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Abstract

Rocks are important examples for solid materials where, in

various engineering situations, elastic, thermal expansion, rhe-

ological/viscoelastic and plastic phenomena each may play a

remarkable role. Nonequilibrium continuum thermodynamics

provides a consistent way to describe all these aspects in a uni-

fied framework. This we present here in a formulation where

the kinematic quantities allow arbitrary nonzero initial (e.g., in

situ) stresses and such initial configurations which – as a con-

sequence of thermal or remanent stresses – do not satisfy the

kinematic compatibility condition. The various characteristic

effects accounted by the obtained theory are illustrated via ex-

perimental results where loaded solid samples undergo elastic,

thermal expansion and plastic deformation and exhibit rheologi-

cal behaviour. From the experimental data, the rheological coef-

ficients are determined, and the measured temperature changes

are also explained by the theory. Dedicated to the memory of

Zoltán Szarka (1927–2015).
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1 Introduction

Motivated by problems in rock mechanics and similar chal-

lenges in the continuum theory of solids, in the last few years,

our research object has been to achieve an amalgamation of a

new approach [1–4] to the problem of objectivity and of mate-

rial frame indifference – based on Matolcsi’s framework [5–8] –

with a recent activity in nonequilibrium thermodynamics [9–12]

that focuses on the role of thermodynamical stability and on a

constructive quantitative exploitation of the content of the sec-

ond law of thermodynamics. Here, we present how this pro-

gram has accomplished a theoretical framework for the contin-

uum thermo-elasto-visco-plasto-mechanics of solids.

Accordingly, the aspects covered currently are:

• elasticity, an immediate response to mechanical loading, and

during which mechanical energy is conserved;

• rheology, which, in contrast, is a delayed response, with me-

chanical energy partially dissipated, and which may be at-

tributed to viscous damping, for instance;

• plasticity, which is permanent shape change caused by me-

chanical loading: a change of the unloaded shape;

• thermal expansion, and the thermal stress generated by it;

• and heat conduction.

In parallel to the general level – large deformation theory, gen-

eral constitutive equations –, we consider it inevitable to exhibit

(and countercheck!) the applicability of the formulation to prac-

tical concrete examples. To this end, we have performed experi-

ments on which the theory can be applied and tested. The exper-

imental results presented here illustrate the various predictions

of the theory both qualitatively and quantitatively. Via this sim-

ple yet widely informative and insightful experimental example

– mechanical and thermal monitoring of uniaxial stretching of

polyamide-6 plastic samples –, the various thermomechanical

effects in solids are well demonstrated and the correspondence

to the theoretical expectations are satisfactorily established.

Therefore, though the theoretical framework described here

is capable to describe completely general situations, here our

aim is to focus on the connection between theory and experi-

ment so, at each component of our theoretical formulation, we

take the simplest applicable concrete choice: small deforma-
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tions, Hooke elasticity with constant elastic coefficients, con-

stant specific heat, thermal expansion and heat conduction co-

efficients, and constant plastic change rate coefficient and yield

stress. These assumptions satisfactorily suit the obtained exper-

imental data.

We start the discussion with the kinematic quantities accord-

ing to the mentioned recent objective approach. Then we build

elasticity, thermal expansion and plasticity around these quan-

tities, via continuum thermodynamics. We show how the pre-

dicted behaviours can be observed experimentally. Next, we in-

corporate rheology into the theory, and point out how the exam-

ple measurement results indicate the presence of rheology both

on the mechanical and the thermal side. We determine the rheo-

logical coefficients from the experimental data, and discuss the

related arising numerical challenges and the used solutions that

enabled us to obtain these coefficients reliably. In the Discus-

sion section, we summarize the most important outcomes and

lessons, and outline the future perspectives and aims. Techni-

cal details concerning the measurement can be found in the Ap-

pendix.

2 The kinematic ingredients

We start with a succint account of the objectivity respecting

definition of the involved kinematic quantities, presented in de-

tail in [1–4]. For continua – solids, liquids and gases each – the

motion determines the instantaneous distance of any two mate-

rial points. This defines an instantaneous metric h̃ on the mate-

rial manifold. Hereafter, overtilde indicates tensors on the ma-

terial manifold, operating on the material tangent vectors. For

solids, the novel and important notion is the relaxed or self-

metric g̃, which describes the distances of material points when

the solid is in an unstressed, relaxed state. In such a state, h̃ = g̃.

The relaxed metric characterizes the relaxed shape of a solid

body.

For the purposes of the elastic state variable, the appropriate

kinematic quantity can be defined from

Ã = g̃−1h̃, (1)

the elastic shape symmetric tensor – the (objective generaliza-

tion of the) right Cauchy–Green tensor –, as

D̃ =
1

2
ln Ã. (2)

This elastic deformedness tensor D̃ is on which elastic stress,

σ̃, is considered to depend on, linearly (Hooke’s law) or non-

linearly (e.g., a neo-Hooke model). This logarithmic type –

objectively generalized Hencky strain – definition (2) is dis-

tinguished both geometrically (the spherical/trace part of de-

scribes the volumetric change and the deviatoric part corre-

sponds to the constant-volume changes, even for large defor-

mations [1, 13, 14]) and experimentally (for example, large-

deformation stress in materials like hard rubber is most linear in

this logarithmic tensor [15, 16], the five-parameter Murnaghan

model of nonlinear elasticity also performs the best in this loga-

rithmic variable [17], and see also [18].

