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Abstract

In this paper a new rheological-dynamical continuum dam-

age model for concrete under compression is used to research

the behaviour of reinforced concrete beams subjected to bend-

ing. Within the framework of this approach the stress-strain

curve of a concrete under compression in the pre-peak regime

can be computed if the compressive strength, elastic modulus,

concrete density and Poisson’s ratio are experimentally evalu-

ated. The ultimate strain is determined in the post-peak regime

only, using the secant stress-strain relation from damage me-

chanics. Experimental stress-strain data in the pre-peak regime

for five concrete compositions were obtained during the exam-

ination presented herein. The numerical predictions regarding

moment-curvature and ductility of a reinforced concrete beam

are presented for five concrete compositions, demonstrating ca-

pabilities of a new analytical model.
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1 Introduction

Reinforced concrete materials have been studied and em-

ployed in diverse fields of science and engineering disciplines

due to their wide application in infrastructure in many coun-

tries. From a practical standpoint, the ultimate strength design

of reinforced concrete elements brought the stress-strain curve

into focus. The stress-strain curve of concrete under compres-

sion, and in particular the compressive strength, ultimate strain

and post-peak branch, have an important role in the design of

concrete and concrete-based structures.

In the last three decades, there has been a keen interest

in compressive failure. In the early 1990’s, an extensive

Round/Robin test on compressive softening was carried out by

the RILEM Technical Committee 148-SSC [1]. Compression

failure can have a great variety of forms both from theoretical

and experimental viewpoints, while the mode of failure is com-

plex. The principal difference from tensile fracture is that there

is a residual stress in the specimens. The correct evaluation of

the constitutive parameters is also complicated by many other

testing aspects. To interpret the test results, it is important to

know the influence of the boundary conditions on the slope of

the load-displacement curve and on the value of the crushing

energy [2]. An in-depth review of this matter as well evidence

that slenderness of the specimen has influence on the collapse

mechanism is given in [3]. Considering the size-scale and slen-

derness effects in uniaxial compression tests, Carpinteri et al.

[4] proposed an analytical model based on the concept of strain

localization.

Ductile and durable concrete structures are the goal of all de-

signers. In order to achieve such goals it is necessary to know

the laws that govern the behavior of materials and structures

for both nonlinearities: the geometrically nonlinear effects [5]

and nonlinear behaviour of the material caused by an inelas-

tic deformation. Analytical models of time-dependent stress-

strain response of concrete under compression are required. For

global failure analysis, the failure mechanism must be treated

in a smeared manner, as a continuum with damage. Since

about 1998 (Milašinović, [6, 7]), a mathematical-physical anal-

ogy named rheological-dynamic analogy (RDA) has been pro-
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Fig. 1. Tested cylinder SG1 before (left) and after encumbering (right)

posed in explicit form to predict a range of inelastic and time-

dependent problems related to 1D prismatic rods, such as buck-

ling, fatigue etc. This theory defines the critical mechanical

properties of viscoelastoplastic (VEP) materials. RDA is based

on the propagation of elastic waves under instantaneously ap-

plied impact loading. A successful theoretical approach based

on RDA and their practical applications have also been given

in connection with the VEP behavior of metallic bars in tension

[8]. In fact, cracking is accompanied by an emission of elastic

waves which propagate within the bulk of the material. Con-

tinuum damage mechanics is a mechanical theory for analyzing

damage and fracture processes in materials from a continuum

mechanics point of view including different scales of the dam-

age observation [9].

The aim of this paper is to apply rheological-dynamical con-

tinuum damage model to research of the rotational capacity of a

reinforced concrete beams. Many researchers have tried to rep-

resent the stress-strain relationship with standard mathematical

curves, e.g., a parabola, hyperbola, ellipse, cubic parabola, or

combinations like a parabola with a straight line and so on, see

also fib Model Code for Concrete Structures 2010 [10]. These

curves may have the advantage of simplifying the computation

of the ultimate moment of reinforced concrete sections. How-

ever, they can be classified only as empirical methods since the

assumed stress distribution does not represent an observed phys-

ical phenomenon, such as the failure mechanism. Moreover, to

identify global failure as a continuum with damage, the dam-

age variable must be formulated first. The proposed stress-strain

curve given by the first author in [11] is shown to provide very

good predictions for the stress versus strain response in the pre-

peak regime. Within this global model the three main failure

characteristics, the residual stress, the critical value of interpen-

etration displacement and the crushing energy, are theoretically

evaluated. Finally, on the basis of four non-dimensional con-

stants the crushing energy is calculated for five concrete com-

positions. Using the proposed model, the theoretical relations

between bending moment and the curvature of a reinforced con-

crete beam, for expressing the ductility in bending through the

rotational capacity, are presented in this paper.

