
Ŕ Periodica Polytechnica
Civil Engineering

60(4), pp. 647–660, 2016

DOI: 10.3311/PPci.8759

Creative Commons Attribution

RESEARCH ARTICLE

Behaviour of FRP Confined Concrete

Cylinders: Experimental Investigation

and Strength Model

Mahfoud Touhari, Ratiba Mitiche-Kettab

Received 04-11-2015, revised 14-02-2016, accepted 17-02-2016

Abstract

The present paper is devoted to investigate the behaviour of

FRP confined concrete cylinders subjected under axial compres-

sive loading. A total of 54 FRP confined concrete cylinders

with 2 types of FRP composite wrap, Carbone fiber reinforced

polymer (CFRP) and glass fiber reinforced polymer (GFRP),

were tested under monotonic axial compression. The effects of

several parameters such as unconfined concrete strength, type

of FRP composite and number of FRP layers are investigated.

Three different concrete mixes were examined, with a compres-

sive strengths average of 26, 40 and 60 MPa. The effective cir-

cumferential FRP failure strain and the effect of the effective

lateral confining pressure were investigated. Peak axial com-

pressive strength and corresponding strain of unconfined and

FRP confined concrete cylinders were compared. The obtained

results show that the CFRP reinforced cylinders provide a sig-

nificant increase in ultimate compression stress compared to the

GFRP reinforced ones. A new model is presented to predict

the compressive axial strength and corresponding strain of FRP

confined columns.
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1 Introduction

Fibre-reinforced polymer and Fibre-reinforced plastic (FRP)

are composites materials made of a polymer and plastic matrix,

respectively, reinforced with fibres. The fibres are usually glass,

carbon, or aramid, although other fibres such as paper or wood

or asbestos have been sometimes used. The polymer is usually

an epoxy or vinylester giving a flexible form whereas the plas-

tic is usually polyester thermosetting plastic giving a hard form.

Fiber Reinforced Polymer (FRP) and Fibre-reinforced plastics

materials have emerged to be one of the most promising con-

struction materials for reinforcement of concrete members in

the last four decades. High tensile strength, High strength-to-

weight ratio, linear elastic behaviour to failure, unaffected by

aggressive environmental conditions, good corrosion resistant

properties, minimal effect on shape and size of existing mem-

ber, non-magnetic and non-conductive and design flexibility are

some of the appealing characteristics of FRP materials. Sev-

eral experimental studies have been principally conducted for

estimating the axial strength and stress-strain behaviour of FRP

circular confined concrete columns [16, 37, 38]. These studies

have investigated most of the critical parameters as the type of

FRP material (carbon, aramid, glass, ect.) [32] and its thick-

ness [12], the influence of unconfined concrete strength[10] and

the shape of the specimens[17]. Bouchelaghem et all [2] devel-

oped a new axial compression technique, consisting in sequen-

tial loading of the same sample, with the first load step termi-

nated prior to failure of the column. Ozbakkaloglu [8] presented

results of the critical column parameters on the compressive be-

haviour of CFRP. Furthermore, several models have been devel-

oped to predict the strength and strain enhancement of FRP con-

fined concrete columns. Mender et al. [36] proposed a model for

concrete confined by transverse steel. Saadatmanesh et al. [30]

used the stress-strain model proposed by Mander et al. [27] to

analyse the behaviour of concrete columns externally wrapped

with FRP composite straps. The model is used to assess the

gain in strength and ductility of concrete columns confined by

FRP materials. Mirmiran et al. [21] indicated how FRP ma-

terials significantly enhance the strength, ductility and durabil-

ity of concrete columns, this new confinement model was pro-
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posed to quantify the gain in strength of FRP confined concrete

columns. Lam et Tang [6] studied on the compressive strength

of FRP confined concrete. They reviewed existing FRP confined

concrete strength models and proposed a new strength approach

for concrete confined by two different types of FRP materials.

Ozbakkaloglu and Jian [20] developed a new model based on as-

sessment of different critical column parameters for CFRP and

GFRP confined concrete cylinders. Mohammad et all [14] de-

veloped a theoretical stress–strain model for circular concrete

columns confined by GFRP spirals and hoops.

The majority of models devoted to predict the compressive

strength of FRP confined concrete columns are based on the

general equation proposed by Richart and al. [31] (equation 1)

which has been developed to estimate the confined concrete with

steel.

f ′cc = f ′co + k1 f
′

l (1)

Where f′cc and f′co are the compressive strength of confined

and unconfined concrete, respectively, f ′l is the effective lateral

confining stress, and k1 is the confinement effectiveness factor.

However, recent studies have revealed that the steel confined

concrete existing models give overestimation and can not be

used for the concrete confined with PRF materials [3, 7, 15].

Based on the Mohr-Coulomb failure criterion, the real mech-

anism of confinement with FRP materials and the experiment

results, a new model has been proposed in this study.

The present work reports the preliminary results of an exper-

imental study on the behaviour of standard concrete cylinders

externally confined with FRP sheets subjected to axial compres-

sive loading. The following objectives were set: (1) evaluation

the effectiveness of external FRP confined concrete cylinders;

(2) evaluation the effect of the unconfined concrete compressive

strength on the behaviour of FRP confined concrete cylinders;

(3) evaluation the effect of two different types of FRP materials,

Carbone fiber reinforced polymer (CFRP) and glass fiber rein-

forced polymer (GFRP), and strengthening ratio on the ultimate

strength and ductility of confined concrete cylinders; (4) inves-

tigation of The effective circumferential FRP failure strain and

the effect of the effective lateral confining pressure. Finally, bas-

ing on the experiment results, a new confinement model for FRP

confined concrete cylinders is proposed.