Via the (objective generalization of the) deformation gradient,

the material tangent vectors can be mapped to the spatial vectors.

Our material tensors (h̃, Ã etc.) are correspondingly mapped to

their spatial counterpart (h, A etc.). The change of h̃ in time,

and thus the time derivative of A, can be calculated with the aid

of the velocity gradient

L = v ⊗
←

∇ (3)

(and its transpose Ltransp =
→

∇ ⊗ v), and one finds

Ȧ = LA + ALtransp (4)

for the comoving time derivative Ȧ, as long as only elasticity is

involved (g̃ = const.).

Thermal expansion is the phenomenon that the unstressed and

relaxed size, hence, the relaxed metric, of solid bodies depends

on temperature: g̃ = g̃(T )(T denoting absolute temperature

throughout this paper). If the material is isotropic, which we

assume in what follows, then this temperature dependence is a

simple scalar rescaling:

g̃(T2) = Λ(T1,T2)2g̃(T1), (5)

α(T ) = lim
∆T→0

Λ (T,T + ∆T ) − 1

∆T
, (6)

the latter formula defining the linear thermal expansion coeffi-

cient α. It follows that, when temperature changes in time at a

material point, we have

g̃̇ =

(
d

dT
g̃

)
Ṫ = 2α(T )Ṫ g̃ (7)

for the comoving time derivative of the relaxed metric, and (4)

is generalized to

Ȧ = LA + ALtransp − 2αṪA. (8)

Plasticity (see, e.g., the recent monography [19]) is, in our lan-

guage, another phenomenon involving the change of g̃: strong

enough mechanical stress causes the relaxed shape – and metric

– of a solid to change permanently. This change can be charac-

terized by the plastic change rate tensor

Z̃ =
1

2
g̃−1g̃̇plastic, (9)

with which the total kinematic time evolution equation is

Ȧ = LA + ALtransp − 2αṪA − 2ZA. (10)

In the subsequent sections, we restrict ourselves to the small-

deformation regime, ‖D‖ � 1, A = e2D ≈ 1 + 2D, where (10)

leads, in the leading order of D, to 2Ḋ = L+Ltransp−2αṪ1−2Z,

rearrangable as

Lsym = Ḋ + αṪ1 + Z (11)

(sym standing for symmetric part). Further, for our purposes be-

low, the thermal expansion coefficient can be taken as constant.
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3 Comparison with the usual approach to kinematic

quantities

Conventionally, a reference frame and an initial time t0 is cho-

sen, and displacements are considered in the space of this refer-

ence frame and are measured related to positions at t0. From

the displacements, the deformation gradient is defined, and the

various strain measures are constructed from the deformation

gradient. One consequence of this approach is that initial strains

are necessarily zero, and the corresponding elastic stress is also

zero. Initial strains also necessarily satisfy the compatibility

condition.

Furthermore, when thermal expansion is also considered then

a homogeneous initial temperature distribution is assumed as

well.

One of our aims with the alternative kinematic formulation

expounded in the preceding section was to generalize this ap-

proach to situations where initial (e.g., in situ) stresses are un-

avoidably nonzero, the initial temperature distribution is far

from homogeneous, or where in situ or remanent stresses indi-

cate that the compatibility condition is violated already initially.

Namely, as we have shown [1–4], while the instantaneous met-

ric h̃ is a flat Riemann metric by definition, the relaxed Riemann

metric g̃ is not necessarily flat (so the compatibility condition –

see its finite deformation version lengthy formula in [1, 2] – is

violated), for example as a consequence of some plastic preced-

ing history or an inhomogeneous temperature distribution. Then

these two metrics necessarily differ at some parts of the material,

causing there nonzero elastic deformedness, and thus leading to

nonzero elastic stress (remanent, "frozen" stress).

In our generalized formulation, strains – which are neverthe-

less important notions for experimental purposes – can be given

as time integrals of the various terms of (11) from reference time

to current time: total strain ε is the time integral of the lhs term,

elastic strain εel is that of the first term on the rhs, thermal ex-

pansion strain εth is that of the second one, and plastic strain εpl

is the integral of the third term. In the small deformation regime

involved in the experiments below, these definitions suffice and

no finite deformation complication needs to be addressed.

4 Mechanics and thermodynamics

Our chosen elastic constitutive equation is Hooke’s law:

σ = EdevDdev + EsphDsph (12)

with the spherical and deviatoric components and elastic coeffi-

cients

Dsph = 1
3
( trD)1, Ddev = D − Dsph, (13)

Esph = 3K, Edev = 2G. (14)

For us here, it suffices to consider Edev and Esph as constant.

