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Abstract 
In this study reliability based limit analysis is used to determine 
the ultimate capacity of laterally loaded piles.  The aim of this 
study is to evaluate the lateral load capacity of free-head and 
fixed-head long pile when plastic limit analysis is considered. 
In addition to the plastic limit analysis to control the plastic 
behaviour of the structure, uncertain bound on the comple-
mentary strain energy of the residual forces is also applied. 
This bound has significant effect for the load parameter. The 
solution to reliability-based problems is based on a direct inte-
gration technique and the uncertainties are assumed to follow 
Gaussian distribution. The optimization procedure is governed 
by the reliability index calculation.

Keywords 
reliability, laterally loaded pile, residual strain energy, prob-
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1 Introduction 
In engineering practice the uncertainties play a very impor-

tant role [1-3] and need intensive calculations. There are sev-
eral engineering problem where the designer should face to 
the problem of limited load carrying capacity of the connected 
elements of the structures [4, 5]. Evaluate of the lateral load 
capacity is an important component in the analysis and design 
of pile foundations subjected to lateral loadings and soil move-
ments. Elastic–plastic solutions for free head and fixed head 
single laterally loaded piles were developed recently [6, 7]. 
They are subsequently extended to cater for response of pile 
groups by incorporating p-multipliers.

One of the most successful applications of the variational 
formulation in the incremental plasticity theory is the theory 
of limit analysis. The basic ideas of the principles of limit 
analysis were first recognized and applied to the steel beams 
by Kazinczy [8]. The fundamental problem of limit analysis is 
to determine the plastic limit load multiplier and the stresses, 
strain rates and velocities at the plastic limit state of the body. 
This can always be achieved by conducting an incremental 
analysis which is, however, usually very time-consuming. The 
main advantage of the extremum principles lies in the fact that, 
without study of the entire loading history, they directly pro-
vide the exact value of the upper and lower bounds of the plas-
tic limit load multiplier. This is achieved merely by considering 
the sets of statically or kinematically admissible stress or strain 
rate fields of the body, Kaliszky [9]. At the plastic limit state the 
stresses can maintain a static equilibrium with the plastic limit 
load and, at the same time, satisfy the yield condition at every 
point in the body. Briefly, the plastic limit load is the largest 
load which can be balanced by the stresses satisfying the yield 
conditions, and the smallest load which can convert the body 
into a yield mechanism.

At the application of the plastic analysis and design meth-
ods the control of the plastic behaviour of the structures is an 
important requirement. Since the limit analysis provides no 
information about the magnitude of the plastic deformations 
and residual displacements accumulated before the adapta-
tion of the structure, therefore for their determination several 
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bounding theorems and approximate methods have been pro-
posed. Among others Kaliszky and Lógó [10] suggested that 
the complementary strain energy of the residual forces could 
be considered an overall measure of the plastic performance of 
structures and the plastic deformations should be controlled by 
introducing a limit for magnitude of this energy. In engineer-
ing the problem parameters (geometrical, material, strength, 
manufacturing) are given or considered with uncertainties. The 
obtained analysis and/or design task is more complex and can 
lead to reliability analysis and design. Instead of variables influ-
encing performance of the structure (manufacturing, strength, 
geometrical) only one bound modelling resistance scatter can be 
applied. The bound on the complementary strain energy of the 
residual forces controlling the plastic behaviour of the structure 
can be utilized. This bound has significant effect for the limit 
load multipliers [5]. The aim of this study is to evaluate the lat-
eral load capacity of long pile with limited residual strain energy 
on the probabilistically given conditions. If the design uncertain-
ties (manufacturing, strength, geometrical) are expressed by the 
calculation of the complementary strain energy of the residual 
forces the reliability based plastic limit analysis problems can 
be formed. In this study numerical procedures elaborated with a 
direct integration technique and the uncertainties are assumed to 
follow Gaussian distribution. The formulations of the problems 
yield to nonlinear mathematical programming. The optimiza-
tion procedure is governed by the reliability index calculation. 
The parametric study is illustrated by the solution of examples.

