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Abstract

This paper presents the analysis of influence of lintel beams

and floor slabs on natural frequencies of tall buildings, braced

by core walls. For that purpose a numerical procedure based

on the Vlasov theory of thin-walled beams and transfer matrix

method has been developed. In order to check the accuracy of

the proposed method the calculated results are compared with

those obtained by FEM and experiment. Based on these results

the effects of the lintel beams and floor slabs on the natural fre-

quencies of the tall buildings core are discussed
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1 Introduction

In the case of tall buildings, the influence of transverse load-

ing caused by winds or seismic activity can be significant. This

load is most often supported by a reinforced concrete core,

which houses the elevator shaft or the staircase of the building.

Due to the small thickness of the core walls compared to the di-

mensions of the cross section, which, again, are small compared

to the height of the building, according to the Vlasov theory,

the core can be treated as a thin-walled, open cross section can-

tilever beam. Floors act as transverse stiffeners providing the

necessary cross section rigidity of the core. The core foundation

is usually stiff enough, so full restraint can be assumed.

If the shear centre of the core cross section is located asym-

metrically in respect to the base of the building, or if the trans-

verse loading is eccentric, the core is, apart from bending, ex-

posed to torsion, as well. In the case of taller buildings the tor-

sion influences are greater, so it is necessary to provide appro-

priate torsional rigidity to the core. Lintel beams connecting the

core walls at each floor level, as well as floor slabs, also con-

tribute to torsional rigidity. The influence of these elements on

the total torsional rigidity of the core can be significant, as will

be highlighted in the examples given below.

Papers by Liauw and Luk [1] and Mendis [2] investigate static

behaviour of core of tall buildings, taking into account the influ-

ence of lintel beams. In their static analysis of the core, Smith

and Taranath [3] and Heidebrecht and Smith [4] consider the in-

fluence of floor slabs as well as the influence of lintel beams on

torsional rigidity of the core. The analysis of dynamic behaviour

of the core in tall buildings was given in the papers by Ng and

Kuang [5], Kuang and Ng [6], Mehtaf and Tounsi [7], Rafezy

and Howson [8] and Kheyroddin, Abdollahzadeh and Mastali

[9]. These works, though, did not specifically discuss the influ-

ence of floor slabs and lintel beams on the dynamic behaviour of

buildings. Zalka, [10] and [11], considered the joined influence

of bracing elements (frameworks, shear walls and core as well)

in the case of a multi-storey building subjected to horizontal

load. His model treats floor slabs stiff in their plane connected

by stiff pinned bars to their surroundings, i.e. the out-of-plane

stiffness is assumed zero. Kollár [12] analysed natural frequency
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(NF) of thin-walled open section composite beams according to

the Vlasov theory modified to include transverse shear and re-

strained warping induced shear deformations. Pluzsik and Kol-

lár [13] developed a simple expression to determine the effect of

shear deformation in thin-walled beams. Potzta and Kollár [14]

developed a method for building analysis applying replacement

sandwich beams, accounting for shear deformation, as well. Za-

lka [15] proposed a closed -form solution for the analysis of

deflection in tall buildings (braced by frames, shear walls and

cores), substituted by an equivalent column. In this study, be-

sides bending deformation, shear deformation is accounted for.

The purpose of this article is to investigate the change in the

magnitude of NFs of tall buildings braced by core only, caused

by the action of lintel beams and floor slabs. For that, a relatively

simple numerical method, based on the Vlasov theory of thin-

walled beams and transfer matrix method, has been developed.

The core was longitudinally divided, floor to floor, in seg-

ments. Mass distribution was idealized by concentrating masses

of each segment at the corresponding floor slab level, in the com-

mon centre of masses. Computer program TWBEIG written in

Visual Fortran was developed for the presented procedure to cal-

culate NFs. In order to verify the proposed method, the results

presented in this paper were compared to FEM results and with

results of an experimental test carried out on a plexiglass model.

2 Analytical model

The thin-walled beam is analysed in the Cartesian coordinate

system OXYZ, whose Z−axis connects the centroids O of the

cross sections, and axes X and Y were chosen to match the main

central axes of inertia of the cross section. Starting from usual

assumptions of the Vlasov theory:

• the cross-section is perfectly rigid in its own plane,

• the shear strains in the middle surface of the wall are negligi-

ble.