From (12), it is easy to show [2] that the classic Duhamel–

Neumann formula for thermoelasticity [20] is recovered as a

special case, via transforming from the elastic deformedness

variable to the total strain and imposing that, at the initial ref-

erence time,

• elastic deformedness is zero,

• the temperature distribution is homogeneous,

• and plastic change does not occur.

The first law of continuum thermodynamics, i.e., the balance

of internal energy, reads

%ė = −je ·
←

∇ + tr
(
σLsym)

(15)

for the specific internal energy e(D,T ) and its current je, both

to be specified constitutively (and the mass density % being con-

stant in the small deformation regime). Similarly, the balance

for specific entropy s(D,T ) is

%ṡ = −js ·
←

∇ + πs, (16)

where we take the simplest and standard choice js = je/T for the

the entropy current js, s must be thermodynamically consistent

with e (i.e., the Gibbs relation must hold between them), and en-

tropy production must be positive definite, πs ≥ 0. Specifically,

we take

je = λ
→

∇
1

T
, (17)

that is, standard Fourier heat conduction, with positive coeffi-

cient λ, and

e = cT +

{
Edev

2%
tr

[(
Ddev

)2
]

+
Esph

2%
tr

[(
Dsph

)2
]}

+
Esph

%
Tα trDsph, (18)

for specific internal energy, in which the first term provides the

constant specific heat c, the middle term describes elastic en-

ergy, and the last one is responsible for thermal expansion. The

corresponding specific entropy is determined up to an additive

constant, as

s = c ln
T

T∗
+

Esph

%
α trDsph (19)

with an arbitrarily auxiliary constant T∗. In the resulting entropy

production,

πs =
→

∇
1

T
· je +

1

T
tr (σZ) (20)

=
→

∇
1

T
· je +

Edev

T
tr (DdevZ) +

Esph

T
tr (DsphZ).

the first term of the rhs is non-negative due to (17), and we en-

sure the two further terms to be positive definite by choosing the

plastic constitutive equation as

Z = ΓḊdev (21)

with

Γ = γH

(
tr

[(
Ddev

)2
]
−

2

3
D2

crit

)
× H

(
tr
[(

DdevḊdev
)])
, (22)
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where γ and Dcrit are positive constants, and H is the Heaviside

function.

Equation (21) describes a natural plasticity theory:

• the plastic change rate is proportional to the deviatoric elastic

change rate,

• the yield criterion is the von Mises one (note that, now, stress

is in a Hookean relationship with elastic deformedness so D

can be replaced by σ, and Dcrit is equivalent to a σcrit, the von

Mises yield stress),

• and plastic change is switched off during unloading, as a con-

sequence of the second Heaviside factor that ensures the ther-

modynamical requirement πs ≥ 0.

For temperature dependent coefficients Esph, Edev, α, c, for

more general internal energy, for large deformations, and for

anisotropic materials, one can derive similar though somewhat

more complicated formulae.

The change of temperature is determined by the rate equation

derivable from (18) with (15), (12) and (11) substituted:

%cṪ = −je ·
←

∇ − EsphαT tr Ḋsph + Edev tr (DdevZ). (23)

The first term here gives account of the effect of heat. The sec-

ond term is the source of the Joule–Thomson effect for solids:

cooling during stretching and warming during compression.

This is a reversible type change, a less obvious but inevitable

manifestation of thermal expansion. The third term, on the con-

trary, describes an irreversible effect, being non-negative – as

a result of the non-negativity of entropy production – and thus

always causing warming whenever plastic change takes place.

Adding the mechanical equation of motion,

%v̇ = σ ·
←

∇, (24)

or its force-equilibrial approximation (applied in what follows)

σ ·
←

∇ = 0, (25)

to the balance and constitutive equations above, we arrive at a

closed set of dynamical equations: (3), (11)–(12), (17), (21)–

(23) and (24) [or (25)]. (Volumetric forces can, naturally, be

added if necessary.) Therefore, we can calculate any concrete

process, provided the required amount of initial and boundary

conditions are at hand.

5 Uniaxial processes – formulae and experimental il-

lustration

We demonstrate the application of the obtained theoretical

framework on uniaxial processes. Such situations are seminal

because of two reasons: they are simple to calculate, and are ca-

pable to describe many experimental tests. For bodies with such

special geometry, and assuming adiabaticity as well as symme-

try respecting space independent boundary conditions, all quan-

tities have a homogeneous distribution. In other words, quan-

tities are time dependent but space independent. In appropriate

coordinate system, tensors have at most only longitudinal (||)

and transversal (⊥) components:

σ =

(
σ

0

0

)
, D =

(
D

D⊥

D⊥

)
,

ε =

(
ε

ε⊥

ε⊥

)
etc. (26)

The deviatoric and spherical parts read, consequently - shown

on the example of D:

Ddev =
1

3

 2
(
D −D⊥

)
−
(
D −D⊥

)
−
(
D −D⊥

)
,

Dsph =
1

3

 D +2D⊥

D +2D⊥

D +2D⊥

. (27)

Let us consider a mechanical equilibrial initial condition:

D(t0) = 0 at an initial time t0 – when, naturally, no plastic

change takes place: Z(t0) = 0, and the purely elastic stress

is zero –, and let T0 denote the initial temperature. The to-

tal strain ε – measured in experiments directly –, is, as men-

tioned earlier, the time integral of Lsym counted from t0 so it

also starts from zero at initial time. From a finite difference nu-

merical perspective, the solution can be determined as follows.

