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Abstract

There are serious efforts worldwide to better understand and

model groundwater flow in fractured rocks and karst aquifers.

This study summarizes the major theories and idealizations used

for describe flow in fractured rocks and presents a laboratory

model and numerical models which were made for this purpose.

The laboratory model originally made by Öllős and Németh in

1960 was rebuilt in MODFLOW-CFP. The usability of both mod-

elling method was analysed. Based on the experience of this

modelling an existing cave system was modelled with CFP. The

Molnár János Cave – a karst cave almost filled with water – was

analysed with the tool of numerical modelling to better under-

stand the flow in cave conduits.
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rkp. 3, H-1111 Budapest, Hungary

e-mail: karay.gyongyi@epito.bme.hu

Géza Hajnal

Department of Hydraulic and Water Resources Engineering, Faculty of Civil

Engineering, Budapest University of Technology and Economics, Műegyetem
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1 Introduction

The importance of the research of the water flow in fractured

rocks is obvious: many Hungarian and worldwide examples

demonstrate its role in water supply (e.g. Bükk Karst Aquifer

in Hungary, Brestovica Karst Aquifer in Slovenia [1], Haute-

Normandie Region in France [2], Bernese Jura in Switzerland

[3], Madison Aquifer in the United States [4], Yucatán Karst in

Mexico [5] etc.), but it also can influence mining and civil en-

gineering works, cannot be forgotten when constructing nuclear

waste repositories (Bátaapáti in Hungary and many examples

from Europe and America in [6]), furthermore, their recreation

role also could be serious. Moreover, many fields of life, econ-

omy and science can be interested in research of karst and frac-

tured rock aquifers but there are some difficulties which differ

from the traditional groundwater problems. The often assumed

homogeneity and isotropy of the media in which the ground-

water flows is not valid in case of water flow in fractured rocks.

Moreover, Darcy’s law is usable only if the flow is slow and lam-

inar and the pores are small. The flow in porous media usually

fulfils these criteria but in fractured rocks the water flow could

be quite fast and non-laminar and there are orders of magnitude

differences between the sizes of discontinuities. These led to the

development of special modelling theories and methods which

take into account the characteristics of flow in fractured rocks.

1.1 The double porosity theory

One of the most evident differences between porous and frac-

tured media is the high variance in sizes of discontinuities. Next

to the pores which can be observed also among the particles

of porous media and in the intact fractured rocks – this is the

so called matrix porosity – more discontinuities as fractures,

voids and karst conduits can exist in fractured rocks. Against

the matrix porosity which has the same age like the media the

fractures are mostly formed later by tectonic movement or other

forces. Barenblatt et al. introduced the double porosity the-

ory which handles these additional discontinuities as secondary

porosity next to the matrix porosity named primary porosity [7].

The two types of porosity have different properties: flow in the

primary porosity is slow, the hydraulic conductivity is low and
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the storativity is quite high; but in secondary porosity the wa-

ter flow might be fast and non-laminar, the hydraulic conduc-

tivity is significant higher but the storativity is lower than in

the matrix porosity. The double-porosity theory was extended

with the definition of tertiary porosity; the fractures originally

belonging to the secondary porosity were enlarged by solution

processes; these conduits with enlarged size and permeability

occur in carbonate sedimentary rocks which are prone to kars-

tifications. Traditional methods and software can solve ground-

water flow in primary porosity but these could lead to wrong

results where the role of the secondary porosity is predominant.

Therefore, new methods are needed to improve the calculations

of flow in dual porosity rocks.

1.2 Modelling approaches of flow in fractured rocks

The inhomogeneity and anisotropy of the fractured rocks

make groundwater flow modelling more difficult than flow mod-

elling in porous media although both phenomena can occur in

analysis of porous rocks (for example [8–10]). It is essential to

decide before modelling which parts of the system and which

processes are relevant; the chosen method of idealisation fore-

casts the expected results. Because of its complexity there are

more idealisation methods to describe the fractured media as ac-

curately as it is necessary.

The modelling methods have two major approaches: contin-

uum models and discrete models.

The continuum models partly ignore the geometry of the frac-

tures and conduits. Their effects on flow are taken into account

by parameter distribution along the entire continuum. In the

continuum modelling the major effort is directed to define the

representative elementary volume (REV), the minimum volume

of the media which keeps the features of the entire volume. The

simplest and easiest continuum model is the single continuum

model or equivalent porous media approach. The groundwater

flow is calculated with Darcy’s law as it would be in case of an

originally porous media; this idealisation allows the use of the

common software of groundwater flow modelling (MODFLOW,

FEFLOW etc.). The fractures and conduits are replaced with

high permeable cells or layers. This method needs the fewest

input parameters, and gives good water balance results but its

application is limited because of the assumption of laminar flow.

Examples for use of equivalent porosity models are: [11–13].

The double continuum model links the two flow regimes – one

regime represents the rock matrix, the other regime represents

the discontinuities – with an exchange term. The first regime is

the so called diffuse flow regime which has low permeability and

high porosity and the second is the higher velocity flow in con-

duits or fractures with lower porosity and higher permeability.

Examples for its usage: [14, 15].

The discrete models require special discrete element mod-

elling software (e.g. FLAC 3D) which is able to model the

proper conduit/fracture geometry. This method needs the de-

tailed knowledge of fracture network geometry and higher com-

puting capacity than the continuum models. In the case when

enough information about the geometry is not available frac-

tures and conduits are often stochastically simulated [16, 17] or

specified arbitrarily [18].

The so called hybrid models where the discrete discontinuity

network is embedded in a continuum model provide more real-

istic idealisations of nature with the integrated treatment of slow

groundwater flow in the rock matrix and fast flow in discontinu-

ities even if the flow is non-laminar. The two flow regimes are

also linked with the exchange term. The hybrid models can lead

to more accurate spring discharges specially the peak discharges

and more realistic flow pattern [19,20]. Some of the widely used

programs are now able to handle hybrid models: in FEFLOW a

fracture network can be added as “Discrete features” [21], in

MODFLOW the Conduit Flow Process was developed. More

examples for usage of hybrid models: [22–24].

To model the discrete discontinuity network there are two cur-

rent methods [25, 26]: fractures can be approached by planes

[27,28] or pipes [29–31]. Although the planes correspond better

to the geometry of fractures, the assumption that water flows on

the entire plane contradicts field experiments which showed that

less than 10% of the fracture volume is used for water flow [32].

This so called channelling phenomenon – the water flows in tor-

tuous paths on the plane – and the quite tubular karst conduits

could be better approached by pipes. However, the model with

tubes imbedded in the fracture planes assumes constant wall per-

meability and aperture along a tube which should also be a rough

approximation.

1.3 Modelling techniques

In the previous point there were some numerical soft-

wares mentioned which are able to calculate groundwater

flow in fractured rocks under different assumptions. In this

study the MODFLOW-CFP is used to hybrid modelling (about

MODFLOW-CFP see [33]). On the other hand laboratory ana-

log models were widely used before the spreading of the com-

puter supported numerical modelling and these models nowa-

days have also a very important role also in helping to the un-

derstand the processes and verify numerical models.

