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Abstract

In this paper the recently developed nature inspired meta-

heuristic algorithm is utilized for optimum design of truss struc-

tures with continuous and discrete variables. This algorithm is

inspired by the natural process happening in the forests with

the rapidly change of environment and their natural regener-

ation. Based on this process a simple powerful optimization

technique is introduced so-called Natural Forest Regeneration

(NFR). Some well-studied benchmark structural problems are

investigated with both continuous and discrete sizing variables

and the results of the NRF are compared to those of some previ-

ously developed algorithms.
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1 Introduction

Optimal design of structures is one of the most active fields

of structural engineering. Optimal design of structures is a non-

linear programming problem and in the past the mathematical

methods have been used for solution. Most of these methods

are based on the gradient information to search the problem’s

space and a good starting point is needed to solve the prob-

lem. Though the gradient based methods produce accurate solu-

tions and converge fast, however because of the costly achieved

gradient information, the vital role of good starting point, and

some other issues like the convexity and smoothness of search

space, in recent years metaheuristic algorithms are used for op-

timal design of structures. Genetic Algorithm (GA) [1], Tabu

Search [2], Ant Colony Optimization (ACO) [3], Particle Swarm

Optimization (PSO) [4], Harmony Search (HS) [5], Big Bang-

Big Crunch (BB-BC) [6], Charged System Search (CSS) [7],

Magnetic Charged System Search (MCSS) [8], Ray optimiza-

tion (RO) [9], Dolphin Echolocation Optimization (DEO) [10],

Swallow Swarm Optimization (SSO) [11], Search group algo-

rithm (SGA) [12], Colliding Bodies Optimization (CBO) [13]

and Ant Lion Optimizer (ALO) [14] among other methods, are

introduced and implemented in various structural design prob-

lems. Some successful applications of meta-heuristic algorithms

can be found in the work of Refs. [15–18].

Recently a simple and powerful optimization algorithm, so-

called Natural Forest Regeneration (NFR) is developed by the

present authors for optimization problems, which mimics the

natural migration of forests due to climate changes [19]. This

population based algorithm is inspired by the natural behavior of

the forests, against the rapidly changing environment. This phe-

nomenon is combined with natural regeneration of forest. Ex-

ploration and exploitation aspects of the algorithm are achieved

by seed dispersal mechanism and decreasing radius of seed dis-

persed area. The method is simple and easy to implement, and

the optimized benchmark problems show the efficiency and ro-

bustness of the new algorithm.

Trusses are a well-known, extremely strong, cost effective op-

tion for the construction of diverse structures, especially for long

spans and heavy loads. Therefore optimum design of trusses
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is widely investigated by researchers in recent decades. In the

other hand, most of the optimization algorithms are first uti-

lized for design of truss structures because of their simplicity.

Optimal design of trusses can be categorized into three major

classes: (i) Sizing optimization, where the cross sectional areas

of the members are taken as optimization variables and the ge-

ometry of the structure is unchanged. (ii) Shape optimization,

where the nodal coordinates are also taken as the optimization

variables. (iii) Topology optimization, where the connections

between nodes are added to the optimization variables.

In this paper, NFR is used for optimum design of truss struc-

tures with continuous and discrete variables and results are com-

pared to those from the literature. The remainder of the paper

is organized as follows: In Section 2 the method is briefly de-

scribed. Three well-known benchmark structural problems are

studied in Section 3. Finally, concluding remarks are presented

in Section 4.

2 Natural forest regeneration algorithm

A possible fate for forest tree populations in a rapidly chang-

ing environment is persistence through migration to track eco-

logical niches spatially. In the other hand, Forests are regen-

erated and redistributed naturally and the current location and

population of forests are dependent on the environmental condi-

tion.

Forests can be regenerated manually by keeping seed trees

and harvesting the other ones. Seed trees are the best look-

ing ones and can be selected by comparing the trees. After the

falling of the seeds on the ground and growing the seedlings, the

process of keeping the best ones and harvesting others should be

performed. Seed dispersal may be carried out by birds or water

stream and this helps the forest to find new positions.