For definiteness, let us consider the case of force-driven pro-

cess, where σ (t) is prescribed (taking into consideration that, in

the small-deformation regime, the change of cross-section can

be neglected). For strain-driven processes, a similar but some-

what more refined scheme is needed. Notably, the finite differ-

ence scheme outlined here is, despite its simplicity, suitable to

demonstrate that the solution of the problem is well-defined. In

addition, for many solid mechanical applications, its preciseness

and performance may suffice with moderately small time steps.

So, assuming that all quantities are known up to time t, from

the prescribed σ (t + ∆t), which actually means the knowledge

of σ(t + ∆t), we determine D(t + ∆t) via (12). Next, using [D(t +

∆t) − D(t)]/∆t as an approximation for Ḋ during the interval

[t, t + ∆t], we can apply (21) to calculate Z for this interval.

Subsequently, (23) leads to a prediction of Ṫ , which then offers

T (t + ∆t). Also, it enables to determine Lsym = ε̇ from (11) so,

at last, we obtain ε(t + ∆t) (which data is useful for comparison

with experimentally measured values).

If a sample starts from the considered initial conditions, i.e.,

a relaxed and equilibrial state, and undergoes stretching with in-

creasing force, the obtained theory predicts the following qual-

itative behaviour (see Fig. 1). Below the yield threshold, the

Joule–Thomson effect is observable, and decreasing tempera-

ture results in some thermal contraction, which acts against

the increase of elastic deformedness (but the latter dominates).

When plastic change enters, it adds to the total strain increase,

and the corresponding dissipation is a temperature increasing

effect.

These phases can nicely be demonstrated experimentally

when one monitors the temperature aspect during the stretching
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Fig. 1. Characteristic time dependence of strains and temperature during

uniaxial stretching by increasing force, according to the theory (arbitrary units,

semi-quantitative plot: The thermal expansion coefficient is set unrealistically

high to make its contribution visible). Temperature (dash-dotted line) first de-

creases – like for an adiabatically expanding gas – and then increases – due to

plastic dissipation –, elastic strain (dotted line) increases as it follows the in-

creased stress, and plastic strain (dashed line) appears only above the critical

stress, causing that the total strain (solid line) starts to increase faster.

process. Here, we show five snapshots taken by a thermal cam-

era during an example experiment performed on a polyamide-6

plastic sample (see Fig. 2), which depict the important stages

(see Fig. 3). The last stage, failure, is not modelled here the-

oretically but is a phenomenon also expected to be possible to

incorporate in a thermodynamical formulation [9, 10]. Namely,

failure is likely to be a loss of thermodynamical stability of the

continuum.

Fig. 2. The outline of the experiment. The middle part of the sample was

thinner, and was monitored by a thermal camera. Temperature values at the

two displayed spots were numerically displayed (see Fig. 3), together with the

maximal temperature in the rectangle area.

The same features can be observed in Fig. 4a, which presents

the time series of loading force and temperature of a similar ex-

periment performed on the same type of sample. Two loading–

unloading cycles have been carried out, the second with larger

maximal stress than the first, but both surely remained below

the yield threshold. The third loading was not terminated, in or-

der to enter the regime of plastic change and also to cause fail-

Fig. 3. Snapshots taken by the thermal camera. The first one shows the

initial state, then the quasi-adiabatic cooling is observable, then heat dissipation

appears due to plastic change, then the plastic change reaches the whole thinner

part of the sample, and finally failure occurs.

ure. Correspondingly, during the first two cycles, temperature

first drops a bit and then it returns. The third loading also starts

with cooling, until the plastic yield threshold is reached (see the

small transient in the stress curve), and subsequently plastic dis-

sipation starts to take the leading role, resulting in considerably

raising temperature. According to (23) with (21) [and (28) be-

low], the cooling part is linear in loading and the warming part

is quadratic/parabolic.

(a) (b)

Fig. 4. (a) Measured temperature (grey line) and force (black line) as a func-

tion of time, during two complete loading–unloading uniaxial (strain-driven)

stretching cycles followed by a loading until plastic yield and failure. (b) Mea-

sured (grey line) and predicted (black line) temperature as a function of time,

during the first loading cycle. (Force in units of 200 N, temperature in ◦C, time

in s.)

In Fig. 4b, the first loading–unloading cycle is enlarged, and

the measured temperature is shown together with the prediction

of the theory, calculated via

%cṪ = −αT σ̇ , (28)

which follows from (23) with the absence of plastic change

and heat. Here, the literature constants % = 1150 kg/m3,

c = 1700 J/(kgK) and α = 0.8 · 10−6 1/K have been used.