In spite of their importance there are only few available

studies about laboratory analog models of groundwater flow in

fractured rocks. In Hungary well-known laboratory model re-

searches were made by Géza Öllős and Endre Németh in the

1960s [34, 35]. Due to the development of numerical modelling

methods the laboratory analog models had a minor roles in mod-

elling of fractured rocks, but nowadays laboratory modelling is

rediscovered. For example, laboratory models were made by

Faulkner et al. in 2009 [36] and Wu and Hunkeler in 2013 [37].

2 Modelling in laboratory-scale

2.1 The laboratory model

The laboratory analog model made by Öllős and Németh [34]

was an orthogonal grid which was built up by 0.6 m length PVC-
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Fig. 1. The Öllős-Németh’s laboratory model

pipes with 4.2 x 2.4 m overall size. The diameters of conduits

were 8 mm. Constant water level was ensured on the left side of

the model by a weir crest and at the end of the pipes were vari-

able discharge points. More than 30 model cases were analysed

by changing discharge points and model geometry. Hydraulic

head data were collected in every grid points. For more details

of the laboratory model see Fig. 1.

Based on this model a two dimensional MODFLOW CFP

model was created.

2.2 Numerical model in CFP

For numerical simulation the laboratory analog model was

rebuilt in MODFLOW-CFPv2 (CFP) using Mode 1 [38]. The

model consists of 77 pipes and 46 nodes, 6 layers, 9 columns

and 1 row. The water temperature was 15°C, the lower critical

Reynolds number was 1000 and the upper was 2320. The con-

stant head boundary on the left side of the model was 3.015 m.

The different discharge points were modelled as “well” bound-

ary conditions and the discharge rate was fixed according to the

laboratory model. The geometry was slightly modified because

the proper geometry with the intermediate faucets and confu-

sors could not be modelled, but it became clear after some trial

version that the effect of these faucets could not be ignored:

the laboratory model results showed very high hydraulic losses

between the high level tank and the first column of measuring

points. This effect was modelled by decreasing the diameters in

this initial section (see the pipes surrounded by dashed lines in

Fig. 1). Originally the wall roughness of pipes was 1.5 x 10−6 m

but with this value the hydraulic losses were lower in the numer-

ical model than in the laboratory analog. Therefore, the initial

diameter and the wall roughness were the calibrated parameters.

The effects of these values did not relate to each other: the mod-

ification of the initial diameter changed the hydraulic losses be-

tween the high level tank and the first column of grid points; the

roughness influenced the hydraulic head losses along the pipe

grid. The time unit was min and the length unit was cm accord-

ing to the units used in the laboratory model. For simplicity the

hydraulic head data and discharges are given in these units.

The basis of the calibration was case A (see Table 1) with

5220 cm3/min (8.7 x 10−5 m3/s) discharge rate in the 38th grid

point. After the calibration there was good agreement between

the laboratory and numerical model: the difference between

measured and calculated hydraulic heads was under 1.5 cm ex-

cept in the discharge point and in the nodes surrounding the

discharge point. The equipotential lines of the laboratory and

numerical models were quite parallel. The final value of wall

roughness was 10−4 m and the initial diameter was 6.5 x 10−3 m.

The calibration results can be seen on Fig. 2.

Fig. 2. Calibration results, model case A. Green/brighter lines: laboratory

model results, blue/darker lines: numerical model results. Labels show potential

in cm.

2.3 Model validation

After the calibration several other cases were analysed (see

Table 1). Almost all numerical results were in correspondence
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Tab. 1. Model cases in laboratory model

Model case identifier Discharge point Discharge rate (cm3/min) Other modifications Head differences (cm)

A 38 5220 1.5 - 6

B 38 8400 5 - 9

C 40 4500 3 - 9

D 30 9000 9 - 11

E 20 4570 recharge points: 1,2 10.5 - 17

F 20, 38 4000, 4300 2 discharge points 4 - 8

G 30 8460 finer grid 2 - 9

H 20 8760 finer grid+6 thicker pipes 2.5 - 8 (2 - 7)

I 38 10080 finer grid+11 thicker pipes 10 - 19 (13 - 20)

J 20 9000 finer grid+11 thicker pipes 2.5 - 14 (5 - 12.5)

Fig. 3. Model case F. Green/brighter lines: laboratory model results,

blue/darker lines: numerical model results. Labels show potential in cm.

with the laboratory analog results. A good agreement can be

seen on Fig. 3.

Prominently high differences between the two modelling

methods can be observed in case E (Fig. 4). The equipotential

lines are parallel but the hydraulic losses in the numerical model

are lower than in the laboratory model.

Only in case I was shape difference between the two mod-

elling method. This could be caused by a change of geometry

made in the laboratory model which could not be modelled in

CFP. In laboratory model thicker pipes with a 32 mm diameter

were linked to the original pipe system. The two pipes were

too close to each other to model them separately; an idealisation

was needed to model the effect of the thicker pipes. Although

two different methods were tried out – the two pipes were sub-

stituted with one pipe: first, with a diameter calculated from

the summarised cross-sectional area and second, with the hy-

draulic diameter – none of them gave the expected results (see

Fig. 5 about the first running). The results of both idealisation

are shown in Table 1, the values from the second running are in

brackets.

Based on the parallel equipotential lines and the moderated

differences between the losses of two modelling methods in

most model cases the numerical model is acceptable.

Fig. 4. Model case E. Green/brighter lines: laboratory model results,

blue/darker lines: numerical model results. Labels show potential in cm.

Fig. 5. Model case I. Green/brighter lines: laboratory model results,

blue/darker lines: numerical model results. Labels show potential in cm.

2.4 Sensitivity analysis and additional usability

After the validation the effects of the calibrated parameters

and the parameters assumed constant to the numerical results

were analysed. The results of the sensitivity analysis are pre-

sented in Table 2.

According to the results it seems that the water temperature

did not change the model results significantly. However, the

choice for the upper and lower critical Reynolds-number can

change the type of flow; in this case the original values led

to better results but this sensitivity analysis of the Reynolds-
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Tab. 2. Sensitivity analysis in laboratory model

Parameter Initial value New value Change

Temperature 15°C 20°C Lower hydraulic losses 0.5 - 1 cm

Reynolds-numbers 1000 / 2320 2320 / 4000
Turbulent flow became laminar

Small hydraulic losses

Roughness 10−4 m

9 x 10−5 m Errors +0.1 cm

1.1 x 10−4 m Errors - 0.4 cm, + 1 cm (D)

10−3 m No convergence

10−5 m Small hydraulic losses

Initial diameter 0.65 cm
0.6 cm Errors + 20 cm (D)

0.7 cm Errors + 5 - 10 cm (C)

numbers showed the importance of the careful definition of these

values.

The minor changes in the roughness caused minor differences

from the original results and it became clear that only the order

of magnitude of the roughness value is important. Contrarily

the numerical results are very sensitive to the initial diameter:

as long as the results of case C were improved with the 0.6 cm

initial diameter the results of case D went wrong and vice versa

with the 0.7 cm diameter. According to these results the origi-

nally used parameters are acceptable.