2 Experimental investigation

2.1 Material properties

2.1.1 Concrete

For the preparation of the specimens used in the present study,

three concrete mixtures were used, low-strength (LSC), normal-

strength (NSC) and high-strength concrete (HSC), with strength

of 25 MPa, 40 MPa, and 60 MPa, respectively. The concrete

cylinders were casted in the civil engineering department lab-

oratory of national polytechnic school of Algiers using a me-

chanical mixer. Ordinary Portland Cement was used with wa-

ter/cement ratios of 0.59, 0.46, and 0.34 for the LSC, NSC and

HSC, respectively. 0.6% and 1.4% of Superplasticiser were

added at different amounts of mix design NSC and HSC, re-

spectively.

2.1.2 FRP composites

The fibers used for the experimental work are:

• Wrap fabric of Carbone fibers, unidirectional;

• Wrap fabric of Glass fibers, unidirectional.

The band between the concrete and the FRP wrap is estab-

lished by using an adhesive, resin and hardener in which the

mixing ratio of the two components by weight was 2/1. The

properties of FRP materials and epoxy resin adhesive used for

the tests are stated in Table 1 (data are given by the manufac-

turer).

The mechanical properties, including the modulus, the tensile

strength and the elongation at failure were obtained through ten-

sile coupon tests (TCT) of FRP composites are also displayed in

Table 1.

2.2 Fabrication of the concrete specimens and testing pro-

cedur

2.2.1 Specimen fabrication

A total of 54 standard confined concrete cylinders of 160 mm

diameter and 320 mm height were tested under axial compres-

sion loading. Two types of FRP jacketing systems CFRP and

GFRP labelled with C and G, respectively, and three mixtures

of unconfined concrete cylinders LSC, NSC and HSC labelled

with L, N and H, respectively, were investigated in this study.

All specimens were reinforced with one, two or three layers of

FRP materials where the labels 1,2 and 3 identified the num-

ber of FRP layers used. For each group of testing parameters,

three identical specimens were examined and labelled with A,

B and C. For example, the specimen CN2-B is the second spec-

imen (B) of Normal concrete (N) confined with two layers (2)

of CFRP materials (C). The cylinders were cured in water for

28 days at a constant temperature of 25°C. Table 2 collects the

experimental parameters investigated in this study.

2.2.2 FRP wrapping and testing procedure

After 28 days of curing, the concrete cylinders were cleaned

and totally dried. For each layer of FRP wrap, two plies of

epoxy, one on the cylinder surface and the other on the sur-

face of the installed wrap, were applied using paintbrushes to

entirely saturate the layers with epoxy. Based on the assumption

of Shahawy et al [15] which showed that the last FRP layer was

wrapped around the cylinder with an overlap of 1/4 the perimeter

to prevent slipping or detachment fiber during testing and ensure

the development of the full composite strength, in this study the

last FRP layer was wound around the cylinder with an overlap

of 130 mm. Specimens were analysed under a monotonic axial
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Tab. 1. Mechanical properties of FRP materials

Material E f rp(GPa)
Tensile strength

(MPa)
t (mm) Viscosi-ty (mPaS)

Elongation at failure

(%)

CFRP/fiber Sika Wrap

230C
234 3650 0.13 - 1.8

GFRP/fiber Sika

Wrap 430G
76 2200 0.17 - 2.8

MEDAPOXY STR - 25 - 11000 -

CFRP

composite(TCT)
34 403 1 - 1.4

GFRP

composite(TCT)
26 325 1 - 1.9

compression load up to failure. Axial and lateral strains were

measured using an appreciable extensometer.

The instrumentation incorporated one Extensometer with

three radial linear variable differential transducers (LVDTs) po-

sitioned in the form of a hoop at the mid-height of the speci-

mens. Moreover, specimens were fitted with an embedded strain

gage on mid-height of concrete to measure axial strains in con-

crete. During testing, an automatic data acquisition system was

using for registering the axial loads and corresponding strains.

Fig. 1 shows the test setup and the data acquisition system.

2.3 Results and discussion

2.3.1 Overall Behaviour and observed failure modes

The results of the experimental study are summarized in 0.

The results show that Carbone and glass fiber composite con-

finement can significantly enhance the ultimate strength and

strain of concrete cylinders. For CFRP confined concrete, the

specimens exhibited an average gain of 93% and 523% in terms

of load carrying capacity and ductility, respectively. For spec-

imens of GFRP confined concrete, the average gain was 56%

and 515% in terms of load carrying capacity and ductility, re-

spectively.

The ultimate strength and strain of FRP confined concrete

cylinders increase with the amount of composite wrapping. All

the FRP confined concrete specimens failed by the rupture of

FRP jacket as a result of hoop tension. During the loading state,

crack sounds in the FRP jacket started at approximately 50%

of the ultimate compressive stress. The failure was gradual, and

finished with a sudden and explosive noise. The failure mode for

all specimens of GFRP confined concrete cylinders was a con-

tinuous rupture of the FRP wrap from top to bottom. The rupture

of FRP wrap in the CFRP confined concrete cylinders can be di-

vided into two modes, ringed rupture and localised FRP rupture

at the lower, mid and top sections. Fig. 2 shows examples of

both of these failure modes.

2.3.2 Stress-strain response

Representative of stress-strain curves for each series of tested

FRP wrapped specimens are represented in Fig. 3. This figure

give the axial stress versus the axial and lateral strains for circu-

(a)

(b)

Fig. 1. (a) data acquisition system (b) test setup
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Tab. 2. Data and results of FRP confined concrete cylinder

specimen

Cod

f ′co

(Mpa)
t f

(mm)
E f rp

(GPa)

ε f rp,u

(‰)