• There is no shear strain in the plane perpendicular to the mid-

dle surface (Kirchhoff’s thin plate bending assumption),

the governing equations of motion of the thin-walled beam

can be formulated as three coupled differential equations [16]:

EIXXu′′′′ − ρIXX ü′′ + ρFü + ρFYDϕ̈ = pX − m′Y ,

EIYYν
′′′′ − ρIYY ν̈

′′ + ρFν̈ − ρFXDϕ̈ = pY − m′X ,

EIΩΩϕ
′′′′ −GKϕ′′ − ρIΩΩϕ̈

′′ + ρFYDü−

− ρFXDν̈ + ρIDϕ̈ = mD + mΩ,

(1)

where the basic unknowns u = uD (Z, t), v = vD (Z, t) and

ϕ = ϕD (Z, t) are the displacement of shear centre D in the X and

Y direction, and the rotation of cross section around the shear

axis, E = modulus of elasticity, G = shear modulus, F = cross-

sectional area, and ρ= mass density of the thin-walled beam.

pX , pY , mX , mY , mD and mΩ represent external distributed loads

per unit length in the X - and Y - directions, externally applied

distributed moments per unit length around the X, Y and the

shear axes, and external distributed warping moment (bimo-

ment) respectively. XD and YD are the coordinates of point D,

and IXX and IYY are the moments of inertia in relation to prin-

cipal axes, IΩΩ is sectorial moment of inertia, K is the Saint

Venant’s torsional constant and ID is the mass moment of inertia

in respect to the same point.

The free harmonic vibrations are defined by the coupled ho-

mogeneous equations (1). The solution may be expressed as:

u (Z, t) = U (Z) sin(ωt),

v (Z, t) = V (Z) sin(ωt),

ϕ (Z, t) = Φ (Z) sin(ωt).

(2)

U (Z), V (Z) and Φ (Z) are amplitudes of the basic unknown

variables, which depend on the Z coordinate only and ω is the

circular frequency. Substituting expressions (2) in equations (1)

yields:

EIXXU′′′′ + ρω2IXXU′′ − ρFω2 (U + YDΦ) = 0,

EIYYV ′′′′ + ρω2IYYV ′′ − ρFω2 (V − XDΦ) = 0,

EIΩΩΦ′′′′ −GKΦ′′ + ρω2IΩΩΦ′′−

− ρFω2 (YDU − XDV + IDΦ) = 0.

(3)

Knowing the state vector at the lower endpoint of each seg-

ment, the state vector at the upper endpoint can be determined by

the transfer-matrix method, using solution of differential equa-

tions (3). The state vector {S } of the basic unknowns

{S } =

{
U,U′,

MY

EIXX

,
QX

EIXX

,

V,−V ′,
MX

EIYY

,
QY

EIYY

,Φ,Φ′,
B

GK
,

T

GK

}T
(4)

comprises of generalized displacements, its derivatives and

generalized forces

MY = MY (Z, t) = EIXXU′′ bending moment around the Y

axis,

QX = QX (Z, t) = −EIXXU′′′ shear force in the X direction,

MX = MX (Z, t) = −EIYYV ′′ bending moment around the X

axis,

QY = QY (Z, t) = −EIYYV ′′′ shear force in the Y direction,

B = B (Z, t) = −EIΩΩΦ′′ bimoment,

T = T (Z, t) = GKΦ′ − EIΩΩΦ′′′ torsion moment around the

shear axis.

2.1 Transfer-matrix method

In longitudinal direction the core of the building consists of n

segments and floors. The marking (numbering) of floors starts at

the foundation and rises towards the top. The segment marked m

is between the floors marked m − 1 (lower level) and m (higher
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level). The generalized forces at the endpoints of the segment

are shown in Fig. 1.

Fig. 1. Generalized forces at the endpoints of segment m

Longitudinally the wall thickness of the cross section is con-

stant within the observed segment, but it can change from seg-

ment to segment. At the same time, centroids and the shear

centre of cross sections always remain on the same axes. The

geometrical characteristics of core cross section refer only to a

specific segment.

The beam and the slab are made of same material as the core,

therefore the physical characteristics, such as E, G and ρ are the

same as for the core. The forces due to lintel beams and floor

slabs, as well as inertia forces that act in the center of masses C,

are reduced to the nodes.