After the parameter sensitivity analysis the influence of the

fix hydraulic head boundary condition on the model results was

examined. The length of the model was duplicated. In the first

case the length of the pipes was increased, in the second case the

number of nodes was duplicated. The discharge data was from

case A. Originally, the effect of the discharge could be detected

in surrounding of the discharge point along about 0.6 m. When

the length of pipes was duplicated the discharge affected zone

did not change and in case of doubling of nodes this zone was

0.7 m. These results showed that the closeness of boundary con-

ditions of the model did not disturb the flow pattern so the used

length of the laboratory model is suitable to examine the effect

of different discharge points and rates.

2.5 Summary of results of the laboratory model

The presented laboratory and numerical models are suitable

models to examine the water flow in fractured rocks in which the

permeability of primary porosity is negligible. These are able to

model the effect of different discharge points and rates to the

flow pattern and demonstrate the discharge affected zones. Al-

though the models are very idealistic they can help the research

of fractured rocks: these are able to help the understanding of

water flow, support the field investigations and show the effect

of different pipe geometries.

3 Modelling of a karst cave system

3.1 The introduction of the modelled area

The Molnár János Cave is a part of the Buda Thermal Karst

located in Budapest, Hungary. With its more than 7.5 km known

conduit system under the Rózsadomb the Molnár János Cave

is the largest underwater cave system in Hungary [39]. The

Fig. 6. Location of the Molnár János Cave (red dot). Modified from [45]

conduits are almost filled with lukewarm water; therefore cave

divers have the main role in the investigation of the cave.

The Buda Thermal Karst is a part of the main karst aquifer of

Transdanubian Range (see Fig. 6). Its sedimentary succession

starts with carbonates from the Triassic Age (see Fig. 7). The

most typical Triassic formation of the Rózsadomb area is the

Main Dolomite (Hauptdolomit) Formation which is partly cov-

ered by Mátyáshegy Limestone Formation [40]. After the ero-

sion of the Jurassic, Cretaceous and Palaeocene sediments shal-

low self carbonate layers were formed in Eocene Age [41]. The

Szépvölgy Limestone Formation is the host rock of the extended

cave system under the Rózsadomb (Pál-völgy Cave, Molnár

János Cave, Mátyás-hegy Cave, Szemlő-hegy Cave, Ferenc-

hegy Cave, József-hegy Cave) [40]. The limestone is overlaid

by Buda Marl Formation, a partly calcareous marl which covers

the greatest part of the Rózsadomb [40, 42]. Clay layers were

formed in Oligocene Age; their physical parameters are quite

similar to the older marl [40, 43]. Coastal sandstones and shal-

low marine limestone were formed in Oligocene-Miocene Age.

The freshwater limestone from the Quaternary occurred in iso-

lated patches at the area of the Rózsadomb [40, 41].

The only several tens of thousands year old Molnár János

Cave was formed in the Eocene Age in the Szépvölgy Limestone

and Buda Marl by “mixing corrosion” [39, 40, 45] (see Fig. 7).

It means that waters with different temperature and ion con-

tent mix; this undersaturated water can dissolve the carbonate

rocks along its secondary porosity. In this area the structurally-

controlled mixing is the dominant cave forming process which

has been still in progress [45]. The mixed water leaves the sys-

tem through Alagút and Boltív Springs which feed Malom Lake,

an artificial lake made in the 15th-16th centuries – first mentioned

in 1540 – for the purpose of driving water mills [46]. A part of
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J Jurassic,

C Cretaceous,

P Paleocene,

Plio Pliocene,

Pl Pleistocene,

Hol Holocene.

Fig. 7. Litostratigraphic chart of the Buda Hills. Modified from [41]

the spring water is used by Lukács Thermal Bath; the other part

flows in the lake and after flowing across a sluice it is led to the

Danube. The cave system and its surroundings can be seen in

Fig. 8.

The cave system is recharged by the water of intermediate

and regional flow system [39]; previous studies detected that

the cave water is not directly connected with local precipitation

and probably only a slight amount of water comes from up local

infiltration [47]. The water flow in the conduit system is not fully

understood yet; only few measurement data are available about

the discharge of springs and flow velocity in the cave. The main

purpose of the presented modelling is try to better understand

the flow system.

3.2 The model idealisations

As the first model made about the Molnár János Cave many

idealisations and neglects were needed to build up a theoreti-

cally possible model. Only little information about the bedrock

and the boundary conditions was available; the main and almost

Fig. 8. The ground plane of the Molnár János Cave and its surroundings.

Altitude isoline of terrain in m.a.s.l.

the only data was the known geometry of the cave system. Be-

cause of the filled conduits only the cave divers with simple tools

could map the system. Therefore, the available geometry is a

polyline, which approximately describes the rope system, which

the divers installed in known conduits. The cross-sectional data

used for the model was estimated by divers.

The investigation of the bedrock of the cave has recently

started [48]; it is not properly known where the boundary of the

different layers is. To simplify the model and according to the

rock mechanical investigation it can be assumed that the most

conduits are imbedded in the Szépvölgy Limestone. The hy-

draulic conductivity of the bedrock was not known; it was esti-

mated with the help of the technical literature. The recharge of

the area is ensured by unknown base flow; it could come from

the rock matrix or along unknown fractures and conduits which

lead water into the cave system. The only known discharge is

the total discharge of the two springs at the Malom Lake; these

could be handled as one spring because of their closeness to

each other and because the available discharge data contains dis-

charges of both

springs. It should be noted that unknown amount of water is

led to the Lukács Thermal Bath. It is known that the water pro-

duction of the Bath is not permanent but neither its amount nor

the timescale of production is known. Conveniently this amount

of water was neglected.

The modelling area was defined by the boundaries of the area

being parallel and perpendicular to the main direction of the

cave conduits. This means that the main flow direction is par-

allel to the longer boundaries (northwest and southeast) – it can

be assumed that these are no-flow boundaries – and the shorter

boundaries (northeast and southwest) could be defined as a con-

stant head boundary.
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Fig. 9. The CFP model of the cave system (model size 190 x 510 m, grid cell size 10 m)

3.3 The numerical model

The numerical model of the cave was built in MODFLOW

CFPv2 using Mode 1. Taking into account the accuracy of ge-

ometry data the cells have 10 x 10 m sizes. 19 rows, 51 columns

and 10 layers were defined; the model domain has the over-

all dimension of 190 x 510 m (see Fig. 9). Most of the layers

were 10 m thick, only the uppermost layer has variable thick-

ness according to the topographical conditions. 316 nodes were

imbedded into the centres of the cells; the cave conduits were

modelled with circular pipes among nodes. 364 pipes were used

with different diameters: the hydraulic diameter of the estimated

cross-section. These cross sections were determined according

to the field surveys of the cave divers. The conduit system was

simplified into sections with uniform diameters: 28 different di-

ameters were used from 0.89 m to 13.33 m. Although the labora-

tory scale model showed that the using of the hydraulic diameter

does not lead to the perfect results especially in case of cross-

sections, which shape is very different from a circle, it was the

simplest and fastest method to generate circular pipes and taking

into account the uncertainty of cross-sectional data. It should be

an acceptable idealisation until more accurate measurement data

would be available.