The good agreement with measurement indicates that the the-

ory works well and the applied approximations are valid.
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One can observe that, after a loading-unloading cycle, tem-

perature does not exactly return to the initial value but gets

slightly raised. The effect is larger for the second, larger load-

ing cycle. Plasticity is ruled out to be the cause of this dissipa-

tion. However, in fact there is another aspect, rheology, also in

action, inside such materials. In the following section we show

how rheology is required to be incorporated in view of the exper-

imental mechanical data, how nonequilibrium thermodynamics

provides us the required framework, how the data can be fitted to

determine the rheological coefficients, and that the presence of

rheology provides a correction not only for the mechanical side

but also contributes to the thermal changes as another source of

dissipation.

6 The thermodynamical framework for introducing rhe-

ology

Adding rheology to the theory is possible with the aid of in-

ternal variables (dynamical degrees of freedom [21]). For the

simpler case of no thermal expansion and no plasticity consid-

ered, the methodology has been given in [12]. Here, we extend

the treatment for thermal expansion and plasticity included. De-

tails identical to the case of [12] are only summarized here, and

here we focus on the differences.

According to the methodology, we assume the existence of

a further quantity, which is expected to be a symmetric tensor,

corresponding to that rheology manifests itself mainly in the me-

chanical behaviour, as an additional source of stress – such as

an internal damping force. In addition to the generalization of

stress, we assume that specific entropy, expressed as a function

of D and e, now also depends on the new variable ξ, via an ad-

ditive quadratic term that ensures that, in thermal equilibrium,

entropy still gets maximal (obeying the second law of thermo-

dynamics). Namely, we have

s (D, e, ξ) = sprevious (D, e) −
1

2
tr
(
ξ2

)
. (29)

Taking its comoving time derivative, one can derive that entropy

production obtains, in addition to (20), two extra terms,

πs =
→

∇
1

T
· je +

1

T
tr (σZ)

+
1

T
tr
(
σ̂Lsym)

− % tr
(
ξ2

)
, (30)

where σ̂ denotes the rheology-originated addition in stress,

added to the previous, elastic, stress. The Onsagerian way to

ensure the non-negativeness of this surplus entropy production

is to consider linear equations

σ̂dev = ldev
11

(
Lsym)dev

+ ldev
12

(
−%Tξdev), (31)

ξ̇dev = ldev
21

(
Lsym)dev

+ ldev
22

(
−%Tξdev), (32)

σ̂sph = l
sph

11

(
Lsym)sph

+ l
sph

12

(
−%Tξsph), (33)

ξ̇sph = l
sph

21

(
Lsym)sph

+ l
sph

22

(
−%Tξsph), (34)

with positive definite matrices of coefficientsldev
11

ldev
12

ldev
21

ldev
22

,
l

sph

11
l
sph

12

l
sph

21
l
sph

22

. (35)

Note that one could introduce Onsagerian coupling to the plas-

ticity related term of (30), too. Nevertheless, for our current

needs, the present level of generality suffices. Namely, it suc-

cessfully explains all aspects of the experimental data that we

consider here. On the other side, without shifting the entropy

– and thus without the last term of (30) – its term 1
T

tr (σ̂Lsym)

can be made positive definite via standard viscosity, σ̂dev being

proportional to (Lsym)dev, and σ̂sph to (Lsym)sph.

Hereafter, we discuss processes below the plastic yield thresh-

old. In addition, we neglect the tiny thermal expansion part in

(11) corresponding to the small temperature changes visible dur-

ing loading cycles like in Fig. 4. Then we are in the approxima-

tion

Lsym = Ḋ = ε̇. (36)

In parallel, with absolute temperature nearly constant, the coeffi-

cients l can safely be considered constant, and we can eliminate

ξ from the set of equations (31)–(34). The elimination yields

σdev + τdevσ̇dev (37)

= Edev
0 Ddev + Edev

1 Ḋdev + Edev
2 D̈dev,

σsph + τsphσ̇sph (38)

= E
sph

0
Dsph + E

sph

1
Ḋsph + E

sph

2
D̈sph

for the total stress, where the new coefficients are straight-

forward combinations of the former coefficients l. These are

two separate linear rheological models with σ, σ̇, D, Ḋ, D̈

terms. Therefore, the classic Kelvin–Voigt, Maxwell and Jef-

frey rheological models are covered as special cases of these

Kluitenberg–Verhás models (as named in [12], see the expla-

nation and further analysis there). An important benefit of the

thermodynamical derivation of these rheological models is that,

from the second law of thermodynamics, conditions follow for

the coefficients in (37)–(38) (which are the positive definiteness

criteria of the matrices (35) translated to these coefficients, the

simple derivation can be found in [12]), some of which are non-

trivial and remarkable:

τdev ≥ 0, Edev
0 ≡ Edev ≥ 0, (39)

Edev
1 ≥ τdevEdev

0 , Edev
2 ≥ 0, (40)

τsph ≥ 0, E
sph

0
≡ Esph ≥ 0, (41)

E
sph

1
≥ τsphE

sph

0
, E

sph

2
≥ 0. (42)

7 Determining rheological constants from experimen-

tal data

From experimental stress and strain values, one can determine

the τ, Ei constants. The first step towards this is to address the

difference between D and ε. Since D may not start from zero at
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the initial time of an experiment – some pre-stressing is usually

needed to ensure the proper initial state of the sample – and as

strain gauges (or other strain measuring devices) may have some

initial offset at initial time, one needs to assume a difference

between initial D and ε, which leads to an offset δ:

σdev + τdevσ̇dev (43)

= δdev + Edev
0 εdev + Edev

1 ε̇dev + Edev
2 ε̈dev,

σsph + τsphσ̇sph (44)

= δsph + E
sph

0
εsph + E

sph

1
ε̇sph + E

sph

2
ε̈sph.