The migration of forests by seed dispersal and the process

of keeping best trees and harvesting the others are two main

ideas which are utilized here to design the new optimization al-

gorithm. This algorithm is a population based algorithm and

contains a guided random search. The main assumptions of the

algorithm are:

• Each optimization candidate is represented by a tree.

• The height of a tree is considered to be proportional to its

fitness.

• Each tree produces seeds and the number of seed dispersal of

a tree is proportional to its height.

• The seeds are assumed to be dispersed around the trees.

• A portion of seeds are dispersed by the birds or water streams

to far locations.

• After growing the seedlings, seed trees which are best ones,

are kept and the others are harvested.

Using the above mentioned assumptions, the process of opti-

mization can be presented by the following steps:

Step 1. Generate NT random trees in the feasible region of

the side constraints of the problem.

Step 2. Calculate the objective function (ob j) and the corre-

sponding fitness ( f it) for the jth tree, and sort them in descend-

ing order. Fitness is defined as the inverse of the objective func-

tion and the height of the jth tree,h ( j), is defined as its fitness.

h ( j) = f it ( j) =
1

ob j ( j) + δ
, j = 1, . . . ,NT (1)

where δ is a positive number to avoid the divide by zero error.

For engineering design problems, the objective is positive, then

δ = 0 will not lead to error but for functions with zero or negative

values, δ may become a dynamic parameter as follows:

δ = |min(ob j ( j))| + ε , j = 1, . . . ,NT (2)

where ε is a small positive number.

Step 3. Select NS T best trees as seed trees and store them in

ST and harvest the other ones.

Step 4. The jth seed tree disperses NS ( j) seeds with random

positions and NS = (NT − NS T ) new seedlings will be pro-

duced. The number of seeds depends on the height of the seed

tree.

The number of seeds of the ith seed tree can be expressed by

the following formula:

NS ( j) = round(
h( j)∑NS T

i=1 h(i)
NS ) (3)

The positions of seeds are determined randomly:

XSi = X j + Ri, i = 1, . . .NS j (4)

where XSi is the position vector of the ith seed and X j is the

position vector of the jth seed tree and Ri is a random vector

with negative or positive entries as:

Ri = (rand × 2 − 1) dr1(1 −
iter

itermax
) (5)

rand is a random number between 0.0 and 1.0, generated by the

computer, d is a vector, containing the domains of the variables,

and r1 determines the region of the seeds around the seed tree,

as a portion of the whole domain, and may be taken as r1 < 0.1.

Here, itermax is the maximum number of iterations, determined

by the user. Using the Eq. (5), the seed dispersal area will de-

crease linearly.

Step 5. Some seeds will be dispersed by birds or water

streams. The new position of the seeds is defined as:

Xi,new = Xi,old + Mi, i = 1, . . .NM (6)

where Xi,new is the new position vector and Xi,old is the old po-

sition vector of the ith seed respectively, and NM is the number

of movements which is defined as part of all the seeds (20% is

taken in this study) and Mi is the movement vector, with nega-

tive or positive entries, as follows:

Mi = (rand × 2 − 1) dr2 (7)
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Here, r2 = 0.5 is used.

Step 6. In the last two steps, some seeds may move of the

boundaries of side constraints. One may use a fly-back mech-

anism to re-use one of the previous trees, which were in the

allowed boundaries.

Step 7. Calculate the objective function and the correspond-

ing fitness for each new seedling.

Step 8. If any of termination criterions is reached, stop the

iteration, else go to Step 3.

Termination criterion may be selected from one of the follow-

ing conditions or their combination:

1 Maximum number of iterations is reached.

2 Maximum number of iterations without any update of ST is

reached.

The flowchart of the algorithm is presented in Fig. 1.
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Fig. 1. The flowchart of the NFR. 