εh,rep

(‰)
Ke

f ′
l,e f f

(Mpa))
f ′
l,e f

f / f′c
f ′cc

(Mpa)
f ′cc / f′c εco (‰) ε′cc(‰) ε′cc / ε′c

CL1- 24 34 14 12.7 0.91 5.41 0.22 47.0 1.96 2.71 16.9 6.25

CL1- 24 34 14 12.6 0. 5.35 0.22 45.3 1.89 2.71 15.6 5.78

CL1- 24 34 14 5.11 0.37 2.17 0.09 29.5 1.23 2.71 9.31 3.43

CL2- 24 34 14 11.9 0.86 10.1 0.42 55.8 2.32 2.71 24.1 8.91

CL2- 24 34 14 12.3 0.88 10.5 0.43 55.5 2.31 2.71 21.8 8.07

CL2- 24 34 14 12.5 0. 10.6 0.44 58.0 2.41 2.71 25.2 9.32

CL3- 24 34 14 11.4 0.82 14.5 0.60 77.3 3.22 2.71 32.0 11.830

CL3- 24 34 14 11.6 0.83 14.7 0.61 79.0 3.29 2.71 33.4 12.3

CL3- 24 34 14 10.8 0.77 13.8 0.57 72.9 3.03 2.71 29.1 10.7

CN1- 41.6 34 14 6.69 0.48 2.84 0.06 49.8 1.19 3.11 9.92 3.19

CN1- 41.6 34 14 11.6 0.83 4.94 0.11 61.3 1.47 3.11 12.5 4.03

CN1- 41.6 34 14 12.1 0.86 5.14 0.12 62.9 1.51 3.11 12.9 4.17

CN2- 41.6 34 14 10.0 0.72 8.54 0.20 73.2 1.76 3.11 15.7 5.07

CN2- 41.6 34 14 11.8 0.85 10.0 0.24 76.6 1.84 3.11 18.4 5.94

CN2- 41.6 34 14 11.9 0.85 10.1 0.24 77.0 1.85 3.11 19.9 6.40

CN3- 41.6 34 14 11.4 0.82 14.5 0.35 96.9 2.33 3.11 25.2 8.11

CN3- 41.6 34 14 11.1 0. 14.2 0.34 95.9 2.30 3.11 23.0 7.41

CN3- 41.6 34 14 10.8 0.78 13.8 0.33 92.7 2.23 3.11 22.4 7.21

CH1- 61.5 34 14 11.9 0.85 5.08 0.08 80.0 1.30 3.02 10.9 3.63

CH1- 61.5 34 14 10.6 0.76 4.54 0.07 78.9 1.28 3.02 9.78 3.23

CH1- 61.5 34 14 11.7 0.84 4.99 0.08 81.1 1.31 3.02 9.72 3.21

CH2- 61.5 34 14 10.8 0.78 9.25 0.15 96.0 1.56 3.02 11.6 3.86

CH2- 61.5 34 14 11.1 0. 9.46 0.15 99.4 1.61 3.02 13.7 4.56

CH2- 61.5 34 14 11.9 0.85 10.1 0.16 98.2 1.59 3.02 14.9 4.94

CH3- 61.5 34 14 9.26 0.66 11.8 0.19 104.99 1.70 3.02 15.6 5.18

CH3- 61.5 34 14 11.8 0.85 15.1 0.24 117.14 1.90 3.02 17.8 5.92

CH3- 61.5 34 14 10.1 0.72 12.9 0.21 105.44 1.71 3.02 15.9 5.29

GL1- 26.2 26 19 14.8 0.78 4.83 0.18 38.3 1.46 2.67 15.0 5.63

GL1- 26.2 26 19 14.5 0.76 4.71 0.18 34.6 1.32 2.67 12.6 4.73

GL1- 26.2 26 19 15.0 0.79 4.87 0.18 38 1.45 2.67 13.9 5.21

GL2- 26.2 26 19 2.87 0.15 1.86 0.07 30.2 1.15 2.67 6.81 2.55

GL2- 26.2 26 19 14.5 0.76 9.42 0.36 49.4 1.88 2.67 24.1 9.04

GL2- 26.2 26 19 15.0 0.79 9.75 0.37 52.5 2.00 2.67 25.5 9.56

GL3- 26.2 26 19 14.0 0.74 13.709 0.52 62.8 2.39 2.67 33.9 12.7

GL3-B 26.2 26 19 13.0 0.68 12.7 0.48 56.4 2.15 2.67 29.8 11.1

GL3- 26.2 26 19 12.9 0.68 12.6 0.48 54.7 2.09 2.67 28.9 10.8

GN1- 42.6 26 19 14.3 0.75 4.66 0.11 56.5 1.32 2.89 11.0 3.81

GN1- 42.6 26 19 14.0 0.73 4.55 0.10 55.5 1.30 2.89 10.4 3.61

GN1- 42.6 26 19 16.3 0.86 5.31 0.12 59.8 1.40 2.89 12.3 4.26

GN2- 42.6 26 19 14.6 0.77 9.52 0.22 68.5 1.60 2.89 16.5 5.74

GN2- 42.6 26 19 14.7 0.77 9.60 0.22 70.0 1.64 2.89 17.2 5.96

GN2- 42.6 26 19 15.0 0.79 9.77 0.22 71.7 1.68 2.89 18.1 6.28

GN3- 42.6 26 19 14.0 0.73 13.6 0.32 75.5 1.77 2.89 21.0 7.29

GN3- 42.6 26 19 15 0.78 14.6 0.34 78.8 1.85 2.89 24.9 8.62

GN3- 42.6 26 19 14.3 0.75 13.9 0.32 77.5 1.82 2.89 22.4 7.77

GH1- 61.7 26 19 12.9 0.68 4.20 0.06 69.4 1.12 3.11 8.85 2.84

GH1- 61.7 26 19 14.5 0.76 4.71 0.07 73.1 1.18 3.11 9.37 3.01

GH1- 61.7 26 19 16.0 0.84 5.20 0.08 77.5 1.25 3.11 11.1 3.58

GH2- 61.7 26 19 15.0 0.79 9.78 0.15 80.8 1.31 3.11 14.9 4.80

GH2- 61.7 26 19 14.2 0.74 9.23 0.15 76.7 1.24 3.11 13.5 4.37

GH2- 61.7 26 19 14.8 0.78 9.67 0.15 78.0 1.26 3.11 14.4 4.65

GH3- 61.7 26 19 13.5 0.71 13.1 0.21 90.1 1.46 3.11 17.1 5.51

GH3- 61.7 26 19 14.2 0.74 13.8 0.22 92.1 1.49 3.11 18.8 6.07

GH3- 61.7 26 19 15.0 0.79 14.6 0.23 94.4 1.53 3.11 19.5 6.28
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Typical failure of FRP wrapped specimens: (a) and (b) rupture of the

GFRP wraps from top to bottom, (c) ringed rupture of CFRP wraps, (d) localised

CFRP rupture at the lower section, (e) localised CFRP rupture at the top section,

(f) localised CFRP rupture at the mid section.

lar confined concrete cylinders with one, two and three layers of

CFRP and GFRP wrap. All FRP confined specimens showed a

typical bilinear trend. The stress-strain behaviour of FRP con-

fined concrete cylinders is largely dependent to the amount of

FRP confinement, where the observed stress-strain response of

FRP confined concrete can be divided into three distinct zones.