The particular δ values carry, therefore, no principal informa-

tion, as they are not material constants but just characterize the

experimental setup and circumstances.

The next is to realize the importance of having measurement

data for ε⊥ in uniaxial experiments. Namely, for uniaxial pro-

cesses, it is possible [12] to derive from (43)–(44) a relationship

between σ and ε . That equation, however, contains derivatives

up to the third derivative of σ and fourth of ε , and includes all

the eight τ, Ei constants. Both the high number of constants and

the extraction of such high derivatives from discretely measured

data – that is burdened by error – are considerable practical dif-

ficulties. Moreover, even with precisely determined coefficients

in the relationship between σ and ε , inverting these back to the

τ, Ei constants is problematic because of the nonlinear formulae

[12] connecting the two sets of coefficients. It is therefore cru-

cial to have reliable measurement of ε⊥, too, with which one can

calculate the deviatoric and spherical parts, and can then solve

two separate fitting problems for 4–4 coefficients only.

The equations (43) and (44) are linear in the unknown pa-

rameters so a least-squares fitting seems feasible, with the data

values measured at the discretely many instants and the deriva-

tive values also being derived from them. The third difficulty

to face at is that even the first and second derivatives are non-

trivial to attribute to a data series even if it has acceptably small

errors: the errors get seriously amplified in neighbouring differ-

ences and the fitted parameters are unacceptably unreliable. The

approach we have worked out for treating data like in Fig. 4a is

as follows.

We intend to perform some smoothing so, instead of treating

an equation like (43) or (44) directly, let us consider a time inte-

gral of it. More precisely, we multiply the equation by a window

function centered around a time t, and integrate the product. The

novelty in doing this is that we choose such a window function

w(t) that is nonzero only in an interval [t1, t2] and it becomes

zero at the two interval endpoints such smoothly that even its

first and second derivatives tend to zero there. The advantage

of this is that, on the terms containing derivative, we can per-

form partial integration with the benefit that the surface terms

are zero, e.g.,∫ t2

t1

σ̇ (t)w(t)dt =
[
σ (t)w(t)

]t2
t1
−

∫ t2

t1

σ (t)ẇ(t)dt

= −

∫ t2

t1

σ (t)ẇ(t)dt. (45)

This way, we can bring back all integrals of derivatives to in-

tegrals of functions themselves (multiplied by the differentiated

window function that still behaves nicely). This approach is sim-

ilar to the idea of the so-called test functions in distribution the-

ory. To ensure very fast calculations, we have chosen w to be a

polynomial, and after some experimenting, we have found the

polynomial

p(u) = (u + 1)3(u − 1)3(u2 + 1), (46)

which apparently vanishes fast enough at the two endpoints of

the interval [−1, 1] (see Fig. 5), to perform very well. Then, for

general intervals [t1, t2], we have rescaled its variable to obtain

w(t). One chooses at least five different intervals and performs a

least-squares fitting on the integrated values.

Fig. 5. The window function (46) (black line) and its first (dashed line) and

second (dotted line) derivatives. Each of these three functions sample the inter-

val [−1, 1] visibly uniformly enough (not particularly favouring some parts of

the interval over other parts).

The integral of any data series was calculated numerically, but

here we also wanted to improve the performance. The reason for

this is that, in many cases in practice, one has only a few dozens

of data points at hand. We need to consider at least five different

intervals for determining the five unknown constants, or, if we

also want some error bars for the determined constants then at

least seven intervals are preferable. Then the numerical integrals

need to be fairly reliable since their values will not differ too

much, with the danger of numerical unreliability.

To this end, we have modified the classic trapezoidal rule for

numerical integration. Namely, the trapezoidal rule approxi-

mates the integrand by a linear function (piecewise). However,

in our case, a product is to be integrated, and the second deriva-

tive of our window function changes unavoidably rapidly. This

itself invalidates the (piecewise) linear approximation consider-

ably. The idea then is to approximate only the data itself by

linear pieces, and to treat the window function (or its appropri-
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ate derivative) in an exact manner. For example,∫ tb

ta

σ (t)w(t)dt (47)

≈

∫ tb

ta1

[
σ (ta) +

σ (tb) − σ (ta)

tb − ta
(t − ta)

]
w(t)dt,

the calculation of which going back to the integral of w(t) and

of tw(t), which both we can determine exactly.

After these preparations, data behaving like those in Fig. 4a

proved to be treatable. For rheological constants, such parts

of a time series are informative where the data changes well

enough so that its second derivative also changes well enough.

