, b) under high normal load of 2.5 MPa.

3.1.4 JC = 0.4

Stage I: When normal load is 0.3 MPa (Fig. 10a (I)), both

shear and tensile cracks (in fracture set F1) accumulate in the

rock bridge prior to the peak shear stress being attained. It can

be seen that several shear bands propagate in a stable manner

for a short distance. The mean orientation of the tensile fracture

set F1 is 35.1°. Unlike in the previous cases, there are no cracks

at the tip of the joints in this stage. In other words, the stress

concentration at the tip of the joints is not enough to overcome

the bond strength, while several short bands of contacts, due

to their critical situation with respect to the shear loading path,

break in the rock bridge.

When normal load is 2.5 MPa (Fig. 10b (I)), the tensile frac-

ture set F1 initiate at tip of the joint and propagate for a short

distance. The mean orientation of the tensile fracture set F1 is

60°.

Stage II: When normal load is 0.3 MPa, as the shear stress

reaches the peak strength (Fig. 10a (II)), new cracks (ten-

sile/shear) develop along the fracture set F1 so the shear bands

propagate for a large distance. The mean orientation of the ten-

sile fracture set of F1 is 30.2°. The numbers of cracks in this step

are 189 that are 52% of total number of cracks which propagate

in stage c. It means that when 52% of total cracks developed

within the rock bridge, the shear strength is decreased and un-

stable crack growth is reached.

When normal load is 2.5 MPa (Fig. 10b (II)), new cracks (ten-

sile/shear) develop parallel to the fracture set F1 for a large dis-

tance. The mean orientation of the tensile fracture set of F1 is

60°. The numbers of cracks in this step are 303 that are 66% of

total number of cracks which propagate in stage c. It means that

when 66% of total cracks developed within the rock bridge, the

shear strength is decreased and unstable crack growth is reached.

Stage III: When normal load is 0.3 MPa, in the final stage of

shear loading (Fig. 10a (III)), the short fracture set of F2 con-

sists of both shear and tensile cracks, with a mean orientation of

156°, develops between the shear bands so that the intact bridge

area gets broken with an unsymmetrical shear failure surface.

The fracture set F2 is approximately symmetrical to the fracture
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Fig. 10. Development of cracks and mean orientation of particle cracks dur-

ing the three stages of shear loading of I, II and III; a) under low normal load of

0.3 MPa, b) under high normal load of 2.5 MPa.

set F1, but in the opposite direction. The propagation length of

fracture set F1 in this stage is 1.5 - 2 times more than the propa-

gation length of F2 fracture set.

When normal load is 2.5 MPa (Fig. 10b (III)), the short frac-

ture set of F2 consists of both shear and tensile cracks devel-

ops between the shear bands so that the intact bridge area gets

broken with an unsymmetrical shear failure surface. The mean

orientation of the tensile fracture set of F2 is 355°. The propa-

gation length of fracture set F1 in this stage is 2 - 3 times more

than the propagation length of F2 fracture set.

The failure pattern obtained from this simulation is in reason-

able accordance with some of the related numerical results in

Zhang et al. [31].

From the above discussions, generally we can conclude that:

• The number of shear cracks increase by increasing in normal

load therefore at the low normal load level (0.3 MPa) failure

does not occur because of shear stresses, but rather from ten-

sile stresses. At the high normal load the mixed shear /tensile

stresses are responsible for bond breakage.

• In fixed JC, the number of shear band is increased by increas-

ing the normal load but their propagation length is decreased.

• In fixed JC, the mean orientation of the two fracture sets of

F1 and F2 is increased by increasing the normal load

• In fixed JC, the echelon “>” shape failure surface change to

non-symmetrical rough failure surface by increasing the nor-

mal load

• In fixed JC, the unstable crack growth length is increased by

increasing the normal load

• The propagation length of fracture set F1 is nearly 1.5-2 times

more than the propagation length of F2 fracture set under low

normal load but under the high normal load, the propagation

length of fracture set F1 is nearly 2 - 3 times more than the

propagation length of F2 fracture set.

• In low normal load, the mean orientation of two fracture se

F1 and F2 is nearly constant by increasing the JC. But in high

normal load, the mean orientation of two fracture se F1 and

F2 is increased by increasing the JC.
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• In low normal load, the propagation length of two fracture

sets of F1 and F2 is nearly constant by increasing the JC. But

in high normal load, the propagation length of two fracture

sets of F1 and F2 is increased by increasing the JC.

Figure 11a illustrates the linear fitting curve of peak shear

load and joint coefficient for two different normal loads. Fig-

ure 11b shows the variation of failure stresses versus the joint

coefficient for two different normal loads. Figures 11c and d

represents the variation of failure stress versus the joint coeffi-

cient for both of the numerical and physical models under low

normal load and high normal load, respectively. The fill points

and the hollow points represent the stresses in the PFC2D mod-

els and laboratory samples, respectively.

