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Abstract
This paper presents the results of a comparison between 
two artificial neural network structures, i.e. the multilayer 
perceptron and the ANN with radial basis functions, with regard 
to the prediction of the failure intensity (failure rate) indicator 
for water mains, distribution pipes and house connections. 
The artificial neural network architecture included seven 
input signals (the number of house connections, the length of 
water mains, distribution pipes and house connections and the 
number of their failures). There were three neurons (the failure 
frequency indicators for the three types of conduits) at the 
ANN’s output. Operating data from the years 1999-2013 were 
used to train the ANNs while the optimal model was verified 
using data from the year 2014. Two models (MLP 7-14-3 and 
RBF 7-4-3), characterized by the best agreement between the 
predicted results and the experimental ones, were selected from 
a few tens of models. The RBF ANNs would generate results 
showing poorer agreement with the experimental failure 
frequency indicator values.
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1 Introduction 
Artificial neural networks (ANNs) are increasingly often 

used to model many engineering phenomena. According to lit-
erature reports, the multilayer perceptron (MLP) is currently 
one of the best ANN structures used to model various variables 
in broadly understood environmental engineering, e.g. to fore-
cast hourly water demand time series [1], determine the pres-
sure in a water supply system [2], predict the frequency of fail-
ures of a water distribution network [3, 4] and predict the dam 
water level [5]. So far there have been no reports on the appli-
cation of radial basis functions (RBF) ANNs to predict the fail-
ure intensity (failure rate) indicator for water conduits. There-
fore the principal aim of this research was to find out, using a 
simple example (basic input variables), if an artificial neural 
network of the RBF type would predict (with an error accept-
able for engineering purposes) the failure frequency indicator 
for water conduits and whether this kind of ANN is competitive 
with a typical multilayer perceptron. Moreover, the motivation 
of comparison between RBF and MLP neural networks was to 
check the behaviour and results of radial basis function which 
have been also used by author in other regression methods, e.g. 
support vector machines. Such comparison could be useful in 
the future investigations in relation to choose the optimal algo-
rithm of failure rate prediction. 

1.1 Frequency of failures of water supply networks
The condition and frequency of failures of water distribution 

networks are very important aspects which should be taken into 
account in any assessment of the reliability level of water sup-
ply systems and in their proper management. Research devoted 
to the determination of the water conduit failure intensity indi-
cator and other factors having a bearing on the proper function-
ing of municipal water networks has been conducted in Poland 
and in the world for many years [6-12]. A widely known and 
described methodology [6, 13], based on the failure occurrence 
probability calculus, is used to determine the parameters char-
acterizing the level of reliability of water supply networks. The 
problem mentioned in practically all the studies on this subject 
is the necessity to investigate each water distribution system 
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separately since there is no single universal model which 
would  describe failure frequency phenomena in a general way. 
This is naturally due to the fact that the topology, the mate-
rials, the age, the water conduit diameters and the operating 
and other conditions differ between water supply systems [14, 
15]. Nowadays modelling is very popular in relation not only 
to water supply networks, but also to sewerage systems [16]. 
That is the reason it seems to be reasonable to model also the 
failure frequency of water pipelines. Currently many studies 
dealing with the broadly understood frequency of failures of 
water conduits and with the risk of such failures are based on 
mathematical modelling using, e.g., fuzzy logic and artificial 
neural networks [17, 18]. So far the failure intensity indicator 
for water conduits has been predicted using MLP ANNs. In this 
paper the possibility of using RBF ANNs to predict the failure 
frequency indicator for pipelines is investigated.

1.2 Artificial neural networks
In an artificial neural network of the MLP type, consisting 

of at least three layers (an input layer, a hidden layer and an 
output layer), each neuron calculates the weighted average of 
the signals which reach it. Using the transition function the 
result is converted and outputted from one layer to another. 
Such an ANN connects input signals with output signals in a 
relatively simple way, i.e. through unidirectional connections 
between neurons. The weights of the connections are adjusted 
and changed during the training of the ANN in order to invest 
the model with generalization properties. The advantage is that 
using an appropriate (for the problem being solved) number 
of layers and neurons, training method and activation function 
one can model practically any dependence between the input 
signals and the output signals [19].

