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Abstract

Impact of missiles into reinforced concrete structures can

have various effects. Soft impacts (deformation of missile is

more significant than deformation of target structure) might

cause global failure, while hard impacts of quasi-rigid mis-

siles only affect the impact zone and cause local failure such

as cracks, penetration, perforation, etc. In our paper, local ef-

fects caused by hard missiles are examined. Missile parameters

are close to possible primary and secondary missiles induced

by tornados and aircraft impacts. Potential modelling and cal-

culation methods are summarized and a calibrated FE model is

presented. Based on FE model calculations, new semi-empirical

formulae are deduced that can be applied for medium size hard

missile impacts.
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1 Introduction

Impact of a hard (non-deformable) missile may have various

effects on a concrete target. Usually local effects are dominant,

such as penetration, cone cracking, crack formation, spalling,

scabbing or perforation (Fig. 1).

Fig. 1. Local effects of missile impact on concrete target: (a) penetration,

(b) cone cracking, (c) spalling, (d) crack formation, (e) scabbing, (f) perforation

[1]

Required resistance of a concrete wall depends on its protec-

tive function. Usually, perforation and secondary projectile for-

mation have to be prevented, but for protected spaces with spe-

cial functions (e.g. nuclear power plant (NPP) containments)

effects on the distal side have to be excluded, too. The most

important parameters that influence the effect of a hard missile

impact are the velocity (V), mass (m), diameter (d), nose shape

(N) of the missile, and thickness (t), tensile and compressive

strength ( ft, f ), reinforcement of the target. The most important

quantities that caracterize the impact are the penetration depth

(x), perforation limit (e) and scabbing limit (s). Perforation and

scabbing limits are the minimum needed thicknesses to prevent

perforation or scabbing, respectively.

At first, possible analysis methods, tests and models are sum-

marized. Then a chosen numerical model is introduced that is

calibrated to a well-known real experiment. Moreover, a para-

metric study is presented and the results are compared to the

results of the most important formulae for penetration and per-
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foration. New empirical formulae are also introduced that fit to

the numerical model results.

2 Analysis methods

There are three main types of methods to analyse a hard im-

pact and estimate its consequences: analytic, semi-empirical and

empirical calculations. Since the beginning of the 20th century,

tests also have been carried out to examine the behaviour of real

structures. At first, high velocity impact tests of small missiles

(military missiles, bullets) were carried out [2]. Examination of

relatively lower velocity impacts of larger missiles (tornado gen-

erated missiles, accidental aircraft turbine impact, etc.) became

important when construction of large number of NPPs started.

Most of the calculation methods and formulae neglect missile

deformation, effect of reinforcement, elastic target deformation

etc. Penetration models usually assume the target to be a half-

space and calculate penetration depth x without taking into ac-

count the thickness of the target.

2.1 Analytic and empirical methods

The first analytic models to calculate penetration aimed to de-

termine the force that acts on the target during penetration and

compared it to the resistance of the structure (Fp). Kennedy

[2] and Poncelet [3] assume that the resistance is a polynomial

function of the velocity of impact, while the National Defense

Research Council (NDRC) formula [2] writes it as the product

of two functions:

Fp = g

(
x′

d

)
· f (v) , (1)

where g depends on the ratio of the actual penetration depth x’ to

missile diameter d and f depends on the actual missile velocity

v. Haldar [4] and Hughes [5] write penetration depth x as a

function of a dimensionless impact factor (I):

x

d
= g (I) , (2)

I =
m · V2

f · d3
. (3)

Analytic perforation calculations usually assume that perfo-

ration occurs because of shear cone formation. After certain

penetration the thickness of the target reaches a critical value

(H) and cone failure and perforation occur (Fig. 2.).

In such a multi-phase model, relative perforation limit (e / d)

can be calculated as:

e

d
=

x

d
+

H

d
, (4)

where H depends on the target and missile properties. Li, Tong

[6] and the UK Atomic Energy Authority (UKAEA) [7] used

such multi-phase models in their calculations.

Parallel to the development of analytic formulae, several tests

have been carried out to help the modelling of local failure.

Fig. 2. Penetration followed by perforation (shear cone failure) [5]. The fig-

ure shows the situation when the perforation just occurs, in this limiting case the

whole thickness t coincides with the perforation limit.