Through comparison between Figs. 7, 8, 9, 10 and 11a, we

can conclude that the capacity of bridged rock to resist shear

loading has a close relationship with the failure patterns. The

more the shear band number is, the more the peak of shear load

is For a large joint separation (JC = 0.85), the intact-bridged

rock ruptures in elliptical mode with two short strias under low

normal load but the intact-bridged rock ruptures with 8 number

of short shear bands under high normal load. For joint separation

of JC = 0.7, the middle bridged rock ruptures with a single un-

even shear failure surface under low normal load but the bridged

rock ruptures with 15 number of short shear bands under high

normal load. For joint separation of JC = 0.55, two joints are

connected with 5 large shear bands under low normal load but

two joints are connected with 21 short shear bands under high

normal load. Finally, for the joint separation of JC = 0.4, a shear

zone consisting of 12 large shear bands forms the final fracture

surface under low normal load but a more complex shear zone

consisting of 26 short shear bands forms the final fracture sur-

face under high normal load.

The linear fitting curve between the peak of the shear load

and joint coefficient in Fig. 11a shows that the peak of shear

load is almost linear to the joint coefficient. The smaller the ra-

tio is (JC = 0.4), the higher the peak shear load is. Note that the

increase in the loading capacity of the rock bridge is not only

due to the increase in the length of rock bridge. This may also

be explained by the fracture mechanics theory, which indicates

that the small joint lengths are corresponding to the small values

of the stress intensity factors (KI and KII). This leads to higher

rock bridge strength. From the fitting equations under high nor-

mal load, y = - 2386x + 2326 (Fig. 11a), it can be inferred that

when the specimen has no pre-existing joints, the joint coeffi-

cient equals 0, and the peak of shear load is 2326 N. the shear

load would be 60 N (approximately close to 0) when the ideal

condition is achieved [i.e., when the joint runs through the whole

specimen (JC = 1)]. Also, from the fitting equations under low

normal load, y = - 1441.7x + 1442.3 (Fig. 11a), it can be inferred

that when the specimen has no pre-existing joints, the joint coef-

ficient equals 0, and the peak of shear load is 1442.3 N. the shear

load would be 0.6 N (approximately close to 0) when the ideal

condition is achieved [i.e., when the joint runs through the whole

specimen (JC = 1)]. Therefore, the numerical results comply

reasonably with the engineering expectation.

Figure 11b shows that the failure stress is reduced by increas-

ing the JC. The shear strength of non-persistent joint under high

normal load is more than the shear strength under low normal

load. In fact, the rock compaction is increased by increasing in

the normal load. The more compaction of rock leads to increas-

ing in the shear strength.

Figure 11c and d shows that the shear strength of non-

persistent joints predicted by numerical simulations are nearly

similar to the results obtained by experimental tests. The slight

discrepancy may be due to some small variations in the mechan-

ical specifications of numerical and laboratory specimens (i.e.,

the tensile strength and friction angle given in Table 2).

Figure 12a and b shows the variation of failure stress and

crack initiation stress versus the joint coefficient for two differ-

ent normal loads, respectively

When normal load is 0.3 MPa (Fig. 12a), the difference be-

tween the failure stress and crack initiation stress is low what

defined as brittle failure in rock mechanics. But when normal

load is 2.5 MPa (Fig. 12b), the difference between the failure

stress and crack initiation stress is high what defined as progres-

sive failure in rock mechanics. This means that the brittle failure

change to progressive failure by increasing the normal load.

Finally, it may be concluded that the peak of shear load of

jointed rock is mostly influenced by its failure pattern, while

the failure pattern of bridged rock is mainly controlled by the

normal load. Whereas shear strength, as one of the mate-

rial mechanical properties, has a close relationship with normal

load, the capacity of jointed rock masses to resist shear load-

ing is severely influenced by stress distribution around the rock

masses.

4 Conclusions

The shear behaviour (failure pattern, failure mechanism and

shear resistance) of rock specimens containing two edge joints

with different joint separations was investigated under two dif-

ferent normal loads by PFC2D numerical simulation and veri-

fied by experimental tests. Based on the results obtained, the

following conclusions drawn from this research are:

1 By increasing the normal load, number of shear cracks is in-

creased but the tension is the dominant mode of failure.

2 The "V" shape failure surface change to non-symmetrical

rough failure surface by increasing the normal load

3 By increasing the normal load, the numbers of the two frac-

tures sets of F1 and F2 are increased but their length are de-

creased.

4 By increasing the normal load, the stable crack growth is in-

creased.
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Fig. 11. a) The linear fitting curve of peak shear load and joint coefficient for

two different normal loads, b) the variation of failure stress versus the joint coef-

ficient for two different normal loads, c) the variation of failure stress versus the

joint coefficient for both of the numerical and physical models under low nor-

mal load and d) the variation of crack initiation stress versus the joint coefficient

under high normal load for both of the numerical and physical models.

Fig. 12. The variation of failure stress and crack initiation stress versus the joint coefficient: a) under low normal load, b) under high normal load.
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5 Brittle failure change to progressive failure by increasing the

normal load.

6 The shear strength of non-persistent joints by numerical simu-

lations is nearly similar to the results obtained by experimen-

tal tests.
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