2 Mechanical Modelling and the Analysis
Short and long piles fail under different mechanisms. A short 

rigid pile, unrestrained at the head, tends rotate or tilts as shown 
in (Fig. 1a) and passive resistance develops above and below 
the point of rotation on opposite sides of the pile. For long pile, 
the passive resistance is very large and pile cannot rotate or tilt. 
The lower portion remains almost vertical due to fixity while 
the upper part deflects in flexure. The pile fails when a plas-
tic hinge is formed at the point of maximum bending moment, 
(Fig. 1b).Long pile fails when the moment capacity is exceeded 
(structural failure).

Fig. 1 Failure mechanisms of pile under horizontal load: 
(a) short rigid pile, (b) long pile

Broms and Silberman [11] assumed simplified distribution 
of soil resistance for cohesionless soils and determined the load 
capacity of long piles in terms of the flexural rigidity of the 
pile. The design chart prepared by Broms is given (Fig. 2).

Assuming a uniform pile cross section, a plastic hinge with a 
moment of Mp will develop at the point of maximum bending 
moment that has no shear force, i.e. at point of failure in (Fig. 
3). Pile under the lateral loading has a virtual lateral velocity 
V, V0 at the pile head. The lateral velocity at any depth along 
the pile is assumed decreasing linearly from V0to 0 at point of 
failure and can be expressed as:

where z is the depth measured from pile head, l is the depth 
where plastic hinge forms. This mechanism was originally pro-
posed by Murff and Hamilton [12].

It is assumed that the lateral soil resistance is fully developed 
at the ultimate state. The ultimate soilresistance is described by 
the generic limiting force profile (LFP) proposed by Guo [13]

where Pu = ultimate soil resistance or limiting force per 
unitlength; Ar = suNgd1−n (cohesive soil) and 2 n

s g
' N d −γ (cohe-

sionless soil), gradient of the limiting force profile; d = the 
outer diameter of the pile; α0 = an equivalent depth to consider 
the resistance at the ground surface, and  n (< 3) = the power 
governing the shape of the limiting force profile, the values of 
n = 0.7 and 1.7 are generally sufficient accurate for piles in clay 
and sand; z = depth below the ground level;

Fig. 2 Design chart for long piles in cohesionless soil 
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Fig. 3 Failure mechanism (a) free-head pile (b) fixed-head pile

Su average undrained shear strength of cohesive soil; '
sγ effec-

tive unit weight of overburden soil (i.e. dry weight above water 
table and buoyant weight below); Ng gradient to correlate clay 
strength or sand weight with the ultimate resistancePu . The mag-
nitude of the three input parameters α0 , Ng and n are independ-
ent of load levels over the entire loading regime. Guidelines for 
determining the values of the parameters are discussed by Guo 
[13-15]. The generic limiting force profile (LFP) becomes that 
suggested for sand by Broms [16], and that for clay by Matlock 
[17] and Reese et al. [18], by choosing an appropriate set of. α0, 
Ng and n. For example, selecting Ng = 3Kp , α0 = 0 and n = 1 , 
Kp = the coefficient of passive earth pressure, the limiting force 
profile becomes the Broms’ [16] LFP for sand, while giving 
α0 = 2d / Ng , 

,
g s uN d / s 0.5= γ + , and n = 1, it reduces to Mat-

lock’s [17] LFP for soft clay. Here the virtual velocity v0 will 
be cancelled. The best solution, i.e. the largest load, is found by 
maximizing the load Hu with respect to the optimization param-
eter l. The details of calculations are explained by Guo [13]. The 
solution for free head long piles are presented below:

Thelateral load capacity can be calculated by:

The influence of the loading eccentricity may be considered 
by replacing the plastic moment Mp with M0 , where M0 = Hue ,  
e is the eccentricity. Consequently:

For the case of a fixed-head pile,the energy dissipation due to 
the plastic moment Mp at thefailure pointsis calculated. Following 
the same derivations as for the free-head piles, the ultimate lateral 
capacity for fixed-head piles can be easily determined. 