Since the theory of artificial neural networks is described 
in detail in the literature on the subject [20-22] only essential 
information on RBF ANNs is presented here. Unlike the multi-
layer perceptron, RBF ANNs include radial neurons (perform-
ing a function radially changing around a given centre in the 
vicinity of which non-zero values are assumed).  Each such 
neuron models a Gaussian response surface. The information 
from the inputs is transmitted to a basis function and each neu-
ron calculates the Euclidean distance between the input vectors, 
the standard vectors and the output vectors. It is important that 
there is a sufficient number of radial neurons to accurately con-
nect the function with the sought solution. At the ANN’s output 
it is possible to obtain results convergent with the experimental 
ones when a larger number of neurons and a larger training vec-
tor are employed, which is a drawback in comparison with the 
MLP ANN. Solutions based on RBF ANNs are slow-running 
and require a considerable storage area, which sometimes con-
stitutes a serious limitation.

2 Investigative methodology
The water conduit failure rate indicator (λ, fail./(km·year)) 

would be predicted by means of ANNs. The aim of the analysis 
presented in this paper is to show differences between pipeline 
failure rate prediction results depending on the type of ANN 
used (the multilayer perceptron versus RBF ANNs). Operat-
ing data from the years 1999-2013, obtained from one of the 
water companies in Poland, were used to train the ANNs. In the 
training stage 50 % of the data were used for learning, 25 % for 
testing and 25 % for validating. The selected model was veri-
fied using data from the year 2014. Until now data describing 
a given water conduit, such as the material, the diameter, the 
age, the conduit length, the pressure, the type of soil and the 
conduit laying depth, have been used as input signals to model 
indicator λ [3, 4, 17]. In this research the input neurons were 
such parameters as: the number of house connections (NH), the 
length of water mains (Lm), the length of distribution pipes (Lr), 
the length of house connections (Lp), the number of failures of 
water mains (Nm), the number of failures of distribution pipes 
(Nr) and the number of failures of house connections (Np). In 
the output layer there were the failure rate indicators for: water 
mains (lm), distribution pipes (lr) and house connections (lp). 
The actual (determined on the basis of the operating data) fail-
ure rate indicator would be calculated from this relation:

λ =
( )
⋅

⋅( )N t
L t∆

, fail. km year)

where:
N (t) the number of failures over time t, pc.;
Δt the analyzed period, year;
L the average length of the conduit, km.

One should note that the ANN was trained on variables which 
have a direct bearing on the value of the failure rate indicator 
(relation (1)). Unlike in earlier analyses [3, 4, 23], such basic 
data as the conduit length and the number of failures were used 
intentionally in order to check for a simple case whether MLP 
artificial neural networks are really one of the best ANN struc-
tures for predicting engineering phenomena. Table 1 shows the 
ranges of variation of the data fed to the ANN’s input and output.

Optimal models for MLP and RBF structures were selected 
through a two-stage process. For each of the ANN structures 
twenty models were built and trained on data from the years 
1999-2013. Then relative mean-square errors were determined 
for each of the models. A few models characterized by the low-
est errors (for water mains, distribution pipes and house con-
nections) were selected for each of the ANN structures and 
verified (the forecast stage) using data from the year 2014. The 
optimal model was characterized by the lowest mean-square 
error of the forecast and the best agreement between the experi-
mental results and the ones predicted by the ANN. The compu-
tations were performed in Statistica 10.0.

(1)
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3 Results and discussion
The average experimental failure intensity (failure rate) 

indicator for water mains, distribution pipes and house con-
nections in the years 1999-2014 amounted to respectively 
0.25, 0.38 and 0.64 fail./(km·year). Using the methodology 
described above two optimal models (for both the MLP and 
RBF structure), characterized by the best agreement between 
the experimental results and the predicted ones, were selected. 
Table 2 shows the relative errors between the experimental and 
predicted results for ANN training (the years 1999-2013) and 
optimal model verification (the year 2014).