 

 

3. Structural design examples 

In this section, some benchmark truss design problems are studied and the results of the application of 

NFR are compared with those of the literature. All of the examples are studied with discrete and 

continuous sizing variables separately and in discrete form of the algorithm a simple rounding 

approach is utilized[14]. The main features and assumptions of following examples are summarized in 

Table1.  It can be mentioned that in discrete problems, because of the exploration aspect of the 

algorithm, greater values for 𝑟1 is used. In the other hand for larger problems (large number of 

structural members), because of the computational time, the number of population and iterations 

decreased.   In the first example the algorithm stops after 500 iterations without updating the seed 

trees. The other examples do not use this termination criterion and continue the iterations until reach 

the maximum permitted iterations, then the number of structural analysis for the second and third 

example is equal to the multiple of NT and itermax for examples 2 and 3 while it is less than the 

Fig. 1. The flowchart of the NFR.

3 Structural design examples

In this section, some benchmark truss design problems are

studied and the results of the application of NFR are compared

with those of the literature. All of the examples are studied with

discrete and continuous sizing variables separately and for dis-

crete form of the algorithm a simple rounding approach is uti-

lized [20]. The main features and assumptions of the following

examples are summarized in Table 1. It can be mentioned that in

discrete problems, because of the exploration aspect of the algo-

rithm, greater values for r1 is used. In the other hand for larger

problems (large number of structural members), due to the high

computational time, the number of population and iterations are

decreased. In the first example, the algorithm stops after 500

iterations without updating the seed trees. The other examples

do not use this termination criterion and continue the iterations

until reaching the maximum permitted iterations. The number

of structural analyses is equal to the multiple of NT and itermax

for examples 2 and 3, while it is less than this values for the first

example. The algorithm is coded in FORTRAN and the random

generator function is taken from Numerical Recipes [21].

Optimum design of a truss structure with m members and ng

groups of members is formulated as:

Find X = [x1x2, . . . , xng]

to minimize Ob j (X) =

m∑
i=1

(ρiAi(X).li) × Pen(X)
(8)

where X represents the vector of design variables, which in-

cludes the cross sectional areas of members in each group.

Ob j(X) is the objective function, that consists of the weight of

the structure multiplied by a penalty function Pen(X), to con-

vert a constrained structural optimization problem into an un-

constrained one. ρi, li and Ai are the material density, length and

cross section area of each structural member, respectively. The

penalty function is defined as:

Pen (X) = (1 + ε1.q)ε2 (9)

For the comparison purpose, ε1 = 1.0 and ε2 is taken as 1.5

at the start of the iteration and increased to 6.0 linearly. q is the

total amount of violations of constraints:

q =

m∑
i=1

max
(
0, q

strength

i

)
+ max

(
0, qdisp

)
(10)

where q
strength

i
and qdisp are the strength and displacement con-

straints violations, respectively. m denotes the number of mem-

bers. These constraints can be defined using ASD-AISC code of

practice [21].

3.1 A 10-bar planar truss

The 10-bar truss structure is a well-studied problem in the

field of structural optimization which is used to verify the efi-

ciency of a newly proposed optimization algorithms with con-

tinuous or discrete variables [22, 23].

Fig. 2 shows the geometry and support conditions of this 2D

cantilevered truss with loading condition. The material density

is 0.1 lb/in3 (2767.990 kg/m3) and the modulus of elasticity is

10,000 ksi (68,950 MPa). The members are subjected to the

stress limits of 25 ksi (172.375 MPa) and all the nodes in both
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Tab. 1. NFR assumptions for benchmark truss optimization problems

Example

No.

Variables

type
n m ng r1 r2 NT NS T itermax

1
Continuous 6 10 10 0.01 0.3 50 5 3000

Discrete 6 10 10 0.1 0.3 50 5 2000

2
Continuous 20 72 16 0.01 0.3 50 5 200

Discrete 20 72 16 0.1 0.3 20 5 200

3
Continuous 153 582 32 0.001 0.5 20 3 400

Discrete 153 582 32 0.01 0.5 20 3 400
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Fig. 2. Schematic of the 10-bar planar truss structure. 