The first zone is approximately linear response governed by

the stiffness of the unconfined concrete, which indicates that no

confinement is activated in the FRP wraps. The FRP wraps is

activated after reaching the maximum strength of unconfined

concrete and applies a continuous increasing pressure on the

concrete core until the rupture of FRP confined concrete cylin-

ders. The second zone is nonlinear as a transition zone. In

second zone, lateral strain increases and the wrap is activated,

this zone occurs shortly after the peak strength of the uncon-

fined concrete has been reached, accompanied with the growth

of micro-cracks. Finally, in the third zone, the concrete is en-

tirely cracked and the FRP confinement is activated to provide

additional load-carrying capacity by keeping the concrete core

intact.

In this point, the stress-strain curve increases with a constant

slope up to failure meaning the elastic linearity of FRP wrap

stress-strain behaviour. It can be seen from the stress-strain

curves that the lateral stress-strain responses were found to be

less consistent between the identical specimens compared with

the axial stress-strain responses.

In Fig. 4, typical stress-strain responses of FRP confined con-

crete cylinders are shown, points A and C are the ultimate status

of unconfined concrete and FRP confined concrete cylinder, re-

spectively. Point B is located in the second part of the graphs

which is the transition point for the stress-strain response, but it

is difficult to locate it accurately.

2.3.3 FRP circumferential failure strain

The ultimate condition of FRP confined concrete cylinders

refers to its compressive strength and ultimate axial strain. Ac-

cording to the obtained test results, the circumferential failure

strains were always observed at strain lower than the ultimate

strain capacities ε f rp,u recorded from tensile strain coupon tests.

Indicated in 0, for example, the rupture of the CFRP low strength

confined concrete cylinder CL1-B was reached at a maximum

effective failure strain εh,rep of 12.61‰corresponds to 90% of

the ultimate composite strain ε f rp,u (14‰).

Several possible causes that may explain this strain reduction

of the FRP composite can be attributed as to reported in litera-

ture [7, 20]: (i) the quality of the workmanship; (ii) the curved

shape of the composite wrap or misalignment of fibers may de-

crease the FRP axial strength, (iii) Near failure the concrete is

internally cracked resulting in non homogenous deformations,

due to this non homogenous deformations and high loads ap-

plied on the cracked concrete, local stress concentration may

occur in the FRP reinforcement. So the circumferential failure

strain FRP is one of the important factors to be able to predict

the strength and strain gains in FRP confined concrete.
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Fig. 3. Experimental stressstrain curves of FRP confined concrete concrete

cylinders: (a) CL1, (b) CL2, (c) CL3, (d) CN1, (e) CN2, (f) CN3, (g) CH1, (h)

CH2, (i) CH3, (j) GL1, (k) GL2, (l) GL3, (m) GN1, (n) GN2, (o) GN3, (p) GH1,

(r) GH2, (s) GH3.
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Fig. 4. Typical stress-strain responses for FRP confined concrete

2.3.4 Effect of concrete strength type

From the results indicated in 0, it could be noted that, the

CFRP and GFRP confinement on LSC specimens produced

higher results in terms of strength and strain than that those

of NSC and HSC concrete similar cylinders. For example, the

CFRP low-strength confined concrete cylinders where the one

layer reinforcement specimen revealed an increase of 69% and

416% in terms of compressive strength and axial strain over the

reference specimen, respectively. The normal strength concrete

cylinders similarly confined, the specimen exhibited an increase

of 40% in compressive strength and 280% in axial strain. How-

ever, in high-concrete cylinders, the specimen exhibited an in-

crease of 31% in compressive strength and 237% in axial strain.

For one layer of GFRP, the gain in terms of strength capacity of

LSC, NSC and is HSC about 41%, 35% and 19%, respectively.

The gain in terms of ductility of LSC, NSC and HSC is about

519%, 390% and 315%, respectively. Fig. 5 and Fig. 6 show that

the gain in strengths and strains of high and normal strength FRP

confined concrete cylinders is much less than those observed in

the case of low strength ones, the increase of load capacity and

ductility is always higher for the case of lower unconfined con-

crete strength. g It can be seen that the axial strength and strain

enhancement ratios of FRP confined concrete cylinders decrease

as the strength of unconfined concrete increases. In other words,

higher concrete compressive strength reduces the effect of con-

finement for the same number of FRP layers. This might be be-

cause the more is the strength of concrete; the less is the water

cement ratio.

Fig. 5. Effect of concrete strength type on the strength enhancement ratio

Fig. 6. Effect of concrete strength type on the enhancement strain ratio

Consequently, concrete with higher compressive strength ex-

hibits lower lateral expansion under compression compared to

concrete with lower compressive strength. Since the confining

action of FRP sheets depends on the lateral expansion of con-

crete, higher concrete compressive strength reduces the effect

of confinement. As a result, the density of the cement matrix

increases which prevents the formation of vertical compression

cracks until significantly high load occurs [4].