Based on the test results, empirical formulae were invented.

Limits of applicability of these formulae highly depend on the

original experiment. Medium and larger scale tests were done

by Rüdiger and Riech [8], Kojima [9] and Sugano [10, 11].

2.2 Summarizing articles

The most important summarizing articles on local failure cal-

culations were published by Li [1], Kennedy [2], Teland [12],

and Murthy [13]. In these papers, the most important formu-

lae are collected, compared and the results are analysed. The

formulae used in the following chapters are mainly taken from

these summarizing papers.

2.3 Numerical models

Due to the rapid development of finite element (FE) and dis-

crete element (DE) methods, virtual experiments have become a

powerful tool for impact problem calculations. The most prob-

lematic parts of these models are the material model of the con-

crete target and the contact problem handling. Resistance of

concrete material highly depends on the impact velocity, there-

fore rate dependent material properties are required. Behaviour

of concrete is usually modelled by a multi-stage material model

that consists of a state equation (compaction model) that corre-

sponds to the hydrostatic stress stage and a yield and failure sur-

face in the deviatoric stress space. The yield surface (that has a

hydrostatic stress dependent and independent component) mod-

els the post-elastic hardening region, while the failure (limit)

surface sets the beginning of strain-softening. Compacted ele-

ments can still have a lower residual strength, modelled by the

residual strength surface [14] (Fig. 3, Fig. 4).

The model also has to follow the different behaviour of con-

crete under tension and compression. Crack propagation can

be modelled by fixed crack propagation (crack direction is pre-

determined), arbitrary crack propagation (mesh-free methods,

DE model) or a continuous material parameter modification

(smeared crack model) [15]. Hard impact of larger missiles was

simulated by various numerical techniques by Itoh [16], Mizuno

[17], Cox [18], Lepannen [19], Shiu [20], Heckötter [21] and

others.
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Fig. 3. Stress surfaces along the compression meridian [14]

Fig. 4. Failure and residual surfaces (left), failure and elastic limit surfaces

(right) in 3D [14]

2.4 Sugano experiment

One of the best documented multi-scale test series was ex-

ecuted by Sugano and his team [10, 11]. They used flat-nose,

cylindrical, hard and semi-hard models of a GE J-79 military jet

engine in three different scales (1 / 7.5, 1 / 2.5, 1 / 1) and concrete

target plates with different size, thickness and reinforcement. In

this paper we only focus on perfectly hard missiles therefore re-

sult of hard 1 / 7.5 and 1 / 2.5 scale experiments are used. Proper-

ties of hard missiles used by Sugano are summarized in Table 1.

During the experiments penetration depth, perforation limit

and level of scabbing were registered.

3 FE model calibration

3.1 Geometry and material model

Our model is created in Ansys Workbench Explicit Dynamics

explicit FE program. Contrary to the Sugano test’s flat-nose mis-

sile, the FE model consists of cylinders with spherical nose that

have the same length and mass as the Sugano missiles. Spher-

ical nose is used for convergence reasons. In order to reduce

computation time, a quarter-model with symmetry is used and

the size of the target is reduced to the smallest possible size to

prevent effect of boundaries (Fig. 5).

Reinforcement is not modeled at this stage, because according

to test results [10, 11], it hardly affects the perforation and pen-

etration properties (in case of high velocity impacts and normal

amount of reinforcement). Material model is CONC-35MPa ex-

plicit material model of Ansys Workbench Explicit that includes

the RHT strength model [14] that describes rate-dependent elas-

tic limit, failure and residual surfaces, and also includes state

equations for pressure dependence of compression and density.

The built-in values of parameters are used, only compressive

and tensile strain rate exponents were changed to 0.1 accord-

Fig. 5. FE model of target and missile

ing to the recommendation of Tu [22]. The material model

fixes the tensile and compressive strength ratio and the shear and

compressive strength ratio, therefore tensile and shear strength

change if f changes. In the Sugano test, planned compressive

strength of concrete was 23.5 MPa, but finally they measured

higher strength values. The type of tested specimen was not de-

scribed, therefore, during calibration, f turned out to be 40 MPa

for 1 / 7.5 test and 45 MPa for 1 / 2.5 tests in our model. Finite

element size dependency was examined and the applied size was

calibrated to the real test results.