 

Table 2 

Comparison of the NFR results for the 10-bar truss to those of the literature with continuous variables (Load 

case 1) 

Element group   Camp et 

al. [18] 

Lee and 

Geem[19] 

Li et al.[20]   Kaveh and 

Talatahari[21] 

Kaveh et al.[22] 

  

Present 

work 

    GA HS PSO PSOPC HPSO HPSACO MCSS IMCSS NFR 

1 A1 28.92 30.15 33.469 30.569 30.704 30.307 29.5766 30.0258 30.6206 

2 A2 0.1 0.102 0.11 0.1 0.1 0.1 0.1142 0.1 0.1058 

3 A3 24.07 22.71 23.177 22.974 23.167 23.434 23.8061 23.6277 23.1368 

4 A4 13.96 15.27 15.475 15.148 15.183 15.505 15.8875 15.9734 15.3435 

5 A5 0.1 0.102 3.649 0.1 0.1 0.1 0.1137 0.1 0.1017    

6 A6 0.56 0.544 0.116 0.547 0.551 0.5241 0.1003 0.5167 0.5517 

7 A7 7.69 7.541 8.328 7.493 7.46 7.4365 8.6049 7.4567 7.5205 

8 A8 21.95 21.56 23.34 21.159 20.978 21.079 21.6823 21.4374 21.0745 

9 A9 22.09 21.45 23.014 21.556 21.508 21.229 20.3033 20.7443 21.3645 

10 A10 0.1 0.1 0.19 0.1 0.1 0.1 0.1117 0.1 0.1   

Weight (lb)   5076.31 5057.88 5529.5 5061 5060.92 5056.56 5086.9 5064.6 5063.58 

No. of 

analyses 

  N/A 20,000 150,000 150,000 N/A 10,650 8875 8475 62950 

 

Table 3 

Comparison of the NFR results for the 10-bar truss to those of the literature with continuous variables  (Load 

case 2) 

Element group   Lee and 

Geem 

[19] 

Li et al. [20] 

  

  Kaveh and 

Talatahari 

[21] 

Kaveh et al.[22] 

  

Present 

work 

    HS PSO PSOPC HPSO HPSACO MCSS IMCSS NFR 

1 A1 23.25 22.935 23.473 23.353 23.194 22.863 23.299 23.33621 

2 A2 0.102 0.113 0.101 0.1 0.1 0.12 0.1 0.1    

3 A3 25.73 25.355 25.287 25.502 24.585 25.719 25.682 25.7048    

4 A4 14.51 14.373 14.413 14.25 14.221 15.312 14.51 14.5081     

5 A5 0.1 0.1 0.1 0.1 0.1 0.101 0.1 0.1 

6 A6 1.977 1.99 1.969 1.972 1.969 1.968 1.969 1.9698    

7 A7 12.21 12.346 12.362 12.363 12.489 12.31 12.149 12.2653 

8 A8 12.61 12.923 12.694 12.894 12.925 12.934 12.36 12.6900    

9 A9 20.36 20.678 20.323 20.356 20.952 19.906 20.869 20.3477 

10 A10 0.1 0.1 0.103 0.101 0.101 0.1 0.1 0.1   

Weight (lb)   4668.81 4679.47 4677.7 4677.29 4675.78 4686.47 4679.15 4677.43 

No. of analyses   N/A 150,000 150,000 N/A 9625 7350 6625 108100 

Fig. 2. Schematic of the 10-bar planar truss structure.

vertical and horizontal directions are subjected to the displace-

ment limits of 2.0 in (5.08 cm). In this example, there are 10 de-

sign variables and is studied with both continuous and discrete

variables.

In the first case, the continuous variables are used and a set

of pseudo variables ranging from 0.1 to 35.0 in2 (0.6452 cm2 to

225.806 cm2) are assumed. Here, two load cases are considered:

Load Case 1: P1 = 100 kips (444.8 kN) and P2 = 0,

Load Case 2: P1 = 150 kips (667.2 kN) and P2 = 50 kips

(222.4 kN).