Because neither the exact location of layers nor their hy-

draulic parameters are known, each model layer was defined as

one confined aquifer. The parameters of the limestone might

have an important role in the flow and the rock mechanical re-

sults also showed that a significant part of the cave conduits are

located in the Szépvölgy Limestone [48]; that is why the hy-

draulic properties of the rock layer were defined as limestone.

Originally, the rock permeability was assumed to be 10−8 m/s

both vertically and horizontally; this value is orders of magni-

tude higher than the hydraulic conductivity of a karstified, frac-

tured limestone (10−2 - 10−4 m/s, for example: [1,5,12]) because

the effect of karst conduits are taken into account with pipes.

The mean height of the micro-topography of the pipe wall was

defined as 0.01 m.

The purpose of the numerical modelling could not be to cre-

ate a quite accurate model about the cave system and its area

because of the many uncertainties; regular hydraulic and rock

mechanical measurements just started in the recent past so very

limited numbers of data are available. Therefore the modelling

was focused on the following questions: how can water flow in

conduits, what could be the role of the rock matrix and the ex-

change coefficient? Only discharge data of the outflow from the

Malom Lake and some flow velocities in conduits are available

[47, 49]. These data were checked in every model cases: the

discharge rate is approximately 5 - 8 x 10−2 m3/s and the max-

imum flow velocity is about 10−2 m/s although previous mea-

surements provided different values [47]. The discharge was

established with the help of a constant hydraulic head assumed

to be 105 m.a.s.l. (where sea level is the Baltic Sea), which is

approximately the lake water surface elevation - in the node “S”

(spring, see Fig. 9.).

Three different model cases were analysed: the first, the “base

flow” model where only the rock matrix recharged the cave con-

duits, the second, the “exchange” model where the effect of high

exchange coefficient was analysed and the third, the “direct”

model where the water in the conduits was ensured by direct

water inflow at the end of the known conduits.

3.4 The base flow model case

In the base flow model the southwest boundary condition

was defined as the ground level minus 10 m (between 140 and

150 m.a.s.l.), the northeast 105 m.a.s.l. was assigned. The wa-

ter exchange coefficient was automatically calculated from the

wall permeability by CFP. The original wall permeability was

assumed to be 10−8 m/s – the same value as the hydraulic con-

ductivity. These two parameters were decreased step by step

until we reached the desired order of magnitude of the discharge

rate and the flow velocity.

27 different cases were analysed in which the hydraulic con-

ductivity and the wall permeability varied between 10−8 m/s
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Tab. 3. Model cases in cave model

Max. hydraulic

head level

(m.a.s.l.)

Hydraulic

conductivity of the

rock matrix (m/s)

Wall permeability

(w, m/s) /

exchange

coefficient (e,

m2/s)

Discharge rate in

the 1st node

(m3/s)

Max. velocity in

conduits (m/s)

Number of pipes

with turbulent flow

Expected - - - 5-8x 10−2 10−2 -

Base flow 150 10−6 w: 10−6 2 x 10−2 2 x 10−2 20

Exchange1 150 10−4 e: 25 28.69 21.7 361

Exchange2 110 10−8 e: 25 28.70 12.5 260

Direct 150 10−8 w: 10−8 3 x 10−2 4 x 10−2 21

and 10−4 m/s. The model was sensitive to both parameters.

First the desired maximum velocity was reached where the hy-

draulic conductivity was 10−6 m/s and the wall permeability

was 10−7 m/s. In this case the flow velocity was determined to

1.1x10−2 m/s and the spring discharge rate to 0.90x10−2 m/s, the

flow became turbulent in few pipes. With increasing the hy-

draulic conductivity and/or the wall permeability the velocity

and the discharge rate also increased. To reach the desired dis-

charge rate the calculated velocity exceeded the estimated maxi-

mum velocity so a quite perfect matching could not be reach. As

a general rule the orders of magnitude of velocity and discharge

rate were acceptable where the hydraulic conductivity was be-

tween 10−6 and 10−5 m/s and the wall permeability was between

10−7 and 10−5 m/s. Where the hydraulic conductivity was more

than hundred times or less than hundredths of the wall perme-

ability the model led to wrong result: there were no flow pipes

at the bottom of the model. A quite good result is presented in

Table 3. In this case the flow became turbulent in eight percent

of pipes.

3.5 The exchange model case

In MODFLOW CFP two options are available for assembling

water exchange coefficient: the first, when the CFP calculates

the exchange coefficient using pipe geometry data and the user-

defined wall permeability data; the second, when the pipe con-

ductance is entered by user in the CFP Input File. The first op-

tion was used in the base flow model where the wall perme-

ability was estimated from the hydraulic conductivity of rock

matrix. Although many existing studies suggest to set the con-

duit wall permeability to the order of hydraulic conductivity of

the rock material encompassing pipes (for example: [50]); many

authors showed that the results are very sensitive on the value of

the wall permeability in this regime [50–52]. Chen et al. de-

scribed a universal choice for the exchange coefficient: when

this parameter is large (for example 25 m2/s) the results is robust

under perturbation on parameters and the relative error is small

[53]. In this model case this universal value of the exchange

coefficient was used.

Originally, the boundary conditions were the same as in

the base flow model case – the maximum head level was

150 m.a.s.l. – and the hydraulic conductivity of the rock ma-

trix was 10−6 m/s. The water exchange coefficient was defined

to be 25 m2/s. The flow became turbulent almost in every pipes

and the discharge rate at the node one was 28.7 m3/s. With de-

creasing the hydraulic conductivity of the rock matrix the flow

velocity data and the discharge rate remained the same as in the

first case. Many hydraulic conductivity values were tested from

10−12 m/s to 10−4 m/s but the results was the same in every case.

Then the constant hydraulic head level was decreased at

the southwest boundary. The spring discharge rate remained

28.7 m3/s even if the maximum level was only 110 m.a.s.l. How-

ever, the total volumetric exchange – flow between conduits and

rock matrix – depended on the hydraulic head boundary con-

dition: with decreasing the hydraulic head level the volumetric

exchange also decreased. It meets the requirements because the

volumetric exchange in a node is directly proportional to the hy-

draulic head difference between the head at the node and the

head in the encompassing MODFLOW cell. In case of higher

volumetric exchange (665.2 m3/s from the matrix in the tubes)

flow became turbulent in the most pipes - see Exchange case 1

in Table 3. Even at the lowest volumetric exchange (28.7 m3/s

from the matrix in the tubes) flow was turbulent in more than

70% of pipes – see Exchange case 2 in Table 3.

In this model case the desired discharge rate and maximum

velocity value were not fulfilled but the results verify the state-

ment of [53]: with wide range of the hydraulic conductivities

the result was the same with use of a big exchange coefficient.