3.2 Results of calibration

Table 2 compares the results of the Sugano test to our FE

model. In the table, penetration depth values of the Sugano test

results are modified because of the nose-shape difference. Nose

shape multiplying factor (N) for flat nose is 0.72, while for blunt

nose it is 0.84 [11], therefore original Sugano test penetration

values are multiplied by 0.84 / 0.72 = 1.17. The first three rows

are the result of 1 / 7.5 scale tests, while the last three correspond

to the 1 / 2.5 scale tests.

It can be seen that penetration depth results and perforation
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Tab. 1. Properties of hard Sugano test missiles

Scale 1 / 7.5 1 / 2.5

mass 3.6 kg 100 kg

diameter 101 mm 300 mm

length 110 mm 400 mm

planned impact velocity 100, 150, 215 m/s 100, 150, 215 m/s

Tab. 2. Properties of hard Sugano test missiles

V [m/s] t[mm] f [MPa]
x [mm]

Sugano*
x [mm] FEM

scabbing

[mm× mm]

Sugano

scabbing

[mm× mm]

FEM

200-220 (210)

350

23.5 (40**)

47 49 - cracks

180 perf. 59 260 × 260 610 × 675

150 perf. perf. 200 × 200 660 × 880

600

23.5 (45**)

140 150 360 × 360 130 × 120

550 146 perf. 400 × 400 200 × 150

450 perf. perf. 400 × 400 240 × 220

*corrected results that take into account the nose-shape factor (see main text)

**modified strength in FE model (see main text)

Fig. 6. Damage of 180 mm thick target

limits of the FE model agree well with real test results. The

180 mm thick target is the only case where perforation occurred

in the real test, but did not occur in the FE model. However,

Fig. 6 shows the result of the FE model of this case, the darkness

of colours shows the level of damage in the target material, black

colour represents the totally damaged elements. It is visible that

on the proximal side the impact causes penetration and com-

paction, while on the distal side the reflection of shock waves

causes scabbing. If the two fully damaged zones merge then

perforation happens. In Fig. 6 it is visible that the two zones are

close and thus the target is nearly perforated, thus practically the

180 mm target thickness case is also modelled quite adequately.

For the 550 mm thick target, corrected Sugano test result is

146 mm penetration, while FE model predicts perforation. In

this case, the exact perforation limits of the real specimens and

the level of damage in the not perforated zone is not available

from the experiments, hence the measured and the FE results

cannot be compared directly.

Scabbing zone sizes of the real experiment and the FE model

are probably different because we neglect the reinforcement in

the FE simulation. Contrary to perforation and penetration,

scabbing can be affected by the reinforcement because it holds

together the damaged, cracked zone at the distal side.

4 Parametric study

After the FE model calibration, a parametric study is carried

out. The most important parameters that appear in the model

(impact velocity, mass and diameter of the missile, concrete

strength) are varied in a wide range of values. In the follow-

ing diagrams, results of different empirical and analytic formu-

lae are represented together with the numerical and Sugano test

results. Only those formulae appear on the graphs that have re-

sults close to the results of the tests. Relative penetration depth

(x / d) and relative perforation limit (e/d) values of the 1 / 7.5

and 1 / 2.5 tests are shown. On each graph, only one parameter

is changed while all the other parameters are kept at the basic

values used in the tests.

4.1 Penetration and perforation (1 / 7.5 scale test)

Figs. 7 - 10 represent the relative penetration depth values of

the 1 / 7.5 (S 1/7.5) tests as a function of missile and target pa-

rameters. Results of the UKAEA (UK Atomic Energy Author-

ity), Adeli-Amin, Hughes, TBAA (British Textbook of Air An-

nament) and Li formulae [1, 2, 12, 13] are also shown as well

as the original and corrected Sugano test results. It is visi-

ble that the different formulae fit differently to the test results.

The Hughes formula and TBAA formula fit quite well to the

FE model results, however, usually give higher x / d values than

the FE model. Adeli-Amin and UKAEA formulae overestimate,

while the Li formula underestimates the FE results. In all the

graphs, the dashed-dotted line shows the result of a new semi-

empirical formula fitted to the FE model results. This new for-

mula is detailed in Section 5.