Comparisons of the results of the NFR with the previously

published results using continuous variables are summarized in

Table 2 and Table 3 for each load cases. As it can be seen

from the tables, the best feasible result is obtained by HS al-

gorithm for both load cases and among the other algorithms,

only PSOPC and HPSO found better results than NFR in 150000

analyses. Where the NFR finds the best result after 62950 and

108100 analyses for the load Case 1 and load Case 2 respec-

tively. As it can be observed from Tables 2 and 3 that the best

weights obtained using NFR in both cases are only slightly big-

ger than the HPSACO.

In the second case, the discrete variables are selected from

the set D = {0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0,

5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0,10.5, 11.0, 11.5,

12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0,

17.5, 18.0, 18.5, 19.0, 19.5, 20.0, 20.5, 21.0, 21.5, 22.0, 22.5,

23.0, 23.5, 24.0, 24.5, 25.0, 25.5, 26.0, 26.5, 27.0, 27.5, 28.0,

28.5, 29.0, 29.5, 30.0, 30.5, 31.0, 31.5}(in2) and the load Case

1 is applied to the truss. Table 4 summarizes the comparison

between previously published results and the results of the NFR

with discrete variables. Comparing the results shows that the

branch and bound method reached the best feasible result, and

the other methods have slightly larger optimum result compared

to NFR.

3.2 A 72-bar space truss

11 
 

This problem is solved again with discrete variables and the discrete variables are selected from the 

set D = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,1.8, 1.9, 2.0, 2.1, 

2.2, 2.3, 2.4,2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2}(in2) or {0.65, 1.29, 1.94, 2.58, 3.23, 3.87, 4.52, 5.16, 

5.81, 6.45,7.10,  7.74, 8.39, 9.03, 9.68, 10.32, 10.97, 12.26, 12.90, 13.55, 14.19,14.84, 15.48, 16.13, 

16.77, 17.42, 18.06, 18.71, 19.36, 20.00, 20.65}(cm2). The comparison of the results of the optimized 

discrete cross sections of the 72-bar truss with previously published results is presented in Table 6. 

The best optimized weight of the NFR algorithm is equal to 386.95 lb (175.52 kg) and it is 

comparable to the best weight of the IMCSS and DHPSACO algorithm which is equal to 385.54 lb 

(174.88 kg), while it is 389.49 lb 388.94 lb, 387.94 lb, 400.66 lb for the MCSS, HPSO, HS, and GA, 

respectively. 

In this example, because of the effect of the utilized rounding method and smaller number of 

populations in discrete form of the problem, the NFR produced better results with continuous 

variables. 

By comparing the Fig. 4 and Fig. 5 it can be seen that, in discrete sizing variables case, the stress ratio 

did not reach the maximum value of unity and then the weight of the structure is increased comparing 

to the continuous sizing variables case.  

 

 

Fig. 3. Schematic of a 72-barspatialtruss. 

 

 

Fig. 3. Schematic of a 72-barspatial truss.

A 72-bar space truss with schematic shown in Fig. 3 is stud-

ied as the second example. This example is investigated by the

researchers with continuous and discrete variables as well. 72

structural members of this spatial truss are categorized into 16

groups using symmetry:

((1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18, (5)

A19–A22, ((6)A23–A30, (7) A31–A34, (8) A35–A36, (9) A37–

A40, (10) A41–A48, (8) A49–A52, (9) A53–A54, (13) A55–

A58, (14) A59–A66 (15), A67–A70, and (16) A71–A72.

The material density is 0.1 lb/in.3 (2767.990 kg/m3) and

the modulus of elasticity is taken as 10,000 ksi (68,950 MPa).