Taking in account that the total mass of the model is concen-

trated in the center of masses corresponding to each level (iner-

tial forces act only at the endpoints of each segment), equations

(3) related to a particular segment are given as follows:

EIXXU′′′′ = 0,

EIYYV ′′′′ = 0,

EIΩΩΦ′′′′ −GKΦ′′ = 0.

(5)

The solution of the differential equations (5) is obtained in a

matrix form as following:

{
S d

m

}
=

[
Am,s

]
{S m−1} , (6)

where
{
S d

m

}
and {S m−1} are the state vectors below node m and

above node m-1, respectively, and
[
Am,s

]
is the transfer matrix of

segment m, see Appendix.

In each node of the core the generalized forces act infinitely

closely above and below the node, and in the node itself. The

generalized forces acting just above node m are denoted by a

lower index m. The forces acting in the node itself represent

bimoments (due to the corresponding lintel beam and floor slab)

and inertia forces. They are denoted by subscript m and upper

line. The generalized forces in the cross section just below node

m are denoted by subscript m and superscript d (see Fig. 2).

Fig. 2. Generalized forces in node m

When the construction is subject to vibration, masses are ex-

posed to acceleration, inducing inertia forces and inertia torque

in respect to the center of mass C. Reduced to node D, they are:

Q̄X = ω2 (M U + M YDC Φ) ,

Q̄Y = ω2 (M V − M XDC Φ) ,

T̄ = ω2 (M YDC U − M XDC V + JD Φ) ,

(7)

where M is the mass reduced to center C,YDC and XDC are

projections of distance between points C and D on the Y and X

axes, respectively.

The transfer matrix of node m is obtained by exploiting com-

patibility and equilibrium conditions in the node, considering

forces acting just above and below the node, and in the node it-

self. The relation between the state vectors above and below the

node is:

{S m} =
[
Am,n

] {
S d

m

}
, (8)

where
[
Am,n

]
is the transfer matrix of node m, see Appendix.

The connection between the state vectors of node m − 1 and

node m is obtained by substituting the matrix relation (6) into

(8):

{S m} =
[
Am,n

] {
S d

m

}
=

=
[
Am,n

] [
Am,s

]
{S m−1} = [Am] {S m−1} ,

(9)
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where [Am] is the transfer matrix between nodes m − 1 and

m.

2.2 Influence of lintel beam on torsional rigidity of the core

The lintel beam is considered to be rectangular in cross sec-

tion, where the end points are fixed to the core at points a and b,

as seen in Fig. 3(b).

Fig. 3. Core with lintel beams (a); displacements and rotations of the end

points of the beam at core warping (b); cross section of the core (c)

The effect of lintel beam is to restrain the longitudinal de-

formations (warping) of the core resulting from torsion. With

respect to the adopted assumptions, during the bending of the

core, around X or Y axes, cross sections do not deform and re-

main plane, so it does not affect the deformation of lintel beam.

The vertical displacements and rotations of the end points of

the beam due to warping are:

wa = −Ωaϕ
′,

wb = −Ωbϕ
′,

θa = θb = dϕ′,

(10)

where Ωa and Ωb are the principal sectorial coordinates of the

end points, d is the distance of the end points from the shear

center. The beams are exposed to bending in the vertical plane

only, causing reactive forces and moments in the endpoints:

F = −Fa = Fb =
12EI

l3 (1 + α)

[
wb + wa +

l

2
(θa + θb)

]
,

M = Ma + Mb = F l,

(11)

where I is the second moment of the area of the cross section

in relation to the horizontal axis, l is the beam span, α is the

shear area coefficient. Substituting (10) into (11)-1 yields:

F =
12EI

l3 (1 + α)
(Ωa −Ωb + l d)ϕ′ =

12EI

l3 (1 + α)
2Aϕ′, (12)

where A is the area enclosed by the cross section of the core,

as shown in Fig. 3(c).

The influences of reactive forces and moments on torsional

rigidity of the core may be accounted for by external bimoment

[16]:

B̄b = F (Ωa −Ωb + ld) = F · 2A. (13)

Finally, substituting (12) into (13) yields bimoment in the

node m of core, caused by the beam:

B̄b =
48EI

l3 (1 + α)
A2 ϕ′ = Rb ϕ′, (14)

where Rb is the bimoment caused by beam for ϕ′ = 1.