3 Loadings
The structure is subjected to a dead load Pd and two inde-

pendent, static working loads P1 and P2 with multipliers m1 ≥ 0, 
m2 ≥0 (Fig. 4). In the analysis five loading cases (h = 1,2, ..., 5)  
shown in (Table 1) are taken into consideration. For each load-
ing case a plastic load multiplier mph can be calculated. Making 
use of these multipliers a limit curve can be constructed in the 
plane m1, m2 (Fig. 5). Structure does not shake down, under the 
action of the loads m1P1, m2P2, if the points corresponding to 
the multipliers m1, m2 lies inside or on the limit curve.

Fig. 4 Example of free head pile

At the application of the plastic analysis and design meth-
ods the control of the plastic behaviour of the structures is an 
important requirement. Following the suggestions of Kaliszky 
and Lógó [10] the complementary strain energy of the residual 
forces could be considered as an overall.

Table 1 Load combinations

h Multipliers Loads Load multipliers

1 m2 = 0 Q1 = P1 ms1

2 m1 = 0 Q2 = P2 ms2

3 m1 = 0.5m2 Q3 = [0.5P1, (0.5P1 + P2). P2] ms3

4 m1 = m2 Q4 = [P1, (P1 + P2). P2] ms4

5 m1 = 2m2 Q5 = [2.0P1, (2.0P1 + P2). P2] ms5

Fig. 5 Limit curve and safe domain
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4 Reliability-Based Control of the Plastic 
Deformations

The measure of the plastic performance of structures and 
the plastic deformations should be controlled by introducing a 
bound for the magnitude of this energy:

Here Wp0 is an assumed bound for the complementary strain 
energy of the residual forces and Qr residual internal forces. 
This constraint can be expressed in terms of the residual 
moments ,

r
i aM  and r

i,bM  acting at the ends (a and b) of the finite 
elements as:

By the use of (7) a limit state function can be constructed:

The plastic deformations are controlled while the bound 
for the magnitude of the complementary strain energy of the 
residual forces exceeds the calculated value of the complemen-
tary strain energy of the residual forces. Introducing the basic 
concepts of the reliability analysis and using the force method 
the failure of the structure can be defined as:

where XR indicates either the bound for the statically admissi-
ble forces XS or a bound  for the derived quantities from XS. The 
probability of failure is given by

and can be calculated as 

 Let assumed that due to the uncertainties the bound 
for the magnitude of the complementary strain energy of the 
residual forces is given randomly and for sake of simplicity it 
follows the Gaussian distribution with given mean value p0W  
and standard deviation όw .Due to the number of the probabil-
istic variables (here only single) the probability of the failure 
event can be expressed in a closed integral form:

By the use of the strict reliability index a reliability condi-
tion can be formed: 

where targetâ  and calcâ  are calculated as:

here Φ−1: inverse cumulative distribution function (so called 
probit function) of the Gaussian distribution. (Due to the 
simplicity of the present case the integral formulation is not 
needed, since the probability of failure can be described easily 
with the distribution function of the normal distribution of the 
stochastic bound Wp0).

5 Plastic Limit Analysis
5.1 Basic design formulations

Determine the maximum load multiplier mph and cross-sec-
tional dimensions under the conditions that (i) the structure with 
given layout is strong enough to carry the loads (Pd + mph Qh), (ii) 
satisfies the constraints on the limited beam-to-column strength 
capacity, (iii) satisfies the constraints on plastic deformations 
and residual displacements, (iv) safe enough and the required 
amount of material does not exceed a given limit. The design 
solution method based on the static theorem of limit analysis 
[19] is formulated as below:

Maximize 
mph

Subject to:
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Pd is a vector of dead load. e e
h d,M M  are vectors of fictitious 

elastic moments calculated from the live and dead loads assum-
ing that the structure is purely elastic. 