2.3.5 Effect of the type of FRP material and strengthening

ratio

Fig. 10 and Fig. 11 show that the ultimate compressive

strengths ( f ′cc) and corresponding strains (εcc) are significantly

influenced by the type of FRP material. CFRP jacketing attains

higher strength and strain than that of GFRP confined speci-

mens, signficate the effect of the mechanical properties of FRP

materials on the the strength and strains enhancement ratios. It

can be seen that the higher the modulus of the FRP material,

the better the confinement of the concrete cylinders. Fig. 7 and

Fig. 8 show that the amount of FRP material significantly in-

fluences the strength and strain enhancement ratios. In addi-

tion, the difference in strength between CFRP confined cylin-

drical specimens and GFRP ones increases more and more with

the increase in the number of layers of FRP. As estimated, the

enhancement in strength and strain of FRP confined concrete

cylinders is not proportional to the number of FRP layers, espe-

cially when high strengthening ratio is used.

Fig. 7. Effect of strengthening ratio on the FRP confined concrete cylinders

strength enhancement

Behaviour of FRP Confined Concrete Cylinders: Experimental Investigation and Strength Model 6532016 60 4



Fig. 8. Effect of strengthening ratio on FRP confined concrete cylinders

strain enhancement

3 Analytical part

3.1 Peak axial strength

3.1.1 Existing model

Number of models have been suggested to investigate the FRP

confinement effect on the behaviour of concrete columns. Tang

et al. [24] classified them as design oriented models and anal-

ysis oriented models. The design oriented models are normally

in simple closed form (Lam and Tang [7] Nicola et all [11]) and

the analysis oriented models predict the stress-strain behaviour

using iterative process (Spoelstra and Monti [1], Jiang and Tang

[9]). The first well-known study on the stress-strain curve of

concrete with and without steel confinement was conducted by

Richart et al [31]. The following well known relation was based

on a linear relationship for expressing the enhancement of com-

pressive strength based on their test results (Equation (1)). Since

then, there have been numerous analytical models presented in

the literature that employ Eq. (1) which have been based ei-

ther on tests of plain concrete specimens or reinforced concrete

columns. Most of these models used a constant value for k1 and

it was limited to between 2 and 5 [6, 12, 18, 35] Moreover, other

researchers expressed k1 in a non-linear form [14, 26–28].

Fardis and Khalil [35] developed a linear relationship between

the ultimate strength and the effective lateral confining stress.

f ′cc = f ′co + 4.1 f
′

l (2)

Mander, Priestley and Park [36] also derived a non-linear re-

lationship between the ultimate strength and the effective lateral

confining pressure of confined concrete cylinders based on the

tri-axial test data. The MPP model is the most widely used.

f ′cc = f ′co

−1.254 + 2.254 ×

√
1 +

7.94 × f
′

l

f
′

co

− 2
f
′

l

f
′

co

 (3)

Li et al. [13] proposed a constitutive model for confined con-

crete columns reinforced with CFRP materials. They studied the

behaviour of cylinders with various strengths of concrete:

f ′cc = f
′

co + f
′

l tan2
(
450 + ∅/2

)
(4)

∅ = 36o + 1o

(
f
′

o

35

)
≤ 45o (5)

where ∅ is the angle of internal friction of concrete.

Ozbakkaloglu and Jian [20] developed a new model based

on over 500 experimental results for CFRP and GFRP confined

concrete cylinders:

For CFRP confined concrete cylinders:

f
′

cc

f
′

co

= 1 + 3.64
f
′

lu,a

f
′

co

(6)

For CFRP confined concrete cylinders:

f
′

cc

f
′

co

= 1 + 2.64
f
′

lu,a

f
′

co

(7)

Where f ′
lu,a is the effective lateral confining stress.

Pham and Hadi [33] proposed new confinement model

for FRP confined normal- and high-strength concrete circular

columns

f
′

cc = 0.7 f
′

co + 1.8 f
′

l + 5.7
t

D
+ 13 (8)

So, there are a few approaches to develop an equation for

strength enhancement of confined concrete. All of the above

models assumed that the compressive strength of confined con-

crete is a function of the unconfined concrete strength and the

effective lateral confining pressure.

3.2 Proposed strength mode

3.2.1 Mechanism of confinement

The lateral confinement pressure provided by a FRP jacket to

concrete is naturally passive. In FRP confined concrete cylin-

ders, the concrete core extends laterally and this expansion is

restrained by the FRP material when it is subjected to an axial

compression load. This pressure produces a circular tension re-

sultant in the envelope. The action of expansion and the reaction

of the confinement are represented by a uniform lateral pressure

fl in the interface and the response of FRP material (Fig. 9).

This expansion of the concrete core is confined by the FRP jack-

ets, and thus transforms the concrete core to a 3-D compressive

stress condition. The mechanism of confinement goes from uni-

axial loading to tri-axial loading.

The maximum confinement pressure is reached when the cir-

cumferential strain in the FRP reaches its ultimate strain ε f rp

corresponding to the failure of the cylinder. Based on static

analysis, equilibrium of forces, deformation compatibility, and

by considering one unit length section along the column span,

the forces acting on the section shown in Fig. 9 can be written

as:

D f
′

l = 2t f f f rp,u (9)
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The lateral confining pressure reaches its maximum value f ′
l

at the rupture of FRP, with:

f ′l =
2t f f f rp

D
=

2E f rpε f rp,ut
f

D
=
ρ f rp f f rp

2
(10)

Fig. 9. Mechanism of confinement

In these relations, f ′
l

presents the lateral confining pressure,

E f rp is the tensile modulus of FRP composite material, t f is

the thickness of the composite jacket, ε f rp,u is the ultimate cir-

cumferential strain in the composite jacket, D is the diameter

of the concrete core and ρ f rp is the FRP volumetric ratio which

is given by the following equation for entirely wrapped circular

cross section:

ρ f rp =
4t f

D
(11)

3.2.2 The Mohr-Coulomb failure criterion and Effective

FRP strain factor

The mechanisms of the tri-axial of the soil or rock and the

mechanism of the concrete confined with FRP wraps are very

similar. According to the Mohr-Coulomb failure criterion, the

strength of concrete under a tri-axial stress can be written [5] :

f ′cc = f ′co +
1 + sin ∅

1 − sin ∅
f ′l (12)

where ∅ is the angle of internal friction of concrete and f ′
l

is

the lateral confinement pressure.