2.3 Influence of floor slab on torsional rigidity of the core

The floor slab in this study is treated as a plate of constant

thickness which is simply supported by the core along the in-

ner edge, while along the outer edge it is free of restraints (see

Fig. 4). Subsequently, the influence of boundary conditions -

i.e. the type of restraints along the outer edge of the floor slabs -

on the NFs is checked by a comparative analysis, the details of

which are provided in Section 3.

The application of the here presented, rather simplified

boundary conditions is justified by the fact that influences in the

floor slabs induced by vertical movements of the core are signif-

icantly decreased by the distance from the core. Similar to the

lintel beams, floor slabs deform only by warping, while due to

the bending of the core, the floor slabs rotate around X or Y axes

without deformation, as rigid bodies.

The vertical displacement of any common point Pi of the core

is:

wi = −ϕ′Ωi. (15)

The plate is exposed to displacements and rotation at these

points, causing support reactions (axial forces and moments),

which can be calculated using FEM.

Force Fi and moment Mi stemming from the known displace-

ment pattern of the plate, represent external concentrated load

of the core at point Pi. Their influence on the core can be taken

as the external bimoment (according to [3]):

B̄pl = Rplϕ′, (16)

where

Rpl =

N j∑
i=1

FiΩi +

N j∑
i=1

Mi

d

ds
Ωi, (17)
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Fig. 4. Cross section of the core and the corresponding floor slab

is the external bimoment in the node due to unit warping,

ϕ′ = 1. N j is the total number of calculation points Pi along

the contact of the core and the slab.

The sum of the influence of the lintel beam (14) and floor

slab (16) in the node of the thin-walled beam yields the total

bimoment:

B̄ = B̄b + B̄pl =
(
Rb + Rpl

)
ϕ′ = Rϕ′. (18)

2.4 Calculation of NFs

Knowing the influence in node 0, the influence in the top node

n of the thin-walled beam is determined by:

{S n} = [An] [An−1] . . . [A1] {S 0} =
[
Ān

]
{S 0} , (19)

where
[
Ān

]
is the transfer matrix between the bottom node 0,

and the top node, n, of the thin-walled beam.

The following are the boundary conditions at the bottom and

top of the thin-walled beam, six at each end:

U0 = U′0 = V0 = V ′0 = Φ0 = Φ′0 = 0,

MY,n = QX,n = MX,n = QY,n = Bn = Tn = 0,
(20)

installed into the state vectors in Eq. (19), yields a system

of six homogenous algebraic equations, which has a nontrivial

solution only if the system determinant equals zero, i.e.:

det
∣∣∣∣[Ān

(
ω j

)]
H

∣∣∣∣ = 0. (21)

Solving (21) in respect to ω j yields the system circular NFs.

2.5 Computer program for calculation of NFs of the model

Based on the method described above a computer program

TWBEIG written in Visual Fortran was developed.

Program TWBEIG searches for the solution by sweeping

through a given frequency range by a default frequency step.

The process of computation is as follows:

• before starting the program TWBEIG, the external bimoment

in the node due to unit warping Rpl needs to be determined by

(17), using FEM.

• The stiffness of the constitutive elements is then calculated

by the activated TWBEIG, based on geometry and the and

properties of materials used;

• generates transfer matrices given by (9) and (19);

• calculates the value of the determinant in (21) at each fre-

quency, until the change of its sign occurs.

• The frequency corresponding to the sign change represents

one of the NFs in the given frequency range.

• The same procedure is repeated until all NFs are determined.

The accuracy of the solution is determined by the applied fre-

quency step, which can be adopted arbitrarily.

3 Numerical examples

In order to illustrate the efficacy of the proposed numerical

method, and to investigate the influence of lintel beams and floor

slabs on NFs of the tall buildings core, two numerical cases will

be used.

Example 1.

The first example is a simple, fifteen-storey single core tall

building, used previously in papers [1], [3] and [4]. The dimen-

sions are shown in Fig. 5 and Fig. 6.

The input parameters required by the program are as follows:

• parameters describing the material:

E = 27.6 ·106 kN/m2,

G = 12.0 ·106 kN/m2,

ρ = 2.5492 ·103 kg/m3;

• parameters describing the core:

IXX = 38.77 m4,

IYY = 30.51 m4,

IΩΩ = 300.0 m6,

K = 0.190 m4;

• parameters describing the beam:

l = 3.048 m,

α = 0.062,

A = 0.139 m2,

I = 2.462 ·10−3 m4,

Rb = 120.13 ·109 Nm3,

• parameters describing the floor slabs are:

M = 109322 kg,

YDC = 5.826 m,

JD = 6.7064 · 106 kgm2

in nodes 1-14, while

M = 79528 kg,

YDC = 5.901 m,

JD = 5.3837 ·106 kgm2
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Fig. 5. Base plot of the numerical example

Fig. 6. Cross section of the numerical example

in node 15.