2 Comparative analysis for five concrete compositions

2.1 Average RDA stress-strain curve

The RDA modulus function has been used in [11] to obtain

the quasi-static stress-strain curve, as follows

ε =
σcr

ER (0)
=

σcr

E (0)
(1 + ϕcr) =

σcr

E (0)
(1 + σcrKE) (1)

Thus, one quadratic equation takes the form of

σ2
crKE + σcr − E (0) ε = 0 (2)

Slope E(0) is the elastic modulus of the material in its initial

state. The root of Eq. (2) under the initial conditions ε(0) = 0

and σcr(0) = 0 is the limit value of critical stress for the selected

strain or the average stress-strain curve. Then

σcr =
1

2KE

( √
1 + 4KE E (0) ε − 1

)
. (3)

At the limit of elasticity, the slope is equal to the elastic mod-

ulus EH (known value). Therefore,

ER (0) = EH . (4)

Thus,

E (0) = EH (1 + ϕ∗) . (5)
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Tab. 1. Experimentally evaluated mechanical properties for five concrete compositions

Type of concrete
Concrete density

[kg/m3]

Elastic modulus EH

[MPa]
Poisson’s ratio

Compressive

strength fc [MPa]

HCS-04 2289 49211 0.175 76.82

SG1 2265.5 30994 0.185 65.91

NSC 2325 28700 0.217 57.27

CC-1 2228.6 27404 0.180 38.90

C20 2125 23421 0.165 25.00

HCS-04 Repair mortar cement, polymers, minerals, and chemicals and fillers-based;

SG1 SikaGrout 212 repair mortar;

NSC Normal-strength concrete;

CC-1 Normal-strength concrete;

C20 Concrete strength class

Tab. 2. Numerically defined dynamic and static RDA curves for five concrete compositions

Dynamic RDA curve Static RDA curve

HCS-04 1
2 · 0.017054

(√
1 + 4 · 0.017054 · 75709.23 · ε − 1

)
1

2 · 0.032009

(√
1 + 4 · 0.032009 · 75709.23 · ε − 1

)
SG1 1

2 · 0.025344

(√
1 + 4 · 0.025344 · 49196.83 · ε − 1

)
1

2 · 0.047569

(√
1 + 4 · 0.047569 · 49196.83 · ε − 1

)
NSC 1

2 · 0.019906

(√
1 + 4 · 0.019906 · 50707.16 · ε − 1

)
1

2 · 0.037360

(√
1 + 4 · 0.037360 · 50707.16 · ε − 1

)
CC-1 1

2 · 0.030928

(√
1 + 4 · 0.030928 · 42818.75 · ε − 1

)
1

2 · 0.058048

(√
1 + 4 · 0.058048 · 42818.75 · ε − 1

)
C20 1

2 · 0.045456

(√
1 + 4 · 0.045456 · 34956.72 · ε − 1

)
1

2 · 0.085316

(√
1 + 4 · 0.085316 · 34956.72 · ε − 1

)

where ϕ∗ is the structural creep coefficient and KE is the

structural-material constant at the limit of elasticity as detailed

in [11].

Fig. 2. Comparison of test data for stress-strain pairs and dynamic RDA

curves for five concrete compositions

As detailed by Van Mier et al. [1], the stress-strain curves

of concrete are dependent on two major groups of parameters:

testing conditions and concrete characteristics. The key exper-

imental parameters cited in [1] included the frictional restraint

between the loading platen and the specimen, the rotation of the

loading platen during the experiment, the gauge length of the

control LVDT, the stiffness of the testing machine, the type of

the feed-back signal, the loading rate, the shape and size of the

test specimen and the concrete composition. It is therefore im-

portant when using experimental data for verification and com-

parison that the experimental parameters are fully listed. Con-

crete characteristics depend on many interrelated variables such

as the water-cement ratio, the mechanical and physical proper-

ties of the cement and aggregate, and the age of the specimen

when tested [12].

In this study, cylinders of slenderness l0 / Φ = 2, loaded be-

tween the steel plates with low-friction are tested only (see

Fig. 1).

The analytical stress-strain curve of concrete in the ascending

branch is obtained as a critical curve and can be computed using

Eq. (3) if the compressive strength, elastic modulus, concrete

density and Poisson’s ratio are experimentally evaluated. It is

valid for various prismatic concrete samples (e.g., with a square

or circular cross section A0) and different concrete compositions.

To identify the basic mechanism that leads to concrete dam-

age growth, some primary features of experimentally observed

concrete behavior are presented first, see [11].