For demonstration, we show here the fitting for just a small part

of the first loading-unloading cycle on Fig. 4a: the ending part

of the loading and the beginning part of the unloading. The

abrupt change from loading to unloading may seem dangerous

to use but is actually most informative for rheological parame-

ters, which manifest themselves the best during heavy changes.

The least-squares fitting provides us error bars and an R2

value can also be calculated to quantify the goodness of the fit,

still, the best is when one can also visualize the quality of the fit.

To this end, solving the simple numerical scheme

σ
sph
n + τsph

σ
sph

n
− σ

sph

n−1

∆t

= δsph + E
sph

0
ε

sph
n + E

sph

1

ε
sph

n
− ε

sph

n−1

∆t

+ E
sph

2

ε
sph

n+1
− 2ε

sph

n
+ ε

sph

n−1

∆t2
(48)

for σ
sph
n , we predicted σsph values from experimental εsph values

and an initial σsph value (and treated the deviatoric counterpart

analogously). An advantage of this scheme is that it is reliably

applicable even if some of the fitted coefficients are small, or are

known to be zero a priori.

As mentioned, we present here the result for just a small part

of the process, in order to exhibit the quality of the established

numerical approach. Thirty data points are used, and integration

is done on seven intervals. This way, each interval consists of

only six points. (Neighbouring intervals have an overlap of two

points.) Apparently, six points means a rude discretization for

an integral on an interval so such a situation is a good test of

the numerical method. The obtained fitted coefficients and the

predictions based on them can be seen in Table 1 and Fig. 6.

Various further checks can be made for the determined rheo-

logical coefficients. First, it is reassuring to find that the ther-

modynamical constraints (39)–(42) are fulfilled. Second, the

elastic constants Edev
0

, E
sph

0
enable to calculate Poisson’s ratio

and Young’s modulus (see Appendix A of [12]). The result-

ing former value (0.37) coincides nicely with the literature data

(0.38). Young’s modulus (1.2 GPa) comes out somewhat below

the typical literature range (1.9 GPa ∼ 3.3 GPa) which, however,

depends heavily on humidity (that’s why the literature range is

so wide). In parallel, one must bear in mind that customary

Tab. 1. Table of fitted rheological coefficients for the deviatoric and spheri-

cal parts

material fitted standard

parameter value error

τdev[s] 0.3600 ±0.0659

Edev
0

[GPa] 0.8612 ±0.0556

Edev
1

[GPa · s] 0.4724 ±0.0686

Edev
2

[GPa · s2] 0.0029 ±0.0010

τsph[s] 0.2329 ±0.0904

E
sph

0
[GPa] 4.5708 ±1.0392

E
sph

1
[GPa · s] 1.8566 ±0.4401

E
sph

2
[GPa · s2] 0.0013 ±0.0220

(a) (b)

Fig. 6. Comparison of the theoretical prediction based on the values of Ta-

ble 1 (solid line) to the experimental stress data (points). For information, the

measured strain values (circles) are also displayed (rescaled appropriately). Hor-

izontal axes: time in s, vertical axes: stress in MPa. (a) Deviatoric case. (b)

Spherical case.

measurements of Young’s modulus are performed at finite load-

ing speeds where the steepness of the longitudinal stress–strain

curve is seriously influenced by rheology. For example, even for

the simplest rheological situation, a Kelvin–Voigt model in the

deviatoric part and a Hooke model in the spherical part, the uni-

axial equation contains not only σ and ε but also their first time

derivative, too ([12], Appendix A). The ratio of these deriva-

tives, σ̇ /ε̇ , dominates the slope of the longitudinal stress–strain

curve at the beginning of the loading and, for not too slow load-

ing, the later part as well. In other words, the ratio of the coef-

ficients of these first derivatives (in systematic notation, E1 /τ1 )

plays the role of a dynamical Young’s modulus. Now, for the

rheological coefficients found by the above fit, this dynamical

Young’s modulus turns out to be 1.47 GPa, 24% higher than the

static one. We remark that, as a consequence of the thermo-

dynamical inequalities (39)–(42), the dynamical Young’s mod-

ulus is always larger than the static one [12]. For more compli-

cated rheologies – like the one we have here – even higher order

dynamical Young’s moduli are present (ratios of coefficients of

higher derivatives). The second order dynamical Young’s mod-

ulus, for example, is already 1.84 GPa.

It is a generally valid warning from the rheology of solids that

customary ways of extracting Young’s modulus from longitudi-

nal stress–strain curves may result in erroneously high values
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whenever rheology is neglected. Notably, it is not only plastics

[22] and similar materials where one may encounter rheology in

solids: as an important application, the mechanical description

of rocks also requires the full rheological model, as exploited

in the ASR (Anelastic Strain Recovery) method for determining

3D in situ stress (see [23–25]).

8 Discussion

The presented theory is rich in the sense that it grasps the

elastic, thermal expansion, thermal conduction, rheological and

plastic aspects of solids. On the other side, for each of these as-

pects, the simplest available kinematic and constitutive choices

have been made here, in order to make the comparison with ex-

perimental data easy. These specific choices have been found

to be in conform with the experiments that we have performed

for illustration. The framework is nevertheless general enough

to describe much more general processes and material be-

haviours as well, such as large deformation processes, material

anisotropy, nonlinear elasticity, elaborated plastic effects, and all

with nonconstant elasticity, thermal expansion, rheological and

other coefficients.