XDC = 0 m, and Rpl = 3336.5 ·106 Nm3 for all nodes. Rpl is

determined by (17) as described in Section 2.3.

In order to investigate the influence of lintel beams and floor

slabs on the dynamic characteristics of the core, four cases of

calculation have been considered:

• case TWB-1, the stiffness characteristics of the beams and

floor slabs were both taken into account;

• case TWB-2, the stiffness characteristic of beams are taken

into account only;

• case TWB-3, the stiffness characteristic of floor slabs are

taken into account only;

• case TWB-4, the stiffness characteristics of both beams and

floor slabs are neglected.

In all four cases the mass of the core and floor slabs are taken

into account, while the mass of beams are neglected as minor,

compared to the ones mentioned above.

For the FEM analysis, Four-node Quadrilateral Shell Ele-

ments are used: 90 elements in each storey for the floor slabs

and 36 elements in each segment of the core. Each beam was

modeled by 2 Frame Elements of Rectangular shape. The num-

ber of calculation points along the contact of the core and the

slab is 13. The details of the applied boundary conditions are as

follows:

• the joints of the core elements at the bottom level are fully

restrained;

• joints on the outer edge of floor slabs are free of restrains;

• the vertical displacement of the slab and the core must be

compatible in the joints.

The results both of the TWBEIG and FEM analyses, together

with the relative differences, are presented in Table 1, Table 2,

Table 3 and Table 4.

Tab. 1. NFs of the case TWB-1

Reference FEM TWBEIG

j mode Freq. [Hz] Freq. [Hz] Diff. (%)

1st X − Φ 0.65854 0.68325 -3.61

2nd Y 0.88688 0.89954 -1.41

3rd X − Φ 1.82773 1.79320 1.93

Tab. 2. NFs of the case TWB-2

Reference FEM TWBEIG

j mode Freq. [Hz] Freq. [Hz] Diff. (%)

1st X − Φ 0.65372 0.67943 -3.78

2nd Y 0.88688 0.89954 -1.41

3rd X − Φ 1.81109 1.78795 1.29

The values of NF show significant agreement between the

FEM and TWBEIG results. The first and third mode correspond
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Tab. 3. NFs of the case TWB-3

Reference FEM TWBEIG

j mode Freq. [Hz] Freq. [Hz] Diff. (%)

1st X − Φ 0.43660 0.44627 -2.17

2nd Y 0.88682 0.89954 -1.41

3rd X − Φ 1.65902 1.62195 2.28

Tab. 4. NFs of the case TWB-4

Reference FEM TWBEIG

j mode Freq. [Hz] Freq. [Hz] Diff. (%)

1st X − Φ 0.41533 0.42399 -2.04

2nd Y 0.88682 0.89954 -1.41

3rd X − Φ 1.64112 1.60619 2.17

to the flexural-torsional vibration mode, and the second is only

the flexural mode in Y direction.

The comparison of the results TWB-1 with TWB-3 and

TWB-2 with TWB-4 highlights the influence of lintel beams on

NFs.

It is obvious that lintel beams have a significant influence on

the first NF (approximately 55% in both cases), much less on the

third (10%), while they do not affect the second NF at all. This

was expected, since lintel beams do not deform in this mode.

Similarly, the influence of floor slabs on NFs can be seen

by the comparison of results TWB-1 with TWB-2, and TWB-

3 with TWB-4. The floor slabs evidently modify NF much less

than lintel beams do (up to 5% only). No change in the second

NF has been detected, for the same reason as in the case of the

beams.

Fig. 7 shows the variation of the first and third mode of NFs of

the core in function of the height of lintel beams (H), calculated

by TWBEIG and FEM.

Fig. 7. Change of the first and third NF by varying beam height

Fig. 7 demonstrate minor differences in NFs between the

TWBEIG and FEM results all through the analyzed range. The

increase of the beam height produced a rising of the first and

third NF.

A comparative analysis is performed, using FEM, in order to

gain insight into the influence of the boundary condition along

the outer edge of the slab on the NF. The boundary conditions

considered are as follows:

• the outer edge is free of restraints, and

• the outer edge is simple supported.