3.6 The direct model case

In this case four recharge points were defined at the end of

the known conduits and one in the middle of the model (see

Fig. 9). These points were those where the cave divers observed

quite strong water flow or flow with different temperature. First,

it was assumed that the direct recharge flow has the maximum

velocity (0.01 m/s). The discharge rates calculated from this ve-

locity were added to the node point as direct recharge. Both the

wall permeability and the hydraulic conductivity of matrix were

set to 10−8 m/s to avoid that the rock matrix could ensure the

water in every conduit.

As a result it can be seen that the recharge rates of 0.01 m/s

induced too high discharge rate at the springs: it was 3.00 m3/s.

The maximum velocity was also exceeded therefore the recharge
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Tab. 4. Sensitivity analysis in cave model

Modified parameter
Original value of

parameter

Modified value of

parameter

Discharge rate in the

1st node (m3/s)

Max. velocity in

conduits (m/s)

Number of pipes with

turbulent flow

- - - 1.58 x 10−2 2.01 x 10−2 20

Temperature 21°C
30°C 1.58 x 10−2 2.01 x 10−2 34

15°C 1.58 x 10−2 2.01 x 10−2 19

Reynolds-numbers 2000/ 10000

10/ 1000 1.58 x 10−2 2.01 x 10−2 150

1000/ 2000 1.58 x 10−2 2.01 x 10−2 65

4000 / 10000 1.58 x 10−2 2.01 x 10−2 10

Roughness 0.01 m
0.1 m 1.58 x 10−2 2.02 x 10−2 23

0.001 m 1.58 x 10−2 2.02 x 10−2 25

rates were decreased. At the discharge velocity of 10−4 m/s the

order of magnitude of the spring discharge rate and the max-

imum velocity in conduits became suitable: 3 x 10−2 m3/s and

4 x 10−4 m/s (see Table 3.).

In every tested version there was no flow in about 10% of

pipes. It means that the assumed recharge points could not en-

sure water in every conduit. The required water could come

from the rock matrix as it was demonstrated in the base flow

model or from more recharge points. The most probably possi-

bility is that case where both sources ensure the water recharge.

With decreasing the discharge rates the number of pipes with

turbulent flow also decreased.

3.7 Sensitivity analysis

Although the model results have many uncertainties the sen-

sitivity analysis of the constant parameters could be important.

In the cave model – according to the laboratory model results

– the effect of temperature, critical Reynolds-numbers and wall

roughness was analysed.

The MODFLOW CFP uses only one water temperature to cal-

culate water flow in the model. It is known that there are zones

in the Molnár János Cave with different water temperature. The

upper limit of water temperature is about 30°C the lower limit

is 15°C. These temperature data were tried out with the base

flow model case where the wall permeability and hydraulic con-

ductivity were 10−6 m/s. Neither the spring discharge rate nor

the maximum velocity changed significantly with both temper-

atures. The water budget of the pipe system was the same in

the original and modified models. The flow velocities in pipes

changed not significant but this changing did not mean clear in-

crease or decrease and it was under 10%. Only the number of

pipes with turbulent flow changed: in the colder model case it

was 19, in the hotter one it was 34 (see Table 4). These results

showed that if the water temperature was in the feasible range,

it did not change the model results significantly.

The analysis of the effect of the critical Reynolds-numbers

led to the same results in the base flow model case. Only the

numbers of pipes with turbulent flow was changed.

The effect of different Reynolds-numbers was also analysed

in the exchange model case because in this case the number of

the pipes with turbulent flow was much higher than in the base

flow model case. The used modified Reynolds-numbers were

the same as those in the base flow model case. However, the

results were not sensitive to the change of the critical Reynolds-

number. Neither the spring discharge nor the maximum veloc-

ity varied and the water budgets were the same. The number

of pipes with turbulent flow did not change except where the

critical Reynolds-numbers were 10 and 1000; in this case the

flow became turbulent in every pipes. Because of this corre-

spondence the results were not entered in the table to avoid re-

dundancy. According to these trial cases it seems that the critical

Reynolds-numbers do not play an important role in the results.

The order of magnitude change in wall roughness also did

not vary the water budget and flow velocities. For details see

Table 4.

3.8 Summary of results of the cave model

The presented numerical model about the Molnár János Cave

is a suitable model to better understand flow in karst conduits.

The model helped to investigate the source of recharge and the

feasible role of rock matrix in flow. It seems that the exchange

coefficient corresponds to the hydraulic conductivity of the rock

matrix and the recharge can origin from the fractured and perme-

able rock matrix and also from unknown fractures and conduits

connected to the known cave. The completed model is also able

to be improved with new data from the ongoing cave research. In

spite of many required idealisations the model results were very

promising. The results can be used by divers and researchers to

assign the pathway of the further investigation.

4 Conclusions

In this study a laboratory model and numerical models were

presented. The quite good matching between the original labo-

ratory model and its numerical model pointed out the usability

and validity of both methods. The presented models are able

to examine water flow in fractured rocks with low permeabil-

ity of matrix. It showed that next to the often used numerical

models also the old-fashioned laboratory models can help in the

research of flow in fractured rocks and karst aquifers.

The first numerical model about the Molnár János was able to

answer some carefully worded questions and contributed to the

understanding of flow phenomena in cave system. The water in
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conduits could origin from the primary porosity of the limestone

surrounding the cave but also direct recharge points at the end of

the known system could exist. It was showed that the exchange

coefficient is a crucial parameter of the modelling. During the

sensitivity analysis it became clear that against the results of the

laboratory scale model the cave model is not very sensitive to

the critical Reynolds-numbers and the roughness. The feasible

water temperatures affected none of the models significantly.

The purpose of the different sensitivity for Reynolds-numbers

and roughness could be origin from the flow velocities. In the

laboratory scale model the sizes were small but the high veloci-

ties (about 2 m/s in the horizontal pipes in case A) caused turbu-

lent flow with quite high hydraulic losses. In the cave model the

turbulent flow was caused by the large cross-sectional area of

the pipes and the velocities were small. Therefore, the hydraulic

losses remained small because these are proportional to the flow

velocity. The wall roughness also could not modify significantly

the results because of these small velocities.

The analysis of hydraulic heads in nodes and trying new

recharge points could be lead to important results. The presented

models were steady-state models because of the limited data but

later with long-time spring discharge data the transient mod-

elling also could be possible. The diameters of pipes were the

hydraulic diameter of the cross-sectional areas; may this method

substitute with a better one.

The cave model can be improved by new research data to

reach as proper model as it possible. That could lead a well

usable model to analyse different influences to the cave system

and it could help to better preserve this cave and also to better

understand fractured and karst aquifers generally.

Acknowledgement

Special thanks to the cave diver group of Molnár János Cave,

and Vilmos Vasvári and Zita Garamszegi to their kind help!

References

1 Urbanc J, Mezga K, Zini L, An assessment of Capacty of Brestovica – Klar-

ièi karst water supply (Slovenia), Acta Carsologica, 41(1), (2012), 89–100,

DOI 10.3986/ac.v41i1.50.

2 Khaldi S, Ratajczak M, Gargala G, Fournier M, Berthe T, Favennec L,

Dupont JP, Intensive exploitation of a karst aquifer leads to Cryptosporid-

ium water supply contamination, Water Research, 45(9), (2011), 2906–2914,

DOI 10.1016/j.watres.2011.03.010.