Figs. 11 - 14 show the relative perforation limit values of the

1 / 7.5 test together with the results of the Hughes, Chang, CEA
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Fig. 7. Relative penetration depth — velocity curve (S 1 / 7.5)

Fig. 8. Relative penetration depth — missile mass curve (S 1 / 7.5)

(French Atomic Energy and Alternative Energies Commission),

Criepi formulae [1, 2, 12, 13]. Criepi and CEA formulae re-

sults are in good agreement with the FE model results, Hughes

formula moderately, and Chang formula significantly overes-

timates them. Penetration depth values vary between 2 - 8 cm

(x / d~0.2 - 0.8), basic Sugano test value is 4.7 cm (x / d = 0.47),

while perforation limits are between 10 - 30 cm (e / d~1 - 3) and

Sugano test limit value is around 18 cm (e / d = 1.8).

4.2 Penetration and perforation (1 / 2.5 scale test)

Relative penetration depth values of the 1 / 2.5 scale tests can

be seen on Figs. 15-18 together with the result obtained from

the UKAEA, TBAA, Adeli-Amin, Hughes and NDRC formu-

lae. Figs. 19-22 represent perforation limit curves of FE, Chang,

Hughes, CEA, Criepi models. In some cases, convergence prob-

lems occurred in the FE model, mainly when low density or low

velocity impacts were simulated, therefore less FE results ap-

pear in the graphs than in case of the 1 / 7.5 tests.

Based on Figs. 15-18, penetration values of the Hughes for-

mula are the closest to the FE model results. TBAA, UKAEA

and Adeli-Amin formula results are significantly higher and Li

formula results are lower than the FE model x values. In case

Fig. 9. Relative penetration depth — missile diameter curve (S 1 / 7.5)

Fig. 10. Relative penetration depth — concrete strength curve (S 1 / 7.5)

of the penetration limit calculations, similarly to the 1 / 7.5 test

results, Criepi and CEA formulae results are in good agreement

with the FE model, Hughes formula moderately, and Chang for-

mula significantly overestimates the results.

Compared to the smaller missile test results, both pene-

tration depths and perforation limits are much bigger in the

1/2.5 test case. Penetration values are between 1 - 30 cm

(x / d~0.03 - 1.0) in the FE model, Sugano test result was 14 cm

(x / d = 0.47). FE model perforation limit values are between

20 - 80 cm (e / d~0.6 - 2.6), while 45-55 cm in the Sugano test

(e / d~1.5 - 1.8).

Size effect is not significant: basic case x / d and e / d values

of the 1 / 7.5 test are 0.49 and 1.7, while 0.44 and 1.9 in the 1/2.5

test.

5 New empirical formulae

New dimensionless empirical formulae are fitted to the results

of our FE model. Figs. 23 - 24 show the results of Sugano and FE

tests as a function of the dimensionless impact factor of Eq. (3)

in a log-log scale coordinate system, the fitted formulae for x / d

and e / d are also represented.

It is visible that all FE and experimental data more or less fall

on a single curve, indicating that both x / d and e / d indeed de-

Local Effects of Impact into Concrete Structure 5772016 60 4



Fig. 11. Relative perforation limit—velocity curve (S 1 / 7.5)

Fig. 12. Relative perforation limit —missile mass curve (S 1 / 7.5)

Fig. 13. Relative perforation limit —missile diameter curve (S 1 / 7.5)

Fig. 14. Relative perforation limit — concrete strength curve (S 1 / 7.5)

Fig. 15. Relative penetration depth — velocity curve (S 1 / 2.5)

Fig. 16. Relative penetration depth — missile mass curve (S 1 / 2.5)
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Fig. 17. Relative penetration depth — missile diameter curve (S 1 / 2.5)

Fig. 18. Relative penetration depth — concrete strength curve (S 1 / 2.5)

Fig. 19. Relative perforation limit — velocity curve (S 1 / 2.5)

Fig. 20. Relative perforation limit — missile mass curve (S 1 / 2.5)

Fig. 21. Relative perforation limit — missile diameter curve (S 1 / 2.5)

Fig. 22. Relative perforation limit — concrete strength curve (S 1 / 2.5)