Mr is vector of residual internal moment and p p
d h,M M  are 

vectors of plastic moments. 
p

M is a vector of limit moment.
σy: yield stress, S0: statical moment of cross section. F, K, G, 
G*: flexibility, stiffness, geometrical and equilibrium matrices, 
respectively; V0 represents the total limit volume of the struc-
ture; Qh is a vector of load combinations, (h = 1,2, ..., n). Here 
(11.b) and (11.c) are equilibrium equations for the dead loads 
and for the live (pay) loads, respectively. Equations (11.d) and 
(11.e) express the calculations of the elastic fictitious inter-
nal forces (moments) from the dead loads and from the live 
(pay) loads, respectively. Equation (11.f) is the yield condition. 
Equation (11.g) is used as yield condition for lateral capacity 
of piles in term of plastic moment. Equations (11.h) is used to 
calculate the residual forces while (11.i) is the reliability condi-
tion which controls the plastic behaviour of the structure by use 
of the residual strain energy. Due to the mathematical nature of 
problem (11.a-j) an iterative procedure was elaborated which is 
governed by solving the equation (11.i). By selecting the diam-
eter of long pile for each load combination Qh a plastic limit 
load multiplier mph can be determined and then the limit curve 
of the plastic limit state can be constructed. Due to the math-
ematical nature of problem (11.a)-(11.i) an iterative procedure 
was elaborated which is governed by solving (11.i).This is a 
nonlinear mathematical programming problem which can be 
solved by any appropriate solution method (e.g. NLP). Select-
ing one of the load combinations Qh  a plastic limit load multi-
plier mph can be determined.

5.2 Alternative design formulation
Interchanging the objective function -Eq. (11.a)- and the last 

constraint -Eq. (11.j)- an alternative design formulation can be 
formulated:

Minimize 

Subject to:

This is nonlinear mathematical programming problem (12) 
leads to same optimal solution as problem (11) which can be 
proved by the use of the optimality conditions.

6 Numerical Examples
To demonstrate the theories and solution strategy introduced 

above, a nonlinear mathematical programming procedure is 
elaborated where one has to determine the safe loading domain 
of a laterally loaded long pile with deterministic loading data 
and with probabilistic bound for the magnitude of the comple-
mentary strain energy of the residual forces.

The application of the method is illustrated by two exam-
ples. The first example shows a free-head steel pile subjected 
to a lateral load and bending moment at its top with diameter 
of D in cohesionless soil (Fig. 6).The working loads are P1 = 
H = 10kN, P2 = M = 20kN and Pd = 0 . The yield stress and the 
Young’s modulus are σy = 21kN / cm2 and E = 2.06∙104 kN / cm2. 

Fig. 6 Loads on the free-head pile

The results of the solution technique are presented in (Figs. 
7 and 8) where deterministic loading is considered. The results 
are in very good agreement with theexpectations. In (Fig. 7) 
one can see the safe loading domains in function of different 
expected probability. In (Fig. 8) the safe limit load domain is 
presented in case of different mean values of the complemen-
tary strain energy of the residual forces  p0(W 30;  35; 40; 45)=  
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with standard deviation σw = 3.5 and target reliability index
3.2targetâ = . One can see that increasing the mean values results 

bigger safe loading domain.

Fig. 7 Safe loading domain for plastic limit design

Fig. 8 Safe loading domain for plastic limit design

The second example shows a fixed-head steel pile subjected 
to a lateral load and bending moment at its top with diameter 
of D in cohesionless soil (Fig. 9). The working loads are P1 = 
H = 10kN, P2 = M = 40kN and Pd = 0 . The yield stress and the 
Young’s modulus are σy = 21kN / cm2 and E = 2.06∙104 kN / cm2 .

Fig. 9 Loads on the fixed-head pile

The results of the solution technique are presented in (Fig. 
10) where deterministic loading is considered. In the figure 
one can see the safe loading domains in function of different 
expected probability.

Fig. 10 Safe loading domain for plastic limit design

7 Conclusions
In this paper reliability based limit analysis is used to deter-

mine the ultimate capacity of laterally loaded long piles. To 
control the plastic behavior of the structure probabilistically 
given bound on the complementary strain energy of the resid-
ual forces is applied. Limit curves are presented for the plas-
tic limit load multipliers. The numerical analysis shows that 
the given mean values and different expected probability on 
the bound of the complementary strain energy of the residual 
forces can influence significantly the magnitude of the plastic 
limit load. The presented investigation drowns the attention to 
the importance of the problem but further investigations are 
necessary to make more general statements.
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