3 Malard A, Vouillamoz J, Weber E, Jeannin P-Y, Swisskarst Project–

toward a sustainable management of karst water in Switzerland. Ap-

plication to the Bernese Jura, In: Proceedings of the 13th National

Congress of Speleology, Muotathal (SZ), Switzerland, 2012, pp. 215–

219, http://neu.agsr.ch/wordpress/wp-content/uploads/

215MalardetalSwisskarstProject.pdf.

4 Downey JS, Geohydrology of the Madison and associated aquifers in parts

of Montana, North Dakota, South Dakota, and Wyoming, USGS, 1984,

http://pubs.er.usgs.gov/publication/pp1273G.

5 Bauer-Gottwein P, Gondwe BR, Charvet G, Marín LE, Rebolledo-

Vieyra M, Merediz-Alonso G, Review: The Yucatán Peninsula karst

aquifer, Mexico, Hydrogeology Journal, 19(3), (2011), 507–524, DOI

10.1007/s10040-010-0699-5.

6 Tsang C F (ed.), Coupled processes associated with nuclear waste reposito-

ries, Elsevier; London, 2012.

7 Barenblatt G, Zheltov Y, Kochina I, Basic concepts in the theory of seep-

age of homogeneous liquids in fissured rocks, Journal of Applied Mathemat-

ics and Mechanics, 24, (1960), 852–864, DOI 10.1016/0021-8928(60)90107-

6.

8 Csoma R, Modelling the local variation of aquifer parameters with the

help of the analytic element method, Periodica Polytechnica Civil Engi-

neering, 49(2), (2006), 137–156, http://www.pp.bme.hu/ci/article/

view/576/333.

9 Copty NK, Trinchero P, Sanchez-Vila X, Inferring spatial distribution

of the radially integrated transmissivity from pumping tests in heteroge-

neous confined aquifers, Water Resources Research, 47(5), (2011), DOI

10.1029/2010WR009877. this paper do not publish page numbers for some

time past.

10 Avci CB, Ufuk Sahin A, Assessing radial transmissivity variation in het-

erogeneous aquifers using analytical techniques, Hydrological Processes,

28(23), (2014), 5739–5754, DOI 10.1002/hyp.10064.

11 Scanlon BR, Mace RE, Barrett ME, Smith B, Can we simulate regional

groundwater flow in a karst system using equivalent porous media models?

Case study, Barton Springs Edwards aquifer, USA, Journal of Hydrology,

276, (2003), 137–158, DOI 10.1016/S0022-1694(03)00064-7.

12 Panagopoulos G, Application of MODFLOW for simulating groundwa-

ter flow in the Trifilia karst aquifer, Greece, Environmental Earth Sciences,

67(7), (2012), 1877–1889, DOI 10.1007/s12665-012-1630-2.

13 Gargini A, De Nardo MT, Piccinini L, Segadelli S, Vincenzi V, Spring

discharge and groundwater flow systems in sedimentary and ophiolitic hard

rock aquifers: Experiences from Northern Apennines (Italy), In: Sharp J

M (ed.), Fractured Rock Hydrogeology, CRC Press; Boca Raton, 2014,

pp. 129–146, http://www.springer.com/de/book/9783642387388.

14 Sauter M, Quantification and forecasting of regional groundwater flow and

transport in a karst aquifer (Gallusquelle, Malm, SW. Germany), PhD thesis,

Universität Tübingen, 1992, http://hdl.handle.net/10900/48838.

15 Hao Y, Fu P, Carrigan CR, Application of a dual-continuum model

for simulation of fluid flow and heat transfer in fractured geothermal

reservoirs, In: Proceedings, 38th Workshop On Geothermal Reservoir En-

gineering, vol SGP-TR-198., Stanford University; Stanford, California,

2013, pp. 462–469, http://pangea.stanford.edu/ERE/db/GeoConf/

papers/SGW/2013/Hao.pdf.

16 Borghi A, Renard P, Jenni S, A pseudo-genetic stochastic model to gener-

ate karstic networks, Journal of hydrology, 414-415, (2012), 516–529, DOI

10.1016/j.jhydrol.2011.11.032.

17 Pardo-Igúzquiza E, Dowd PA, Xu C, Durán-Valsero JJ, Stochastic sim-

ulation of karst conduit networks, Advances in Water Resources, 35, (2012),

141–150, DOI 10.1016/j.advwatres.2011.09.014.

18 Loper DE, Chicken E, A leaky-conduit model of transient flow in

karstic aquifers, Mathematical Geosciences, 43(8), (2011), 995–1009, DOI

10.1007/s11004-011-9369-y.

19 Hill ME, Stewart MT, Martin A, Evaluation of the MODFLOW-

2005 Conduit Flow Process, Groundwater, 48(4), (2009), 549–559, DOI

10.1111/j.1745-6584.2009.00673.x.

20 Gallegos JJ, Hu BX, Davis H, Simulating flow in karst aquifers at labora-

tory and sub-regional scales using MODFLOW-CFP, Hydrogeology Journal,

21(8), (2013), 1749–1760, DOI 10.1007/s10040-013-1046-4.

21 Diersch H-J, FEFLOW. Finite Element Modeling of Flow and Heat Trans-

port in Porous and Fractured Media, Springer Science & Business Media,

2013, http://www.springer.com/de/book/9783642387388.

22 Liedl R, Sauter M, Hückinghaus D, Clemens T, Teutsch G, Sim-

ulation of the development of karst aquifers using a coupled contin-

uum pipe flow model, Water Resources Research, 39(3), (2003), DOI

Period. Polytech. Civil Eng.446 Gyöngyi Karay, Géza Hajnal

http://doi.org/10.3986/ac.v41i1.50
http://doi.org/10.1016/j.watres.2011.03.010
http://neu.agsr.ch/wordpress/wp-content/uploads/215MalardetalSwisskarstProject.pdf
http://neu.agsr.ch/wordpress/wp-content/uploads/215MalardetalSwisskarstProject.pdf
http://pubs.er.usgs.gov/publication/pp1273G
http://doi.org/10.1007/s10040-010-0699-5
http://doi.org/10.1016/0021-8928(60)90107-6
http://doi.org/10.1016/0021-8928(60)90107-6
http://www.pp.bme.hu/ci/article/view/576/333
http://www.pp.bme.hu/ci/article/view/576/333
http://doi.org/10.1029/2010WR009877
http://doi.org/10.1002/hyp.10064
http://doi.org/10.1016/S0022-1694(03)00064-7
http://doi.org/10.1007/s12665-012-1630-2
http://www.springer.com/de/book/9783642387388
http://hdl.handle.net/10900/48838
http://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2013/Hao.pdf
http://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2013/Hao.pdf
http://doi.org/10.1016/j.jhydrol.2011.11.032
http://doi.org/10.1016/j.advwatres.2011.09.014
http://doi.org/10.1007/s11004-011-9369-y
http://doi.org/10.1111/j.1745-6584.2009.00673.x
http://doi.org/10.1007/s10040-013-1046-4
http://www.springer.com/de/book/9783642387388


10.1029/2001WR001206. this paper do not publish page numbers for some

time past.