Local Effects of Impact into Concrete Structure 5792016 60 4



pend on the impact factor, which is a dimensionless combination

of the parameters. This is not surprising, as this combination is

the only dimensionless quantity that can be constructed from

m, V, f and d, the parameters that determine the outcome of the

impact. That all data points fit quite well to a straight line on the

log-log diagrams shown in Figs. 23 and 24 indicates that there

is a power law dependence of both x / d and e / d on I. We find

that the exponent is close to 1/2 in case of x / d and 1 / 3 in case

of e / d. The fitted formulae are the following:

x

d
= 0.18

√
I, (5)

e

d
= 1.08

3
√

I. (6)

Fig. 23. Relative penetration as a function of the impact factor (log-log

graph)

Fig. 24. Relative perforation limit as a function of the impact factor (log-log

graph)

The fitted functions are represented in Figs. 7 - 22 by dashed-

dotted lines. Table 3 shows the absolute and relative mean de-

viation of our formula from the FE model results. Relative de-

viation is 14 - 16% in case of penetration values and 10 - 12% in

case of perforation limit values.

The simple power law we found indicates that there is a sim-

ple physical connection between the penetration or perforation

and the ratio of the impact energy 1 / 2 mV2 to the resistance of

the target fd2. In the following we give a possible explanation of

this result. Fig. 25 represents the penetration (x)—resistance (F)

function as proposed by Hughes [5]. According to the Hughes

model, if the penetration is small enough compared to the tar-

get thickness then penetration resistance will be similar to the

resistance of an infinite half space. In this case, penetration re-

sistance linearly increases with penetration depth until a critical

penetration depth x1 is reached:

F(x) = kx, x ≤ x1. (7)

If we assume that missile kinetic energy causes penetration

then:

1

2
mV2 =

x∫
0

F(x)dx =
1

2
kx2, (8)

therefore x is proportional to the square root of the kinetic en-

ergy:

x =

√
mV2

k
(9)

therefore

x

d
=

√
d f

k

√
I, (10)

which gives the same square root dependence of x / d in the im-

pact factor I.

Fig. 25. Resistance – penetration depth function based on Hughes model [5]

If x > x1, then the finite thickness of the target starts to affect

the resistance, the resistance decreases due to the decrease of the

undamaged thickness (t − x). The resistance at this decreasing

phase assumed to be equal to the resistance against shear cone

failure (see Fig. 2) that has the following form:

F(x) = τ A = τπ

(
d (t − x)

cosα
+ (t − x)2 tgα

cosα

)
, x > x1, (11)

where τ is the shear strength of the target, that is a function of

the strength f , A is the lateral surface area of the shear cone
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Tab. 3. Mean deviation

S 1 / 7.5

x e

abs. [mm] rel. abs. [mm] rel.

4,65 14,50% 15,48 10,77%

S 1 / 2.5

x e

abs. [mm] rel. abs. [mm] rel.

18,02 15,91% 50,60 11,49%

and α is the shear cone angle (Fig. 2). If the undamaged thick-

ness reaches the critical value H then resistance drops down to

0 and perforation occurs. If t = e, i.e. when perforation occurs

no residual kinetic energy remains. We assume that perforation

occurs when a given portion of the thickness is penetrated, so

penetration depth x2 is proportional to e:

x2 = e − H = βe. (12)

If we neglect the linearly increasing first part as suggested by

Hughes [5] and write down the kinetic energy consumption of

penetration, then we obtain

1

2
mV2 =

x2∫
0

F(x)dx =

βe∫
0

τπ

(
d (e − x)

cosα
+ (e − x)2 tgα

cosα

)
dx.

(13)

Performing the integration, we find e3 on the right-hand side,

which implies that 1 / 2mV2, and hence I are a cubic function of

e. This is what we obtained in Eq. (6).

6 Conclusions

In our paper, new semi-empirical formulae for penetration

and perforation caused by hard impact are introduced. It is

based on calibrated FE model calculations. The calculation ne-

glects the effect of reinforcement and missile deformation, but

includes the study of a wide range of parameters. The most im-

portant parameters of hard impact into concrete structure (mis-

sile size, mass, impact velocity, concrete strength) are examined

and an excellent agreement with our new formulae is found.