2.2 Experimental tests and model verifications

An experimental investigation was carried out to explain the

compression behavior of standard concrete cylinders with a

strength range of 20 - 80 MPa. The presented experimental re-

search was conducted at the Materials and Structures Testing

Laboratory of the Faculty of Civil Engineering in Subotica, Ser-

bia. A series of tests were performed on five concrete composi-
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Tab. 3. Main concrete properties and crushing energies calculated with four non-dimensional constants valid for all concrete compositions

Type of

concrete
f c [N/mm2] EH [N/mm2] εcr εcrF GC [N/mm]

HCS-04 76.82 49211 0.00235 0.00361 30.84

SG1 65.91 30994 0.003577 0.00568 41.32

NSC 57.27 28700 0.0024 0.00427 32.48

CC-1 38.90 27404 0.002 0.00313 14.08

C20 25.00 23421 0.001525 0.00228 6.33

Fig. 3. Mode of failure of cylinder SG1 (left), and measured value of critical crack depth (right)

Fig. 4. Variation of critical crack depth and strength (left), and σresidual / σcrF ratio and strength (right)

Fig. 5. Prediction of dynamic RDA stress-strain curve, dynamic strength fc = σcrF , ultimate strain εcrF end crushing energy GC [11].
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tions. The measured values of concrete density, elastic modulus,

Poisson’s ratio and compressive strength are listed in Table 1.

The HCS-04 cylinder was made of a high-quality, two-

component concrete mix, commercially available by the name

PolimagHK-04. The liquid component contains water, cement

polymer and plasticizer, while the powder component contains

cement, crushed carbonaceous stone aggregates, powdered filler

and minerals. These components were mixed in a concrete

mixer and no additional materials were added. The SG type

concrete was a high strength, low shrinkage, expanding material

commercially known as SikaGrout212. It is a powdered con-

crete mix which contains cement, crushed stone aggregate and

powdered cement additives. In accordance to the manufacturer

recommendations, fresh concrete was prepared by adding 3.7

liters of drinking water to one 28 kg bag of SikaGrout. The mix

proportions for other concrete compositions were: NSC (port-

land cement (PC) CEM II/B-M: 500 kg/m3; water: 200 kg/m3;

fine aggregate: 991 kg/m3; coarse aggregate: 633 kg/m3), CC-1

( PC CEM II/A-M: 445 kg/m3; water: 250 kg/m3; fine aggre-

gate: 465 kg/m3; coarse aggregate: 1100 kg/m3) and C20 ( PC

CEM II/B-M: 395 kg/m3; water: 280 kg/m3; sand: 420 kg/m3;

coarse aggregate: 1165 kg/m3). The concrete mix was designed

for compressive cylinder strength fc at 28 days of approximately

20 - 80 MPa.

The numerically defined dynamic and static RDA curves are

presented in Table 2. The acceleration coefficient fγ = 1.37 was

used in the computation for all concrete compositions as detailed

in [11].

The experimentally evaluated and numerically computed dy-

namic stress-strain curves shown in Fig. 2 are in excellent agree-

ment beyond the limit of elasticity, because the limit of elasticity

is the border from which the rheological-dynamical theory is de-

veloped.

The failure mode of the standard concrete cylinder is also dis-

cussed in [11]. The relevant measured global property is critical

crack depth shown in Fig. 3 left. As it is presented in Fig. 3 right

and Fig. 4 left, the calculated values of critical crack depths are

in excellent agreement with the measured value (2.43 cm).

According to the investigation detailed in [11], the critical in-

terpenetration displacement w corresponds to

σresidual = 0.2124σcrF , see Fig. 4 right.

The theory presented in [11] describes the critical stress-strain

response of material in compression before the peak for five

different concrete compositions, which are experimentally veri-

fied. This approach covers also the degradation of stiffness and

strength with limited ductility in the post-peak regime, because

it combines damage mechanics. The area below the stress-strain

curve shown in Fig. 5 represents the crushing energy per unit

area for standard concrete cylinders, which can be calculated

from ( fc =σcrF , EH [MPa])

GC = 93 ·
f 2
c

EH

+ 204 · fc · (εcrF − εcr) , (6)

with four non-dimensional constants valid for all concrete

compositions

σresidual/ fc = 0.2124,

σS / fc = 0.7876,

a/g = fc/σS − 1 = 0.27,

fγ =
1

1 − a/g
= 1.37.

(7)

The residual stress level is what principally distinguishes

compression fracture from tensile fracture, but it is a conse-

quence of the uniformly accelerated motion of load during the

examination of compressive strength.

The main concrete properties which must be used for the nu-

merical calculation of the crushing energy by Eq. (6) are given

in Table 3.

3 Behaviour of reinforced concrete beam in bending

All limit design theories are based on the principals of equi-

librium of internal forces and compatibility of deformations at

the state of impending failure, see Fig. 6 left.