23 Reimann T, Geyer T, Shoemaker WB, Liedl R, Sauter M, Ef-

fects of dynamically variable saturation and matrix-conduit coupling of

flow in karst aquifers, Water Resources Research, 47(11), (2011), DOI

10.1029/2011WR010446. this paper do not publish page numbers for some

time past.

24 Rooij Rd, Perrochet P, Graham W, From rainfall to spring discharge:

Coupling conduit flow, subsurface matrix flow and surface flow in karst sys-

tems using a discrete–continuum model, Advances in Water Resources, 61,

(2013), 29–41, DOI 10.1016/j.advwatres.2013.08.009.

25 Nordqvist AW, Tsang YW, Tsang C-F, Dverstorp B, Andersson J, Ef-

fects of high variance of fracture transmissivity on transport and sorption at

different scales in a discrete model for fractured rocks, Journal of contami-

nant hydrology, 22(1), (1996), 39–66, DOI 10.1016/0169-7722(95)00064-X.

26 Juhász J, Hidrogeológia (Hydrogeology), Akadémiai Kiadó; Budapest,

2002. (in Hungarian).

27 Long JCS, Gilmour P, Witherspoon PA, A Model for Steady

Fluid Flow in Random Three-Dimensional Networks of Disc-Shaped

Fractures, Water Resources Research, 21(8), (1985), 1105–1115, DOI

10.1029/WR021i008p01105.

28 Andersson J, Dverstorp B, Conditional simulations of fluid flow in

three-dimensional networks of discrete fractures, Water Resources Research,

23(10), (1987), 1876–1886, DOI 10.1029/WR023i010p01876.

29 Neretnieks I, Eriksen T, Tähtinen P, Tracer movement in a single fissure in

granitic rock: Some experimental results and their interpretation, Water Re-

sources Research, 18(4), (1982), 849–858, DOI 10.1029/WR018i004p00849.

30 Moreno L, Neretnieks I, Flow and nuclide transport in fractured media:

The importance of the flow-wetted surface for radionuclide migration, Jour-

nal of Contaminant Hydrology, 13(1), (1993), 49–71, DOI 10.1016/0169-

7722(93)90050-3.

31 Bear J, Tsang CF, De Marsily G, Flow and contaminant transport in frac-

tured rock, Academic Press; San Diego, 2012.

32 Moreno L, Tsang YW, Tsang C-F, Hale FV, Neretnieks I, Flow and

tracer transport in a single fracture: A stochastic model and its relation to

some field observations, Water Resources Research, 24(12), (1988), 2033–

2048, DOI 10.1029/WR024i012p02033.

33 Shoemaker WB, Kuniansky EL, Birk S, Bauer S, Swain E D, Docu-

mentation of a Conduit Flow Process (CFP) for MODFLOW-2005. Tech-

niques and Methods. Book 6, A-24., US Geological Survey; Reston, VA.,

2007, http://pubs.usgs.gov/tm/tm6a24/.

34 Öllõs G, Németh E, Szakvélemény a repedezett kõzetekben lejátszódó

folyamatok kisminta vizsgálatáról. (Study of the physical modeling of the

flow processes in fractured rock), Budapest University of Technology and

Economics, Faculty of Civil Engineering; Budapest, 1960. (in Hungarian).

35 Öllõs G, A karsztrendszerben lejátszódó hidraulikai folyamatok. (An

Investigation into Hydraulic Phenomena in Karstic Systems), Hidrológiai

Közlöny, 44(1), (1964), 21–28, http://apps.arcanum.hu/hidrologia/

a111126.htm?v=pdf&a=pdfdata&id=HidrologiaiKozlony_1964&pg=

0&lang=hun#pg=22&zoom=f&l=s. (in Hungarian).

36 Faulkner J, Hu BX, Kish S, Hua F, Laboratory analog and numerical study

of groundwater flow and solute transport in a karst aquifer with conduit and

matrix domains, Journal of Contaminant Hydrology, 110(1-2), (2009), 34–

44, DOI 10.1016/j.jconhyd.2009.08.004.

37 Wu Y, Hunkeler D, Hyporheic exchange in a karst conduit and sediment

system–A laboratory analog study, Journal of Hydrology, 501, (2013), 125–

132, DOI 10.1016/j.jhydrol.2013.07.040.

38 Karay G, Hajnal G, Modelling of Groundwater Flow in Fractured

Rocks, Procedia Environmental Sciences, 25, (2015), 142–149, DOI

10.1016/j.proenv.2015.04.020.

39 Leél-Õssy S, Bergman C, Bognár C, A budapesti Molnár János

barlang termálvizének veszélyeztetettsége. (The contamination risk of

thermal water of the Molnár János Cave in Budapest), A Miskolci

Egyetem Közleménye, A sorozat, Bányászat, 81, (2011), 91–102,

http://www.matarka.hu/koz/ISSN_1417-5398/81k_2011/ISSN_

1417-5398_81k_2011_091-102.pdf. (in Hungarian).

40 Kleb B, Benkovics L, Gálos M, Kertész P, Kocsányi-Kopecskó K,

Marek I, Török Á, Engineering geological survey of Rózsadomb area,

Budapest, Hungary, Periodica Polytechnica Civil Engineering, 37(4),

(1993), 261–303, http://www.pp.bme.hu/ci/article/download/

3822/2927&hl=hu&sa=T&oi=gsb-ggp&ct=res&cd=0&ei=GIyRVr_

PH4TlmAHq667wAw&scisig=AAGBfm2D5N7YhemHoq72WO79mHjt8xDP-w.

41 Götz AE, Török Á, Sass I, Geothermal reservoir characteristics of Meso-

and Cenozoic sedimentary rocks of Budapest (Hungary), Zeitschrift der

Deutschen Gesellschaft für Geowissenschaften, 165(3), (2014), 487–493,

DOI 10.1127/1860-1804/2014/0069.

42 Görög P, Characterization and mechanical properties of the Eocene

Buda Marl, Central European Geology, 50(3), (2007), 241–258, DOI

10.1556/CEuGeol.50.2007.3.4.

43 Görög P, Engineering geologic properties of the Oligocene Kiscell Clay,

Central European Geology, 50(4), (2007), 313–329, DOI 10.1556/CEu-

Geol.50.2007.4.2.

44 Szanyi G, Surányi G, Leél-Õssy S, Cave development and Qua-

ternary uplift history in the Central Pannonian Basin derived from

speleothem ages, Quaternary Geochronology, 14, (2012), 18–25, DOI

10.1016/j.quageo.2012.09.001.

45 Erõss A, Mádl-Szõnyi J, Surbeck H, Horváth Á, Goldscheider N,

Csoma AÉ, Radionuclides as natural tracers for the characterization of flu-

ids in regional discharge areas, Buda Thermal Karst, Hungary, Journal of

Hydrology, 426, (2012), 124–137, DOI 10.1016/j.jhydrol.2012.01.031.