Table 2 Relative errors (optimal model MLP 7-14-3 and RBF 7-4-3)

Year

Water mains Distribution pipes House connections

Relative error, %

MLP RBF MLP RBF MLP RBF

1999 0.00 2.86 1.49 5.97 1.79 1.79

2000 0.00 4.76 0.00 5.36 0.00 1.56

2001 0.00 0.00 0.00 3.77 1.41 2.82

2002 0.00 2.33 2.27 11.36 1.49 10.45

2003 0.00 1.75 0.00 4.55 0.00 2.94

2004 0.00 4.00 2.86 11.43 0.00 4.29

2005 0.00 5.56 5.41 5.41 1.69 11.86

2006 0.00 0.00 0.00 9.76 0.00 1.25

2007 0.00 6.25 0.00 15.38 1.32 6.58

2008 0.00 7.14 0.00 11.43 1.89 7.55

2009 0.00 5.56 3.03 12.12 2.86 22.86

2010 0.00 71.43 0.00 12.50 0.00 2.94

2011 0.00 0.00 0.00 4.17 0.00 0.00

2012 5.88 17.65 0.00 42.86 1.56 17.19

2013 0.00 0.00 0.00 0.00 0.00 0.99

2014 4.35 34.78 0.00 17.86 1.10 7.69

In the selected MLP model fourteen hidden neurons and 
three output neurons were activated by the linear function, 
whereas in the RBF model four hidden neurons and three out-
put neurons were activated using respectively the Gaussian 
function and the linear function. One should note that in the 
Statistica program there is really no choice of activation func-
tion for modelling by means of RBF ANNs since the Gaussian 

function and the linear function are set by default [19]. This is 
a drawback in comparison with the multilayer perceptron to 
which the following activation functions can be applied: the 
linear function, the logistic function, the exponential function, 
the hyperbolic tangent (tanh) and the sine function. Therefore 
it should not be surprising that larger discrepancies (Table 2) 
between the experimental results and the predicted ones were 
obtained in the case of the RBF ANN.

The reason was the limited number of combinations of func-
tions activating hidden and output neurons. Also the choice of 
a training method poses a difficulty. MLP ANNs can be trained 
by respectively the conjugate gradient method, the steep-
est descent method and the quasi-Newton method, which are 
described in more detail in the literature on the subject [20-
22]. In the case considered here, the last algorithm would 
generate the most convergent results after 28 epochs of train-
ing. RBF ANNs are trained completely differently. Training is 
conducted in two stages [19]: first radial basis functions are 
arranged using input signals and then weights between the 
RBFs and the output neurons are determined. Consequently, 
no iteration process is required, which is evidence of the lack 
of typical training epochs. The number of hidden neurons in 
MLP ANNs does not depend on the number of input and out-
put signals. Even though the number of neurons in the hidden 
layer is customarily determined to some degree in relation to 
the neurons in the other layers, the relations are not a priori 
known. They are experimentally determined, often by trial and 
error. When determining the maximum number of hidden neu-
rons during modelling by means of RBF ANNs the following 
program message appeared: “the largest possible number of 
neurons is the sum of the training cases and the output cases”. 
The compliance with this message seriously limits the choice 
of the number of signals in the hidden layer. The ANN should 
not be overtrained since this would contribute to the loss of its 
generalization abilities. This can happen if the hidden vector is 
too large. On the other hand, the imposition of too severe limi-
tations already at the start results in lower learning quality and 
subsequently adversely affects model verification results, i.e. 
they may be less convergent with the experimental results, as 
shown in Figs. 1-3. For comparison, Table 3 shows the experi-
mental values of the failure intensity indicator and the ones 
predicted by the ANN. 