As for feasible future generalizations of the theory, first, one

can mention allowing the Onsagerian coupling between the plas-

tic and the rheological side as well. Second, non-Fourier heat

conduction can also be incorporated, unifying the internal vari-

able approach [11] for rigid heat conductors with the thermo-

mechanical side described here. Damage and failure [26, 27]

are more distant but also reasonable candidates to include via

the same thermodynamical methodology, along the lines of the

works [9, 10]. Temperature dependent complicated rheologi-

cal/viscoelastic situations in the finite deformation regime [28]

mean further challenges.

On the experimental side, our intention here was to present

examples for the involved various aspects. These aspects, such

as the Joule-Thomson effect and the Kluitenberg–Verhás rheol-

ogy, have been found to be in good quantitative agreement with

the theory. In the future, with higher precision and higher reli-

ability measurements of the kind performed here, a full quan-

titative agreement can be achieved. For example, already the

present data allows us to approximately identify the plastic yield

stress value to be around 100 MPa (the stress level where the

transient takes place in Fig. 4a and temperature starts showing

plastic dissipation), and the ratio of the steepnesses before and

after the plastic yield leads to an approximate prediction of the

plastic rate coefficient [γ ≈ 0.17 in (22)] but a more elaborate

approach is desirable. If the experimental setup is able to pro-

vide fast enough loading and unloading –needed for studying

rheology precisely – while all strain, force and temperature val-

ues are measured with high precision and reliability then, after

fitting all the material constants involved, the numerical scheme

explained in Sect. 5 (and extended to also include thermal ex-

pansion and plasticity) should be able to reproduce the whole

time series precisely.

In addition to discussing the numerical scheme for predicting

the time dependence of quantities, we have presented a method

for fitting the rheological coefficients, which succeeded in this

task satisfactorily. We have emphasized the importance of hav-

ing transversal strain to be also measured, since this reduces the

labour of fitting significantly, enabling to divide the problem into

two separate, easily treatable, halves (deviatoric and spherical),

while the composite uniaxial eight-parameter situation may be

found practically intractable.

Besides monitoring the mechanical quantities, measuring

temperature provides valuable additional information about the

process of solid samples. The elastic, rheological and plastic

aspects make a clear footprint on the temperature time series

as well. Actually, because of the inherent intertwining of ther-

mal and mechanical aspects, the set of equations is closed only

when the temperature variable is a full member of the set of vari-

ables. The thermodynamics-based approach enlights the impor-

tance of temperature for processes that are traditionally treated

as mechanical-only.

The analysis of the experimental data has clearly shown the

relevance of rheology for plastics, and the situation is known

to be the same for seemingly more "solid" solids like rocks

[23–25], which is the base of the above-mentioned ASR method

for determining 3D in situ stress. What seems nonlinear elas-

ticity in the stress–strain plane may well be rheology. However,

another important remark to be made is that delays in an experi-

mental equipment (implementation of loading, controlling, mea-

suring devices etc.) should not confused with rheological delays

acting within the sample. Much experimental care is needed, in

parallel to the proper theoretical interpretation, to identify the

presence of true rheology in solids. The applicational conse-

quences of reliable rheological information are far-reaching (the

long-time behaviour of underground tunnels, safety aspects of

structural materials etc.). The interplay between thermal, elas-

tic and rheological effects is also remarkably important. The

thermodynamics-based description of solids provides a reliable

theoretical framework for all these phenomena.
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Appendix

Technical details of the measurement

The measurements have been carried out with an Instron

5581 universal material tester device, at the Hungarian Institute

of Agricultural Engineering. The arrangement can be seen in

Fig. 7.

Fig. 7. The measuring arrangement

To track the longitudinal and lateral size changes of the

tested sample, a tensiometric measuring device was used. HBM

3/350 XY11 type strain gauge was mounted onto the specimen

(Fig. 8). The resistance of the gauge is R = 350Ω, and the gauge

factor is k = 1.98 (1%, according to the technical parameters

provided by the supplier.)

Fig. 8. Strain gauge used for the measurement
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Half bridge was used to test the specimen. The active gauge

was the one mounted on the specimen, while the other gauge of

the bridge was mounted on an unloaded metal plate. During the

measurements, the half bridge was connected to an SR-55 radio

frequency module of a Spider-8 amplifier.

A ThermaCAM PM695 type real-time thermal camera was

used for temperature measurement and imaging. It monitored

the area of the specimen indicated by dashed lines in Fig. 2.

Besides the average temperature of the area and the maximal

temperature value within the area, the temperature value at two

fixed spots were also registered. In parallel, temperature at some

additional spots was monitored via infrared temperature sensor

(supplier: Optrics GmbH, type: OPTCTLT10FCB3).

Standard specimens were used. After manufacturing, the

specimens were relieved from load, and were calibrated after the

gauges were mounted. The geometric dimensions of the speci-

men are displayed in Fig. 2.
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