The here presented model for the analysis of the behaviour of

reinforced concrete beam in bending is based on the assump-

tions that plane cross-sections remain plane and that the be-

haviour of concrete in compression is in compliance to the dy-

namic RDA stress-strain curve. The stress-strain curve of rein-

forcement is assumed as bilinear elastic-perfectly plastic, Fig. 6

right. The influence of reinforcement in compression and the

effect of confinement due to stirrups are not considered here.

The contribution of the cracked concrete in tension is neglected.

Hence, the dimensionless moment-curvature relations and duc-

tility of reinforced concrete beams are analyzed by means of

a new approach, where the dynamic RDA curves for five con-

crete compositions are taken into account. This leads to a strong

dependency of the ductility from the four experimentally evalu-

ated properties of the concrete (concrete density, elastic modu-

lus, Poisson’s ratio and compressive strength).

According to Fig. 6 left, the strain ε0 at the peak stress σcr

and the ultimate strain εu of concrete in compression may be

expressed as follows

ε0 =
σcrF − σresidual

EH

=
σcr

EH

= ε2 − ε3

εu = εcrF − εcr +
σcr

EH

.
(8)

From similitude of triangles in Fig. 6 left the strain of the

reinforcement may be obtained as

εs =
1 − ξ

η
ε0 =

1 − ξ

η

σcr

EH

(9)

In Fig. 6 left, x = ξd is the depth of the compression zone,

and d is the effective depth of the beam. In the post-peak regime,
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Fig. 6. Strain and stress distribution in a rectangular cross-section (left), and bilinear stress-strain curve for reinforcement (right)

where σ f ictitious ≤ σ1 ≤ σcr, the stress ratio σ1 /σcr, is given

by

σ1

σcr

=
εcrF − εcr + σcrF−σcr

EH

(
1 −

ξ
η

)
εcrF − εcr

(10)

The condition of force equilibrium gives

Asσs

bdσcr

=
1

2

(
ξ +

σ1

σcr

(ξ − η)

)
(11)

where As and σs are the cross sectional area and tensile stress

of reinforcement, respectively. Also, the dimensionless bending

moment may be expressed as follows

6M

bd2σcr

= ξ (3 − 2ξ + η) +
σ1

σcr

(ξ − η) (3 − ξ + η) (12)

The curvature κ can be obtained as

κ =
1

r
=
ε0

ηd
=

σcr

EHηd
=
ε2 − ε3

ηd
. (13)

According to Eqs. (8) to (13), the dimensionless bending

moment-curvature relations of reinforced concrete beams are

obtained for five concrete compositions described in Section 2.2

(Table 1, Table 2 and Table 3) and shown in Fig. 7 to Fig. 10,

for reinforcement ratios As / bd = 0.02, 0.03, 0.04 and 0.05.

Adopted properties of the reinforcing steel are: fy = 400 MPa

and Es = 200000 MPa. As expected, the beams made of concrete

with higher compressive strength have more ductile behaviour,

even with higher reinforcement content (e.g. HCS-04, SG1). On

the other hand, if the concrete with low compressive strength is

used, a brittle behaviour occurs even at low reinforcement ratios

(e.g. C20). Hence, it is obvious that an optimization approach

to find the best concrete composition may be useful.

The ductility in bending is here expressed as the ratio between

the ultimate curvature κu and the curvature κsy, which corre-

sponds to the condition of reaching the yield strength of rein-

forcement. The relation between ductility and reinforcement ra-

tios for five concrete compressive strengths is shown in Fig. 11.

Fig. 7. Dimensionless bending moment-curvature relations for reinforce-

ment ratio 0.02

In the case of the SG1 concrete the most favorable failure char-

acteristics are obtained if the criterion of the ductility in bending

is adopted as authoritative.

4 Conclusions

The approach proposed in [11] for global failure analysis of

concrete in compression combines the RDA and damage me-

chanics. The present study analyzes experimentally five dif-

ferent concrete compositions. Finally, the test results are used

for the analysis of moment-curvature and compressive strength-

reinforcement ratio-ductility relations of reinforced concrete

beam in bending. The results of this paper also indicate the

possible direction of further studies in the field of reinforced-

concrete structures. It is important to emphasize that the mea-

sured concrete properties are characterized by much higher dis-

persion than the relevant parameters which characterize the fail-

ure mode of concrete cylinders. Hence, it is obvious that an

optimization approach to find the best concrete mixture may be

useful.
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Fig. 8. Dimensionless bending moment-curvature relations for reinforce-

ment ratio 0.03

Fig. 9. Dimensionless bending moment-curvature relations for reinforce-

ment ratio 0.04
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