The members are subjected to the stress limits of ±25 ksi

(±172.375 MPa). The uppermost nodes are subjected to the dis-

placement limits of ±0.25 in (±0.635 cm) in both x and y direc-
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Tab. 2. Comparison of the NFR results for the 10-bar truss with those of the literature using continuous variables (Load Case 1)

Element group
Camp et

al. [24]

Lee and

Geem

[29]

Li et al. [26]

Kaveh

and

Talatahari

[32]

Kaveh et al.[28]
Present

work

GA HS PSO PSOPC HPSO HPSACO MCSS IMCSS NFR

1 A1 28.92 30.15 33.469 30.569 30.704 30.307 29.5766 30.0258 30.6206

2 A2 0.1 0.102 0.11 0.1 0.1 0.1 0.1142 0.1 0.1058

3 A3 24.07 22.71 23.177 22.974 23.167 23.434 23.8061 23.6277 23.1368

4 A4 13.96 15.27 15.475 15.148 15.183 15.505 15.8875 15.9734 15.3435

5 A5 0.1 0.102 3.649 0.1 0.1 0.1 0.1137 0.1 0.1017

6 A6 0.56 0.544 0.116 0.547 0.551 0.5241 0.1003 0.5167 0.5517

7 A7 7.69 7.541 8.328 7.493 7.46 7.4365 8.6049 7.4567 7.5205

8 A8 21.95 21.56 23.34 21.159 20.978 21.079 21.6823 21.4374 21.0745

9 A9 22.09 21.45 23.014 21.556 21.508 21.229 20.3033 20.7443 21.3645

10 A10 0.1 0.1 0.19 0.1 0.1 0.1 0.1117 0.1 0.1

Weight (lb) 5076.31 5057.88 5529.5 5061 5060.92 5056.56 5086.9 5064.6 5063.58

No. of analyses N/A 20,000 150,000 150,000 N/A 10,650 8875 8475 62950

Tab. 3. Comparison of the NFR results for the 10-bar truss with those of the literature using continuous variables (Load Case 2)

Element

group

Lee and

Geem [25]
Li et al. [26]

Kaveh and

Talatahari

[27]

Kaveh et al. [28]
Present

work

HS PSO PSOPC HPSO HPSACO MCSS IMCSS NFR

1 A1 23.25 22.935 23.473 23.353 23.194 22.863 23.299 23.33621

2 A2 0.102 0.113 0.101 0.1 0.1 0.12 0.1 0.1

3 A3 25.73 25.355 25.287 25.502 24.585 25.719 25.682 25.7048

4 A4 14.51 14.373 14.413 14.25 14.221 15.312 14.51 14.5081

5 A5 0.1 0.1 0.1 0.1 0.1 0.101 0.1 0.1

6 A6 1.977 1.99 1.969 1.972 1.969 1.968 1.969 1.9698

7 A7 12.21 12.346 12.362 12.363 12.489 12.31 12.149 12.2653

8 A8 12.61 12.923 12.694 12.894 12.925 12.934 12.36 12.6900

9 A9 20.36 20.678 20.323 20.356 20.952 19.906 20.869 20.3477

10 A10 0.1 0.1 0.103 0.101 0.101 0.1 0.1 0.1

Weight (lb) 4668.81 4679.47 4677.7 4677.29 4675.78 4686.47 4679.15 4677.43

No. of

analyses
N/A 150,000 150,000 N/A 9625 7350 6625 108100

Tab. 4. Comparison of the NFR results for the 10-bar truss with those of the literature using discrete variables (Load Case 1)

Element group

Wu and Chow

[29]
Ringertz [23] Li et al. [26] Present work

SSGAs
Branch and

Bound
PSO PSOPC HPSO NFR

1 A1 30.5 30.5 24.5 25.5 31.5 30.0

2 A2 0.5 0.1 0.1 0.1 0.1 0.1

3 A3 16.5 23 22.5 23.5 24.5 24.

4 A4 15 15.5 15.5 18.5 15.5 14.5

5 A5 0.1 0.1 0.1 0.1 0.1 0.1

6 A6 0.1 0.5 1.5 0.5 0.5 0.5

7 A7 0.5 7.5 8.5 7.5 7.5 7.5

8 A8 18 21 21.5 21.5 20.5 21.0

9 A9 19.5 21.5 27.5 23.5 20.5 22.0

10 A10 0.5 0.1 0.1 0.1 0.1 0.1

Weight (lb) 4217.3 5059.9 5243.71 5133.16 5073.51 5067.33
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tions. The loading conditions are considered as:

Load condition 1. Loads 5, 5 and 5 kips in the x, y and z

directions at node 17, respectively.