Generally, it is very intricate to estimate the angle of internal

friction at the time of full expansion of lateral confining stress.

Bieniawski [25] has developed an empirical failure criterion:

f ′cc

f ′co

= 1 + N

 f
′

l

f
′

co

M

(13)

The constants N and M will be determined by fitting a curve

to the family of points:  f
′

l

f
′

co

f
′

cc

f
′

co

− 1


As mentioned earlier, the effective FRP failure strain when

confined concrete cylinders are reaching the ultimate state is

lower than the ultimate FRP tensile strain ε f rp,u. Therefore, the

proposed effective FRP strain factor, ke f , accounts the ratio of

in-situ wrap rupture strains observed in tests of FRP confined

concrete cylinders and those observed in tensile coupon test, that

is:

ke f =
εh,rep

ε f rp,u
(14)

Using Eq. (14), Eq. (10) can be rewritten as:

f ′l =
2t f f f rp

D
=

2E f rpεh,rept
f

D
×

1

ke f

=
f ′l,e f f

ke f

(15)

where f ′
l,e f f

is the effective lateral confining pressure corre-

sponding to a maximum effective failure strain εh,rep.

Substituting Eq. (15) into Eq. (13), this latter becomes:

f ′cc

f ′co

= 1 + NkM
e f

 f
′

l,e f f

f
′

co

M

(16)

ke f is referred to in this article, as the effective FRP strain

factor.

3.2.3 Proposed equation regression

The average hoop strain in FRP wraps at rupture in FRP con-

fined concrete cylinders can be much lower than that given by

tensile coupon tests, meaning the theoretical assumption that the

FRP confined concrete cylinder ruptures when the FRP material

tensile strength attained at its maximum is not suitable. Based

on this observation, the effective peak strength and correspond-

ing strain formula for concrete confined by FRP must be based

on the effective hoop rupture strain composite materials.

Based on the empirical failure criterion of Bieniawski [25]

and the experimental results reported in 0, a new model is pro-

posed to predict the peak axial strength of CFRP and GFRP con-

fined concrete cylinders. Fig. 10 shows the relation between the

effective confinement ratio f ′
l,e f f

/ f ′co and the strengthening ra-

tio f ′cc / f ′co for the cylinders of the test series. The trend lines of

these data shown that the effective pressure determining failure

of cylindrical concrete specimens can be closely approximated

using these following equations:

For CFRP confined concrete cylinders:

f ′cc

f ′co

= 1 + 3.58

 f
′

l,e f f

f
′

co

0.997

(17)

For GFRP confined concrete cylinders:

f ′cc

f ′co

= 1 + 2.5

 f
′

l,e f f

f
′

co

1.027

(18)

Using the empirical failure criterion of Bieniawski in the

CFRP and GFRP concrete confined concrete cylinders, the con-

stant M is equal to 1.

It can be seen that, when all specimens of the present study are

considered together, the mean effective FRP strain factor kme f

has a value closer to 0.79 and 0.74 for CFRP and GFRP confined

concrete cylinders, respectively. Using the mean effective FRP

strain factor kme f , with substitution of f ′
l,e f f

by f ′
l

into Eq. (17)
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Fig. 10. Strengthening ratio vs. Effective confinement ratio

and Eq. (18), the ultimate strengthening ratio of FRP confined

concrete cylinders takes the forms:

For CFRP confined concrete cylinders:

f ′cc

f ′co

= 1 + 2.8
f
′

l

f
′

co

(19)

For GFRP confined concrete cylinders:

f ′cc

f ′co

= 1 + 1.85
f
′

l

f
′

co

(20)

3.3 Ultimate axial strain of FRP confined cylinder

3.3.1 Existing model

For FRP confined concrete cylinders, numerous studies sug-

gested that the ultimate axial strain can be correlated to the lat-

eral confining pressure [4, 7, 12]. Existing models can be clas-

sified into two categories, empirical or analytical models and

numerical models or plasticity analysis. Richart et al. [31] pro-

posed that the effectiveness in the enhancement of axial strain

in the FRP confined concrete cylinders is around 5 times that in

the enhancement of axial stress:

ε′cc

ε′co

= 1 + k2

f
′

l

f
′

co

(21)

where k2 = 5k1

From Shehata et al. [23], the strain enhancement ratio FRP

confined concrete can be written:

ε′cc

ε′co

= 1 + 6.32

 f
′

l

f
′

co

×
f
′

cc

f
′

co

 (22)

where εco is the strain of unconfined concrete and εcc is the

ultimate strain of FRP confined concrete.

From Lam et Tang [7], the strain enhancement ratio FRP con-

fined concrete can be written:

ε′cc

ε′co

= 1.75 + 5.53

 f
′

l

f
′

co

 (ε f rp

εco

)0.45

(23)

where ε f rp is the ultimate tensile strain of FRP material.

From Ozbakkaloglu and Jian [20], the strain enhancement ra-

tio FRP confined concrete can be written:

For CFRP:

ε
′

cc

ε
′

co

= 2 + 17.41
f
′

lu,a

f
′

co

(24)

For GFRP:

ε
′

cc

ε
′

co

= 2 + 24.47
f
′

lu,a

f
′

co

(25)

Kwan and Dong [33] proposed a new Axial strength model

for FRP confined concrete:

ε
′

cc

ε
′

co

= 1 + 17.4

(
σr

f
′

c

)1.06

(26)

where σr is the confining stress

3.3.2 Proposed equation

Fig. 11 illustrates the variation of the strain enhancement ratio

for the effective confinement ratio of the present test data. Based

on the test data shown in Fig. 11 the following equations are

proposed for the axial strain at peak axial stress:

For CFRP confined concrete cylinders:

ε′cc

ε′co

= 2.11 + 15.8
f
′

l,e f f

f
′

co

(27)

For GFRP confined concrete cylinders:

ε′cc

ε′co

= 1.45 + 20.5
f
′

l,e f f

f
′

co

(28)

Fig. 11. Strain enhancement ratio vs. Effective confinement ratio

Replacing f ′
l,e f f

by f ′
l

in equations (27) and (28), using the

mean effective FRP strain factor kae f , the ultimate axial strain of

FRP confined concrete takes the forms:

For CFRP confined concrete cylinders:

ε′cc

ε′co

= 2.11 + 12.5
f
′

l,e f f

f
′

co

(29)
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Tab. 3. Comparison of experimental and predicted results of CFRP confined concrete cylinders

Source
Experimental results Theoretical results

D

(mm)

f ′co

(MPa)

εco

(‰)

E

(GPa)

ε f rpu

(‰)

t f

(mm)

f ′cc

(MPa)

εcu

(‰)

f ′
l,theo

(MPa)

f ′cc

(MPa)

ε′cc,the

(‰)

f ′
cctheo

/

f ′ccexp

ε′cctheo/

ε′ccexp

15 35.9 0.20 23 15 0.16 50.4 1.27 7.49 56.872 0.95 1.12 0.75

15 35.9 0.20 23 15 0.65 47.2 1.10 7.49 56.872 0.95 1.20 0.86

15 35.9 0.20 23 15 0.16 53.2 1.29 7.49 56.872 0.95 1.06 0.74

Lam 15 35.9 0.20 23 15 0.33 68.7 1.68 14.9 77.845 1.48 1.13 0.88

and 15 35.9 0.20 23 15 0.33 69.9 1.96 14.9 77.845 1.48 1.11 0.75

Tang 15 35.9 0.20 23 15 0.33 71.6 1.85 14.9 77.845 1.48 1.08 0.80

[3] 15 34.3 0.18 23 15 0.49 82.6 2.06 22.4 97.217 1.93 1.17 0.93

15 34.3 0.18 23 15 0.49 90.4 2.41 22.4 97.217 1.93 1.07 0.80

15 34.3 0.18 23 15 0.49 97.3 2.51 22.4 97.217 1.93 0.99 0.76

15 34.3 0.18 23 15 0.16 50.3 1.02 7.49 55.272 0.90 1.09 0.88

15 34.3 0.18 23 15 0.16 50 1.08 7.49 55.272 0.90 1.10 0.83

15 34.3 0.18 23 15 0.16 56.7 1.16 7.49 55.272 0.90 0.97 0.77

15 40 0.17 23 10 0.17 66 0.63 5.30 54.851 0.63 0.83 1.01

15 40 0.17 23 10 0.34 87.2 1.07 10.608 69.702 0.92 0.79 0.86

Valdmanis 15 40 0.17 23 10 0.51 96 1.36 15.9 84.554 1.20 0.88 0.88

et all 15 44.3 0.17 23 10 0.17 73.3 0.58 5.30 59.151 0.61 0.80 1.05

[18] 15 44.3 0.17 23 10 0.34 82.6 0.54 10.6 74.002 0.86 0.89 1.60

15 44.3 0.17 23 10 0.51 115. 0.94 15.9 88.854 1.12 0.77 1.19

15 35.5 0. 24 16 0.11 44 0.77 5.91 52.052 0.83 1.18 1.08

15 35.5 0. 24 16 0.11 43.9 0.82 5.91 52.052 0.83 1.18 1.02

15 35.5 0. 24 16 0.11 43.1 0.82 5.91 52.052 0.83 1.20 1.02

15 38 0.21 24 16 0.23 63.5 1.51 11.8 71.105 1.25 1.12 0.83

15 38 0.21 24 16 0.23 66.1 1.65 11.8 71.105 1.25 1.07 0.76

Vincent 15 36.1 0. 24 16 0.23 58.6 1.27 11.8 69.205 1.23 1.18 0.97

and 15 64.5 0.27 24 16 0.11 65.6 0.59 5.91 81.052 0.87 1.23 1.48

Ozbakkaloglu 15 64.5 0.27 24 16 0.11 68.7 0.57 5.91 81.052 0.87 1.18 1.53

[19] 15 62.9 0.27 24 16 0.11 66.3 0.65 5.91 79.452 0.88 1.19 1.36

15 64.5 0.27 24 16 0.23 72.3 0.93 11.8 97.605 1.18 1.35 1.27

15 62.4 0.27 24 16 0.23 68.4 0.71 11.8 95.505 1.20 1.39 1.69

15 64.2 0.27 24 16 0.23 68.2 0.82 11.8 97.305 1.18 1.42 1.44

15 64.5 0.27 24 16 0.35 85.9 1.19 17.7 114.16 1.49 1.32 1.25

15 64.5 0.27 24 16 0.35 80.3 17.7 114.16 1.49 1.42 1.49

15 64.5 0.27 24 16 0.46 99.4 1.38 23.6 130.71 1.80 1.31 1.30

15 62.4 0.27 24 16 0.46 101. 1.41 23.646 128.61 1.84 1.27 1.30

15 65.8 0.27 24 16 0.46 104. 1.36 23.646 132.01 1.78 1.26 1.30

Moye 1.12 1.07

Standard Deviation 0.17 0.28

Coefficient of variation (%) 15.2 26.7
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Tab. 4. Comparison of experimental and predicted results of GFRP confined concrete cylinders

Source
Experimental results Theoretical results

D

(mm)

f ′co

(Mpa)
εco (‰) E (GPa

ε f u

(‰)
t f (mm

f ′cc

(MPa)
εcu (‰) f ′

;theo
(MPa

f ′cc

(MPa)