An analysis of Tables 2-3 and Figs. 1-3 shows that as regards 
water conduit failure rate indicator prediction larger discrepan-
cies occur when the RBF ANN is used. In the training stage the 

Table 1 Ranges of variation of input parameters and actual failure intensity indicator in years 1999-2014

Variable NH Lm, km Lr, km Lp, km Nm Nr Np λm , fail./(km·year) λr , fail./(km·year) λp , fail./(km·year)

Min 1954 28.2 99.2 35.4 2 27 15 0.07 0.23 0.34

Max 2721 31.0 118.4 46.3 16 66 46 0.57 0.67 1.01
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correlation between the experimental results and the ones pre-
dicted using the MLP 7-14-3 model was high, i.e. R2 amounted 
to 0.999, 0.998 and 0.999 for water mains, distribution pipes 
and house connections, respectively. In the training process the 
RBF 7-4-3 model was characterized by a worse correlation, 
amounting to 0.981, 0.808 and 0.942.

Table 3 Output signals 
(experimental values vs. optimal model MLP 7-14-3 and RBF 7-4-3)

Year

Water mains Distribution pipes House connections

λ, fail./(km·year)

Exp. MLP RBF Exp. MLP RBF Exp. MLP RBF

1999 0.35 0.35 0.34 0.67 0.66 0.63 0.56 0.57 0.55

2000 0.21 0.21 0.22 0.56 0.56 0.59 0.64 0.64 0.63

2001 0.32 0.32 0.32 0.53 0.53 0.55 0.71 0.70 0.73

2002 0.43 0.43 0.44 0.44 0.45 0.49 0.67 0.66 0.74

2003 0.57 0.57 0.58 0.44 0.44 0.46 0.68 0.68 0.70

2004 0.25 0.25 0.26 0.35 0.36 0.39 0.70 0.70 0.73

2005 0.18 0.18 0.19 0.37 0.39 0.39 0.59 0.60 0.66

2006 0.39 0.39 0.39 0.41 0.41 0.37 0.80 0.80 0.79

2007 0.32 0.32 0.30 0.26 0.26 0.30 0.76 0.77 0.71

2008 0.14 0.14 0.15 0.35 0.35 0.31 0.53 0.54 0.57

2009 0.18 0.18 0.17 0.33 0.34 0.29 0.35 0.36 0.43

2010 0.07 0.07 0.12 0.32 0.32 0.28 0.34 0.34 0.35

2011 0.14 0.14 0.14 0.24 0.24 0.25 0.36 0.36 0.36

2012 0.17 0.16 0.14 0.42 0.42 0.24 0.64 0.63 0.75

2013 0.13 0.13 0.13 0.23 0.23 0.23 1.01 1.01 1.02

2014 0.23 0.24 0.15 0.28 0.28 0.23 0.91 0.90 0.98

The value of indicator l for water mains predicted by the 
MLP ANN is practically the same as the experimental value. 
This applies to both the training stage and the year 2014 (the 

forecast stage). In the training process the RBF ANN would 
generate discrepancies between the experimental results and 
the predicted ones, ranging from 0.00 to 71.43 %. The verifi-
cation of the model in 2014 was characterized by an error of 
nearly 35 %. The above facts (Fig. 1) are evidence of the worse 
fit between the failure frequency indicator experimentally 
determined for water mains and the one predicted by the RBF 
ANN despite the use of basic variables (e.g. the conduit length 
and the number of failures) as the training vector. As opposed 
to proven MLP ANNs [3, 4, 17, 23], one can expect that if more 
detailed information about the pipeline (e.g. the material, the 
diameter, the conduit age and pressure) was included in the 
training data, the discrepancies would increase since the RBF 
ANN (under all the constraints described above) would not be 
able to correctly identify the dependences between the input 
vector and the output vector. 