Load condition 2. A load 5 kips in the z direction at nodes 17,

18, 19 and 20.
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Table 5 

Comparison of the NFR results for the 72-bar to those of the literature with continuous variables 

 

 

 

 

Fig. 4.  Comparison of the allowable and existing stresses in the elements of the 72-bar truss structure with continuous 

variables 
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Case 1

Case 2

Element Group 

Erbatur et al. [24] Camp et al. [25] Perez et al. [26] Camp 

[27] 

Kaveh et al. [9] Kaveh et al. 

[28] 

Present 

work 

GA ACO PSO BB–BC RO CBO NFR 

1 A1–A4 1.755 1.948 1.7427 1.8577 1.8365 1.9028 1.8458 

2 A5–A12 0.505 0.508 0.5185 0.5059 0.5021 0.518 0.5162    

3 A13–A16 0.105 0.101 0.1 0.1 0.1 0.1001 0.1000  

4 A17–A18 0.155 0.102 0.1 0.1 0.1004 0.1003 0.1000  

5 A19–A22 1.155 1.303 1.3079 1.2476 1.2522 1.2787 1.3280    

6 A23–A30 0.585 0.511 0.5193 0.5269 0.5033 0.5074 0.4992     

7 A31–A34 0.1 0.101 0.1 0.1 0.1002 0.1003 0.1000 

8 A35–A36 0.1 0.1 0.1 0.1012 0.1001 0.1003 0.1036 

9 A37–A40 0.46 0.561 0.5142 0.5209 0.573 0.524 0.5092   

10 A41–A48 0.53 0.492 0.5464 0.5172 0.5499 0.515 0.5187 

11 A49–A52 0.12 0.1 0.1 0.1004 0.1004 0.1002 0.1002 

12 A53–A54 0.165 0.107 0.1095 0.1005 0.1001 0.1015 0.1016    

13 A55–A58 0.155 0.156 0.1615 0.1565 0.1576 0.1564 0.1565 

14 A59–A66 0.535 0.55 0.5092 0.5507 0.5222 0.5494 0.5463 

15 A67–A70 0.48 0.39 0.4967 0.3922 0.4356 0.4029 0.4316    

16 A71–A72 0.52 0.592 0.5619 0.5922 0.5971 0.5504 0.5597 

Best weight (lb) 386.4435 380.2387 381.9363 379.8404 380.4505 379.6943 379.9248 

Average weight (lb) N/A 383.16 N/A 382.08 382.553 379.8961 380.2061 

Stddev N/A 3.66 N/A 1.912 1.221 0.0791 0.3808 

Number  of structural 

analyses 

N/A 18,500 N/A 19,621 19,084 15,600 10,000 

Fig. 4. Comparison of the allowable and existing stresses in the elements of

the 72-bar truss structure with continuous variables
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Table 6 

Comparison of the NFR results for the 72-bar truss to those of the literature with discrete variables 

Element Group 

  

Wu and 

Chow[23] 

Lee and 

Geem 

[19] 

Li et al.[29] Kaveh and 

Talatahari[21] 