εcc,theor

(‰)

f ′
cctheo

/

f ′ccexp

εcctheor/

εcctexp

15 47.8 0.22 22 23 1.25 59.1 1.35 8.32 63.196 4.23 1.06 0.69

Cui 15 47.8 0.22 22 23 1.25 59.8 1.15 8.32 63.196 4.23 1.05 0.81

and 15 47.8 0.22 22 23 2. 88.9 2.21 16.645 78.593 7.02 0.88 0.70

Sheikh 15 47.8 0.22 22 23 2. 88 2.21 16.645 78.593 7.02 0.89 0.70

[22] 15 47.8 0.22 22 23 3.75 113. 2.85 24.967 93.989 9.80 0.83 0.76

15 47.8 0.22 22 23 3.75 112. 2. 24.967 93.989 9.80 0.83 0.77

15 33.1 0.30 80.1 23 0.17 42.4 1. 4.12 40.724 3.44 0.96 0.81

15 33.1 0.30 80.1 23 0.17 41.6 1.29 4.12 40.724 3.44 0.97 0.82

Jiang 15 45.9 0.24 80.1 23 0.17 40.5 0.81 4.12 53.524 2.88 1.32 0.86

and 15 45.9 0.24 80.1 23 0.17 40.5 1.06 4.12 53.524 2.88 1.32 0.66

Teng 15 45.9 0.24 80.1 23 0.34 52.8 1. 8.24 61.147 4.32 1.15 0.87

[9] 15 45.9 0.24 80.1 23 0.34 55.2 1.25 8.24 61.147 4.32 1.10 0.83

15 45.9 0.24 80.1 23 0.51 64.6 1.55 12.363 68.771 5.75 1.06 0.90

15 45.9 0.24 80.1 23 0.51 55.9 1. 12.363 68.771 5.75 1.23 0.73

152. 39.6 0.26 80.1 23 0.17 37.2 0.94 4.10 47.199 3.11 1.26 0.86

Teng 152. 39.6 0.26 80.1 23 0.17 38.8 0.83 4.10 47.199 3.11 1.21 0.99

et all 152. 39.6 0.26 80.1 23 0.34 54.6 2.13 8.21 54.797 4.76 1.00 0.58

[29] 152. 39.6 0.26 80.1 23 0.34 56.3 1.83 8.21 54.797 4.76 0.97 0.68

152. 39.6 0.26 80.1 23 0.51 65.7 2.56 12.322 62.396 6.42 0.95 0.66

152. 39.6 0.26 80.1 23 0.51 60.9 1.79 12.322 62.396 6.42 1.02 0.94

Mean 1.05 0.78

Standard Deviation 0.15 0.10

Coefficient of variation (%) 14.5 13.3

For GFRP confined concrete cylinders:

ε′cc

ε′co

= 1.45 + 15
f
′

l,e f f

f
′

co

(30)

3.4 Validation of the proposed model

The strength and strain enhancement proposed model of FRP

confined concrete cylinders is compared to the test data obtained

by [3, 18, 19], and [9, 22, 29], as shown in Table 3 and Table 4,

on CFRP and GFRP confined concrete cylinders, respectively.

These comparisons indicate that the prediction model is in

agreement with the test results, which are countrified during the

use of statistical indicators: mean (M) to establish average over-

estimation or underestimation of the model; standard deviation

(SD) to establish the magnitude of the associated scatter; and

coefficient of variation (CV) a measure of dispersion. These

parameters prove, for confined concrete cylinders, a good corre-

lation between the analytical predictions of the proposed model

with the experimental results of an independent test series.

4 Conclusions

A total of 54 FRP wrapped concrete cylinders were subjected

to monotonic axial compression. Three concrete batches (low,

normal and high strength), three different numbers of wraps and

two types of FRP (CFRP and GFRP wraps) were investigated.

The enhancement of strength and ductility of FRP confined con-

crete cylinders is significant. The improvement in stress and

strain is dependent on the type of FRP composite wraps, uncon-

fined concrete strength and the number of reinforcement layers.

The following conclusions may be drawn from this study are:

1 The strength and strain capacities of the specimens wrapped

with FRP materials are greatly improved compared to the un-

confined concrete cylinders;

2 Failure of all confined concrete cylinders is marked by the

rupture of FRP materials, it occurs prematurely. The ultimate

strain of the wraps is much lower than the rupture strain ob-

tained from tensile coupon test;

3 The observed stress-strain response of FRP confined con-

crete cylinders can be divided in three different zones. The

first zone is approximately linear corresponding to the pas-

sive form of FRP material and the second zone is nonlinear as

a transition zone. In the third zone, the FRP confinement is

activated to provide additional load-carrying capacity;

4 The test results indicate that the Carbone FRP confined con-

crete specimens has significantly better results compared to

the glass FRP case;

5 The confinement effectiveness decreases with the increase of

unconfined concrete strength, the same FRP amount led to

an increase of compressive strength by about 69%, 40% and

31%, respectively for low, normal and high of unconfined

concrete strength;
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Tab. 5.

Nomenclature

f ′co

ultimate strength of unconfined

concrete
E f rp tensile modulus of FRP

f′cc

ultimate strength of FRP confined

concrete
ρ f rp FRP volumetric ratio

f ′
l

effective lateral confining stress ke f effective FRP strain factor

εco

ultimate strain of unconfined

concrete
kme f mean effective FRP strain factor

ε′c
ultimate strain of FRP confined

concrete
Ø angle of internal friction of concrete

ε f rp,u
ultimate circumferential strain in

the composite jacket
t f Thickness of FRP composite

εh,rep

effective failure strain of FRP

confined concrete
D diameter of the concrete core

6 The ultimate strengths and strains increase significantly with

the enhancement of the number of composite layers, but the

effect is not directly proportional to the number of layers;

7 The confinement with FRP materials produced a tri-axial

stress field in concrete, which results in the improvement

of the compressive strength, maximum stress and strain.

Based on the observed experimental results a new compres-

sive strength model is proposed. This model prove that the ul-

timate capacity of the FRP confined concrete cylinders, given

in terms of ultimate strength and axial strain, depends on the

effective confinement pressure at failure and on the uncon-

fined concrete core strength. A good agreement was obtained

between experimental and proposed model results.
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