This investigation is accomplished for the case TWB-1. The

results are summarized in Table 5.

Tab. 5. Comparative analysis of boundary conditions along the outer edge

of floor slabs, case the TWB-1

Reference Free of restraint Simply supported

j mode Freq. [Hz] Freq. [Hz] Diff. (%)

1st X − Φ 0.65854 0.66293 0.67

2nd Y 0.88688 0.89567 0.99

3rd X − Φ 1.82773 1.83368 0.33

It is evident that in the analyzed case the considered boundary

conditions along the outer edge of floor slabs have no significant

influence on the calculation results.

Example 2.

In this numerical example the results of experimental studies

performed on a 15-storey plexiglass model of a tall building are

compared with the results obtained by numerical methods.

Taking into account that floor slabs serve to hold the cross sec-

tion in shape, thus satisfying a basic assumption for the Vlasov

theory, the experimental results will be compare with TWBEIG

and FEM results only for models with floor slabs.

Experimental models with and without lintel beams are de-

noted by PLX-1 and PLX-2, respectively. The height of a single

storey is 77 mm. Plates of plexiglass XT, 2 and 6 mm thick were

used in the model (Fig. 8). At the bottom, the model was glued

to a plexiglass board 2 · 10 mm thick, which was fastened to a

concrete floor.

The input parameters for TWBEIG program are:

• parameters describing the material:

E = 3000 N/mm2,

G = 1095 N/mm2,

ρ = 1190 ·10−9 kg/mm3;

• parameters describing the core:

IXX = 3822.6 ·103mm4,

IYY = 4934.7 ·103mm4,

IΩΩ = 12.628 ·109 mm6,

K = 26784 mm4;

• parameters describing the beam:

l = 60 mm,

α = 0.074,

I = 364.5 mm4,

A = 11664 mm2,

Rb = 30.782 ·109 Nmm3,

• parameters describing floor slabs are:

M = 0.3878 kg,

YDC = 107.9 mm,
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JD = 8.576 ·106 kgmm2

in nodes 1-14, while

M = 0.2855 kg,

YDC = 109.4 mm,

JD = 7.019 ·106 kgmm2

in node 15.

Parameters Rpl = 1.1805 · 109 Nmm3, XDC = 0 mm are identi-

cal in all nodes.

Fig. 8. Base plot of the experimental model PLX-1

Young modulus E was obtained by measurements, performed

in the laboratories of the Faculty of Civil Engineering, Subotica,

Serbia. The mass of the lintel beams and the mass of the ac-

celerometers (together with the corresponding screws and con-

nectors) fixed to the top node of the model were accounted for

to make the calculations as close as possible to the experimental

(physical) model.

In order to measure the dynamic response of the model, two

IMI ICP Accelerometers (model 603C01) have been used. One

of them was a control device. The signal was acquired and pro-

cessed with VB2000™FFT Vibration Analyzer. The tested fre-

quency range is 0 - 100 Hz, with a resolution of 800 lines, i.e.

the frequency interval is 0.125 Hz. The analyzer has a built-in

Bump Test function [17], which represents a simple method for

analyzing the structural modal response of a machine or struc-

ture. It requires the hitting (bumping) of the structure with a

hammer. During the measurements waveform records have been

taken four times, which were immediately transformed into fre-

quency spectrum by the analyzer. The resulting frequency spec-

trum was obtained by applying peak hold averaging, which is

stored in the memory by the instrument. Further analysis of

the recorded data was carried out by computer using ASCENT

2007+ software [18].

Points A-1 and A-2 of the cross section at the top of the model

were chosen for the location of accelerometers, which preserved

the symmetry of the model. The spots and direction of the ham-

mer blows to the model are shown in Fig. 9. B-1 excites the first

and third mode, which creates coupled flexural-torsional vibra-

tions. B-2 excites vibrations in the direction of Y axis, which

correspond to the second mode.

Fig. 9. Position of accelerometers and the direction of excitation

NFs of the experimental model PLX-1 correspond to the

peaking frequencies in Fig. 10 and Fig. 11. The peaks and the

corresponding frequencies are easily determined by ASCENT

2007+ software.

The outlined method to determining NFs is accurate enough

for this type of model. Even though the study of the mode shape

is beyond the scope of this paper, the combination of experimen-

tal tests and numeric results presented later in the paper, enable

the identification of the mode shape and the corresponding NFs

(according to Ambrosini [19] and [20]).