The formulae are based on numerical tests, therefore their ap-

plicability has limits, but our formulae seem to be applicable

for smaller and medium size hard missiles (with mass of 0,5 -

200 kg) that impact with 50 - 300 m/s velocity. The examined

parameter range contains the usual parameter values of tornado

and aircraft impact generated hard missiles. We also present a

simple heuristic theoretical model that supports our new formu-

lae.

Acknowledgement

The project presented in this article is supported by OTKA

no. K 100894, Paks NPP and JNEA (Foundation for Nuclear

Engineers).

References

1 Li QM, Reid SR, Wen HM, Telford AR, Local impact effects of hard mis-

siles on concrete targets, International Journal of Impact Engineering, 32,

(2005), 224–284, DOI 10.1016/j.ijimpeng.2005.04.005.

2 Kennedy RP, A review of procedures for the analysis and design of concrete

structures to resist missile impact effects, Nuclear Engineering and Design,

37, (1976), 183–203, DOI 10.1016/0029-5493(76)90015-7.

3 Poncelet JV, Introduction a la mecanique industrielle (Introduction to in-

dustrial mechanics), Gauthier-Villars; Paris, 1829.

4 Haldar A, Hamieh HA, Local effects of solid missiles on concrete struc-

tures, ASCE Journal of Structural Engineering, 110, (1984), 948–960, DOI

10.1061/(ASCE)0733-9445(1984)110:5(948).

5 Hughes G, Hard missile impact on reinforced concrete, Nuclear Engineering

and Design, 77, (1984), 23–35, DOI 10.1016/0029-5493(84)90058-X.

6 Li QM, Tong DJ, Perforation thickness and ballistic limit of con-

crete target subjected to rigid projectile impact, ASCE Journal of Struc-

tural Engineering, 129, (2003), 1083–1091, DOI 10.1061/(ASCE)0733-

9399(2003)129:9(1083).

7 Li QM, Chen XW, Dimensionless formulae for penetration depth of concrete

target impacted by a nondeformable projectile, ASCE Journal of Engineering

Mechanics, 28, (2003), 93–116, DOI 10.1016/S0734-743X(02)00037-4.

8 Rudiger E, Riech H, Experimental and theoretical investigations on the im-

pact of deformable missiles onto reinforced concrete slabs, In: Proceedings of

7th International Conference on Mechanics in Reactor Technology (SMiRT),

International Association for Structural Mechanics in Reactor Technology,

1983, pp. 387–394.

9 Kojima I, An experimental study on local behavior of reinforced concrete

slabs to missile impact, Nuclear Engineering and Design, 130, (1991), 121–

132, DOI 10.1016/0029-5493(91)90121-W.

10 Sugano T, Tsubota H, Kasai Y, Koshika N, Ohnuma H, Riesemann

WA, Bickel DC, Parks MB, Local damage to reinforced concrete structures

caused by impact of aircraft engine missiles Part 1. Test program, method

and results, Nuclear Engineering and Design, 140, (1993), 387–405, DOI

10.1016/0029-5493(93)90120-X.

11 Sugano T, Tsubota H, Kasai Y, Koshika N, Ohnuma H, Riesemann

WA, Bickel DC, Parks MB, Local damage to reinforced concrete structures

caused by impact of aircraft engine missiles Part 2. Evaluation of test results,

Nuclear Engineering and Design, 140, (1993), 407–423, DOI 10.1016/0029-

5493(93)90121-O.

12 Teland JA, A review of empirical equations for missile impact effects on

concrete. Report no. FFI/RAPPORT-97/05856, Norwegian Defence Research

Establishment, 1998, www.ffi.no/no/Rapporter/97-05856.pdf.

13 Murthy ARC, Palani GS, Iyer NR, Impact Analysis of Concrete Struc-

tural Components, Defense Science Journal, 60, (2010), 307–319, DOI

10.14429/dsj.60.358.