Also in the case of failure frequency indicator prediction for 
distribution pipes (Fig. 2) the multilayer perceptron performs 
better. The relative discrepancies between the experimental 
values and the predicted ones did not exceed 5.5 % while for 
optimal model verification they amounted to as little as 0.00 %. 
Whereas the RBF ANN was characterized by the largest error, 
amounting to almost 43 %. In the case of forecasting, the error 
exceeded 17 %. In the case of the RBF ANNs such factors as: 
the use of only the Gaussian function and the linear function 
to activate neurons, practically no influence on the size of the 
hidden vector and the different training algorithm, could have 
contributed to the relatively low quality of training and veri-
fication. In artificial neural networks with RBFs the latter are 
determined on the basis of the input vector and after totalling 
the weights the result is fed to the output. The basis function 
location and width and the weights connecting the basis func-
tions with output signals are important in RBF ANNs [20]. In 
the future it should be checked whether the above aspect, i.e. the 
fact that the function value usually depends on solely the dis-
tance from a given point, is significant and perhaps responsible 

Fig. 1 Experimental and predicted failure rates of water mains
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for the worse convergence than that of MLP ANNs in which 
the neuron activation and training mechanisms are based on 
different principles, consisting in single-stage (not two-stage as 
in the case of RBF ANNs) model construction.

The differences between the failure intensity indicator val-
ues for house connections (Fig. 3) obtained from the MLP and 
RBF ANNs are not so large as for the larger-diameter conduits, 
but also in this case the typical multilayer perceptron shows 
a better convergence. The maximum error (the year 2009) 
amounted to less than 3 % and more than 22 % for respectively 
the MLP ANN and the RBF ANN. When determining the suit-
ability of a given ANN model one should take into considera-
tion the consequences of an incorrect estimate of output data. 
If from the engineering point of view, the house connection 
failure frequency indicator prediction error (the RBF ANN) is 
acceptable, the same model generates distribution pipes fail-
ure rate indicator results showing much larger discrepancies 
from the experimental results. It is obvious that a failure of a 
distribution pipeline will have more serious consequences than 
a failure of a house connection. In further studies one should 
take into account also the type of failure, the place and time of 

its occurrence and the number of people affected by the fail-
ure. Since the aim is to select a single model predicting the 
failure frequency indicator for each of the three types of con-
duits (as opposed to the proposed modelling of indicator l for 
separately distribution pipes and house connections [4, 23]) the 
model should be characterized by good agreement between the 
experimental results and the predicted ones for pipelines whose 
failure frequency should be more precisely estimated consid-
ering the quality and reliability of water supply to the much 
greater number of water customers.

4 Conclusions
A comparative analysis of two artificial neural network 

structures: the multilayer perceptron and the RBF ANN, which 
were used to predict the failure intensity indicator for water 
conduits, was presented. The analysis of the modelling results 
can be summarized as follows:

- from a few tens of artificial neural network models two 
optimal models (MLP 7-14-3 and RBF 7-4-3), character-
ized by the best convergence with the experimental results 
and by the smallest mean-square error, were selected;

Fig. 2 Experimental and predicted failure rates of distribution pipes

Fig. 3 Experimental and predicted failure rates of house connections
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- RBF ANNs show a lower convergence between the pre-
dicted results and the experimental ones than MLP ANNs;

- the maximum relative error between the experimen-
tal results and the ones predicted by the MLP ANN 
amounted to 5.88 %, 5.41 % and 2.86 % for respectively 
water mains, distribution pipes and house connections, 
whereas in the case of the RBF ANN the respective 
errors amounted to 71.43 %, 42.86 % and 22.86 %; the 
results indicate that unlike RBF ANNs which are rather 
not recommended for predicting the failure rate indica-
tor, the multilayer perceptron can be used to model the 
failure frequency of water conduits;

- owing to the use of such basic parameters as the conduit 
length and the number of failures in the input vector the per-
formance of the RBF ANN was checked in a simple way;

- the inclusion of other water conduit variables in the 
training data probably would not result in any significant 
improvement in the agreement between the experimental 
results and the ones predicted by the RBF ANN since 
the limitations in the structure of this model (e.g. the 
imposed activation function type or number of hidden 
neurons) would still remain;

- nevertheless the author intends to check whether more 
accurate input data will have a beneficial effect on the gen-
eralization and prediction abilities of RBF ANNs when the 
latter are applied to another water distribution system.
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