Fig. 10. Resulting frequency spectrum obtained by the experimental model

PLX-1 (first and third mode)

In Table 6 and Table 7 the experimental values of NFs are

compared with TWBEIG and FEM results.

The values of frequencies show reasonable agreement be-

tween the experimental and calculated TWBEIG and FEM re-

sults. Regarding the influence of lintel beams on the value of

NF of the core, the same conclusions apply, as in the previous

example.

4 Conclusions

The influence of lintel beams and floor slabs on NFs of tall

buildings, braced by core walls was examined. For that pur-
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Tab. 6. NFs of the model PLX-1

Reference TEST TWBEIG FEM

j mode Freq. [Hz] Freq. [Hz] Diff. (%) Freq. [Hz] Diff. (%)

1st X − Φ 14.61 14.98 2.55 15.22 4.14

2nd Y 16.88 17.32 2.59 18.00 6.62

3rd X − Φ 34.88 36.81 5.53 33.10 -5.09

Tab. 7. NFs of the model PLX-2

Reference TEST TWBEIG FEM

j mode Freq. [Hz] Freq. [Hz] Diff. (%) Freq. [Hz] Diff. (%)

1st X − Φ 8.41 8.52 1.38 8.65 2.86

2nd Y 17.13 17.62 2.85 18.05 5.37

3rd X − Φ 29.63 30.81 4.00 29.06 -1.45

Fig. 11. Resulting frequency spectrum obtained by the experimental model

PLX-1 (second mode)

pose a numerical procedure, based on the Vlasov theory of thin-

walled beams and transfer matrix method, has been developed.

The obtained results were compared with FEM and experimen-

tal results. Good agreement has been achieved.

Based on the analysis accomplished by the proposed method,

the following can be concluded:

• Lintel beams have a significant effect on the NFs,

• while the effect of floor slabs is much lower.

• Boundary conditions along the outer edge of floor slabs have

no significant influence on the calculated NFs.

• The proposed numerical method offers a solid base for cre-

ation of a simple computer model, suitable for the determi-

nation of NFs of the tall buildings core. The limited number

of unknowns in the proposed model provides good control,

easy and quick presentation and overview of the obtained re-

sults. It is simple and accurate enough to be used either for

preliminary design or for final analysis.

The outlined method is suitable for the calculation of NFs of

tall building braced by a single core, in the cases when the char-

acteristics of the building meet the assumptions adopted in the

proposed method sufficiently. The application of the proposed

method is limited to cases where the foundation is stiff enough

to comply with the related assumption declared in the Introduc-

tion, i.e. to provide near full restraint.

It is obvious that neglecting the shear deformation of the core

introduces certain error in the results, however, it is not expected

to have a significant influence on the impact of lintel beams and

floor slabs - determined mostly by their geometry - on the NFs

of tall buildings core.

Appendix

The transfer matrix of segment m:

[
Am,s

]
=



1 Lm
L2

m

2
−

L3
m

6
0 0 0 0 0 0 0 0

0 1 Lm −
L2

m

2
0 0 0 0 0 0 0 0

0 0 1 −Lm 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 −Lm −
L2

m

2
−

L3
m

6
0 0 0 0

0 0 0 0 0 1 Lm
L2

m

2
0 0 0 0

0 0 0 0 0 0 1 Lm 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1
sinh λm

km
1 − cosh λm

λm−sinh λm

km

0 0 0 0 0 0 0 0 0 cosh λm −km sinh λm 1 − cosh λm

0 0 0 0 0 0 0 0 0 −
sinh λm

km
cosh λm

sinh λm

km

0 0 0 0 0 0 0 0 0 0 0 1



,

where km =
√

GKm

EIΩΩ,m
and λm = kmLm are characteristic param-

eters of segment m.

The transfer matrix of node m:

[
Am,n

]
=



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0
−ω2 Mm

EIXX,m
0 0 1 0 0 0 0

−ω2 MmYDC,m

EIXX,m
0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0
−ω2 Mm

EIYY,m
0 0 1

ω2 MmXDC,m

EIYY,m
0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0
−Rm

GKm
1 0

−ω2 MmYDC,m

GKm
0 0 0

ω2 MmXDC,m

GKm
0 0 0

−ω2 JD,m

GKm
0 0 1



,
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