14 ANSYS Workbench Help, Version 15.0.0, SAS IP Inc., 2013.

15 Bojtar I, Toresmechanika, Egyetemi jegyzet, (Fracture mechanics, Lecture

Notes, Pal Vasarhelyi Doctoral School of Civil Engineering and Earth Sci-

Local Effects of Impact into Concrete Structure 5812016 60 4

http://doi.org/10.1016/j.ijimpeng.2005.04.005
http://doi.org/10.1016/0029-5493(76)90015-7
http://doi.org/10.1061/(ASCE)0733-9445(1984)110:5(948)
http://doi.org/10.1016/0029-5493(84)90058-X
http://doi.org/10.1061/(ASCE)0733-9399(2003)129:9(1083)
http://doi.org/10.1061/(ASCE)0733-9399(2003)129:9(1083)
http://doi.org/10.1016/S0734-743X(02)00037-4
http://doi.org/10.1016/0029-5493(91)90121-W
http://doi.org/10.1016/0029-5493(93)90120-X
http://doi.org/10.1016/0029-5493(93)90121-O
http://doi.org/10.1016/0029-5493(93)90121-O
www.ffi.no/no/Rapporter/97-05856.pdf
http://doi.org/10.14429/dsj.60.358


ences, 2015, https://www.me.bme.hu/hu/kurzus/toresmechanika.

(in Hungarian).

16 Itoh M, Katayama M, Mitakes S, Niwa N, Beppu M, Ishikawa N, Numer-

ical study on impulsive local damage of reinforced concrete structures by a

sophisticated constitutive and failure model, In: Proceedings of the SUSI VI:

Structures Under Shock and Impact VI, WIT, 2001, pp. 569-578.

17 Mizuno J, Sawamoto Y, Yamashita T, Koshika N, Niwa N, Suzuki A,

Investigation on impact resistance of steel plate reinforced concrete barriers

against aircraft impact. Part 1-3, In: Proceedings of 18th International Con-

ference on Mechanics in Reactor Technology (SMiRT), International Associ-

ation for Structural Mechanics in Reactor Technology, 2005, pp. 2566-2579.

18 Cox PA, Mathis J, Wilt T, Chowdhury A, Ghosh A, Assessment of

structural robustness against aircraft impact at the potential repository az

Yucca Mountain- Progress report, NRC-02-02-012, Center for Nuclear Waste

Regulatory Analyses, 2005, http://pbadupws.nrc.gov/docs/ML0626/

ML062620364.pdf.

19 Lepannen J, Concrete subjected to projectile and fragment impacts:

Modelling of crack softening and strain rate dependency in tension, In-

ternational Journal of Impact Engineering, 32, (2006), 1828–1841, DOI

10.1016/j.ijimpeng.2005.04.005.

20 Shiu W, Donze F, Daudeville L, Discrete element modelling of missile im-

pacts on reinforced concrete target, International Journal of Computer Appli-

cations in Technology, 34, (2009), 33-41, DOI 10.1504/IJCAT.2009.022700.

21 Heckotter C, Sievers J, Tarallo F, Bourasseau N, Cire B,

Saarenheimo A, Calonius K, Tuomala M, Comparative analy-

ses of impact tests with reinforced concrete slabs, Eurosafe Forum,

2010, http://www.eurosafe-forum.org/sites/default/files/

Eurosafe2010/1_02_IMPACT_TESTS.pdf.

22 Tu Z, Lu Y, Modifications of RHT material model for improved numerical

simulation of dynamic response of concrete, International Journal of Impact

Engineering, 37, (2010), 1072-1082, DOI 10.1016/j.ijimpeng.2010.04.004.

Period. Polytech. Civil Eng.582 Lili Eszter Laczák, György Károlyi

https://www.me.bme.hu/hu/kurzus/toresmechanika
http://pbadupws.nrc.gov/docs/ML0626/ML062620364.pdf
http://pbadupws.nrc.gov/docs/ML0626/ML062620364.pdf
http://doi.org/10.1016/j.ijimpeng.2005.04.005
http://doi.org/10.1504/IJCAT.2009.022700
http://www.eurosafe-forum.org/sites/default/files/Eurosafe2010/1_02_IMPACT_TESTS.pdf
http://www.eurosafe-forum.org/sites/default/files/Eurosafe2010/1_02_IMPACT_TESTS.pdf
http://doi.org/10.1016/j.ijimpeng.2010.04.004

	Introduction
	Analysis methods
	Analytic and empirical methods
	Summarizing articles
	Numerical models
	Sugano experiment

	FE model calibration
	Geometry and material model
	Results of calibration

	Parametric study
	Penetration and perforation (1/7.5 scale test)
	Penetration and perforation (1/2.5 scale test)

	New empirical formulae
	Conclusions