46 Alföldi L, Bélteky L, Böcker T, Horváth J, Kessler H, Korim K,

Oravetz J, Szalontai G, Budapest hévizei. (Thermal waters of Budapest),

Vízgazdálkodási Tudományos Kutató Intézet; Budapest, 1968. (in Hungar-

ian).

47 Farkas D, Hajnal G, Szieberth D, Rehák A, A Molnár János-barlang

térségének hidrológiai vizsgálata. (Hydrological investigation of the area

of the Molnár János Cave.), In: Török Á, Görög P, Vásárhelyi

B (eds.), Mérnökgeológia-Kõzetmechanika 2015, Hantken Kiadó; Budapest,

2015, pp. 61–74, http://www.mernokgeologia.bme.hu/ocs/index.

php/konferencia/MGEO2015/paper/view/222/213. (n Hungarian).

48 Pekáry A, Görög P, Hajnal G, Molnár János-barlang kõzetkörnyezetének

mérnökgeológiai vizsgálata. (Engineering geology investigation of rock

of Molnár János-cave.), In: Török Á, Görög P, Vásárhelyi B (eds.),

Mérnökgeológia-Kõzetmechanika 2015, Hantken Kiadó; Budapest, 2015,

pp. 149–160, http://www.mernokgeologia.bme.hu/ocs/index.php/

konferencia/MGEO2015/paper/view/230/221. (in Hungarian).

49 Lakos P, A Molnár János-barlang térségének hidrológiai vizsgálata. (Hy-

drological investigation of the area of the Molnár János Cave.), BSc thesis,

Budapest University of Technology and Economics, Faculty of Civil Engi-

neering, 2015. (in Hungarian).

50 Bauer S, Liedl R, Sauter M, Modeling of karst aquifer genesis: Influ-

ence of exchange flow, Water Resources Research, 39(10), (2003), DOI

10.1029/2003WR002218. this paper do not publish page numbers for some

time past.

51 Birk S, Liedl R, Sauter M, Teutsch G, Hydraulic boundary conditions as a

controlling factor in karst genesis, Water Resources Research, 39(1), (2003),

SBH 2-1–SBH 2-14, DOI 10.1029/2002WR001308.

52 Liedl R, Sauter M, Hückinghaus D, Clemens T, Teutsch G, Sim-

ulation of the development of karst aquifers using a coupled contin-

uum pipe flow model, Water Resources Research, 39(3), (2003), DOI

10.1029/2001WR001206. this paper do not publish page numbers for some

time past.

Modelling Methods Attached to the Research of Groundwater Flow in Fractured Rocks 4472016 60 3

http://doi.org/10.1029/2001WR001206
http://doi.org/10.1029/2011WR010446
http://doi.org/10.1016/j.advwatres.2013.08.009
http://doi.org/10.1016/0169-7722(95)00064-X
http://doi.org/10.1029/WR021i008p01105
http://doi.org/10.1029/WR023i010p01876
http://doi.org/10.1029/WR018i004p00849
http://doi.org/10.1016/0169-7722(93)90050-3
http://doi.org/10.1016/0169-7722(93)90050-3
http://doi.org/10.1029/WR024i012p02033
http://pubs.usgs.gov/tm/tm6a24/
http://apps.arcanum.hu/hidrologia/a111126.htm?v=pdf&a=pdfdata&id=HidrologiaiKozlony_1964&pg=0&lang=hun#pg=22&zoom=f&l=s 
http://apps.arcanum.hu/hidrologia/a111126.htm?v=pdf&a=pdfdata&id=HidrologiaiKozlony_1964&pg=0&lang=hun#pg=22&zoom=f&l=s 
http://apps.arcanum.hu/hidrologia/a111126.htm?v=pdf&a=pdfdata&id=HidrologiaiKozlony_1964&pg=0&lang=hun#pg=22&zoom=f&l=s 
http://doi.org/10.1016/j.jconhyd.2009.08.004
http://doi.org/10.1016/j.jhydrol.2013.07.040
http://doi.org/10.1016/j.proenv.2015.04.020
http://www.matarka.hu/koz/ISSN_1417-5398/81k_2011/ISSN_1417-5398_81k_2011_091-102.pdf
http://www.matarka.hu/koz/ISSN_1417-5398/81k_2011/ISSN_1417-5398_81k_2011_091-102.pdf
http://www.pp.bme.hu/ci/article/download/3822/2927&hl=hu&sa=T&oi=gsb-ggp&ct=res&cd=0&ei=GIyRVr_PH4TlmAHq667wAw&scisig=AAGBfm2D5N7YhemHoq72WO79mHjt8xDP-w
http://www.pp.bme.hu/ci/article/download/3822/2927&hl=hu&sa=T&oi=gsb-ggp&ct=res&cd=0&ei=GIyRVr_PH4TlmAHq667wAw&scisig=AAGBfm2D5N7YhemHoq72WO79mHjt8xDP-w
http://www.pp.bme.hu/ci/article/download/3822/2927&hl=hu&sa=T&oi=gsb-ggp&ct=res&cd=0&ei=GIyRVr_PH4TlmAHq667wAw&scisig=AAGBfm2D5N7YhemHoq72WO79mHjt8xDP-w
http://doi.org/10.1127/1860-1804/2014/0069
http://doi.org/10.1556/CEuGeol.50.2007.3.4
http://doi.org/10.1556/CEuGeol.50.2007.4.2
http://doi.org/10.1556/CEuGeol.50.2007.4.2
http://doi.org/10.1016/j.quageo.2012.09.001
http://doi.org/10.1016/j.jhydrol.2012.01.031
http://www.mernokgeologia.bme.hu/ocs/index.php/konferencia/MGEO2015/paper/view/222/213
http://www.mernokgeologia.bme.hu/ocs/index.php/konferencia/MGEO2015/paper/view/222/213
http://www.mernokgeologia.bme.hu/ocs/index.php/konferencia/MGEO2015/paper/view/230/221
http://www.mernokgeologia.bme.hu/ocs/index.php/konferencia/MGEO2015/paper/view/230/221
http://doi.org/10.1029/2003WR002218
http://doi.org/10.1029/2002WR001308
http://doi.org/10.1029/2001WR001206


53 Chen N, Gunzburger M, Hu B, Wang X, Woodruff C, Calibrating the

exchange coefficient in the modified coupled continuum pipe-flow model for

flows in karst aquifers, Journal of Hydrology, 414, (2012), 294–301, DOI

10.1016/j.jhydrol.2011.11.001.

Period. Polytech. Civil Eng.448 Gyöngyi Karay, Géza Hajnal

http://doi.org/10.1016/j.jhydrol.2011.11.001

	Introduction 
	The double porosity theory
	Modelling approaches of flow in fractured rocks
	Modelling techniques

	Modelling in laboratory-scale
	The laboratory model
	Numerical model in CFP
	Model validation
	Sensitivity analysis and additional usability
	Summary of results of the laboratory model

	Modelling of a karst cave system
	The introduction of the modelled area
	The model idealisations
	The numerical model
	The base flow model case
	The exchange model case
	The direct model case
	Sensitivity analysis
	Summary of results of the cave model

	Conclusions