Kaveh et al.[22] Present 

Work 

GA HS PSO PSOPC HPSO DHPSACO MCSS IMCSS NFR 

1 A1–A4 1.5 1.9 2.6 3 2.1 1.9 1.8 2 2.0 

2 A5–A12 0.7 0.5 1.5 1.4 0.6 0.5 0.5 0.5 0.5 

3 A13–A16 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.1 0.1 

4 A17–A18 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

5 A19–A22 1.3 1.4 2.1 2.7 1.4 1.3 1.3 1.3 1.3 

6 A23–A30 0.5 0.6 1.5 1.9 0.5 0.5 0.5 0.5 0.5 

7 A31–A34 0.2 0.1 0.6 0.7 0.1 0.1 0.1 0.1 0.1 

8 A35–A36 0.1 0.1 0.3 0.8 0.1 0.1 0.1 0.1 0.1 

9 A37–A40 0.5 0.6 2.2 1.4 0.5 0.6 0.7 0.5 0.5 

10 A41–A48 0.5 0.5 1.9 1.2 0.5 0.5 0.6 0.5 0.5 

11 A49–A52 0.1 0.1 0.2 0.8 0.1 0.1 0.1 0.1 0.1 

12 A53–A54 0.2 0.1 0.9 0.1 0.1 0.1 0.1 0.1 0.1 

13 A55–A58 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.2 0.2 

14 A59–A66 0.5 0.5 1.9 1.9 0.5 0.6 0.6 0.6 0.6 

15 A67–A70 0.5 0.4 0.7 0.9 0.3 0.4 0.4 0.4 0.5 

16 A71–A72 0.7 0.6 1.6 1.3 0.7 0.6 0.4 0.6 0.5 

Weight (kg)   400.66 387.94 1089.88 1069.79 388.94 385.54 389.49 385.54 386.95 

Number of 

structural 

analyses  

  N/A N/A N/A 150,000 50,000 5330 5400 3625 4000 

 

 

Fig. 5.  Comparison of the allowable and existing stresses in the elements of the 72-bar truss structure with discrete variables 

 

3.3. A 582-bar tower truss 

Schematic of a 582-bar spatial truss structure, shown in Fig. 5, was studied with discrete and 

continuous variables by the researchers[11, 30, 31]. Here we have used this structure with both 

discrete and continuous sizing variables. Because of structural symmetry, the 582 structural members 

are categorized as 32 independent size variables as shown in Fig. 5. A single load case is considered 

consisting of lateral loads of 5.0 kN (1.12 kips) applied in both x- and y-directions and a vertical load 
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Fig. 5. Comparison of the allowable and existing stresses in the elements of

the 72-bar truss structure with discrete variables.

In the continuous sizing variables case, the minimum and

maximum permitted cross-sectional area of each member is

taken as 0.10 in2 (0.6452 cm2) and 4.00 in2 (25.81 cm2) respec-

tively. Table 5 summarizes the results obtained by the present

work and those of the previously reported researches. The best

result of the NFR approach is 379.9248, while it is 385.76,

380.24, 381.91, 379.85, 380.458 and 379.6943 lb for the GA

[30], ACO [31], PSO [32], BB–BC [33] RO [9], CBO [34], re-

spectively As it can be seen from the table, the best feasible re-

sult is obtained by BB-BC algorithm but NFR achieves a com-

parable result with less number of structural analyses. Fig. 4

shows the allowable and existing stress values in truss member

using the NFR

This problem is solved again with discrete variables and these

variables are selected from the set D = {0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,1.8,

1.9, 2.0, 2.1, 2.2, 2.3, 2.4,2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1,

3.2}(in2) or {0.65, 1.29, 1.94, 2.58, 3.23, 3.87, 4.52, 5.16, 5.81,

6.45,7.10, 7.74, 8.39, 9.03, 9.68, 10.32, 10.97, 12.26, 12.90,

13.55, 14.19,14.84, 15.48, 16.13, 16.77, 17.42, 18.06, 18.71,

19.36, 20.00, 20.65}(cm2). The comparison of the results of

the optimized discrete cross sections of the 72-bar truss with the

previously published results is presented in Table 6. The best

optimized weight of the NFR algorithm is equal to 386.95 lb

(175.52 kg) and it is comparable to the best weight of the IM-

CSS and DHPSACO algorithm which is equal to 385.54 lb

(174.88 kg), while it is 389.49 lb 388.94 lb, 387.94 lb, 400.66 lb

for the MCSS, HPSO, HS, and GA, respectively.

In this example, because of the effect of the utilized rounding

method and smaller number of populations in discrete form of

the problem, the NFR produced better results with continuous

variables.

By comparing Fig. 4 and Fig. 5, it can be seen that in discrete

sizing variables case, the stress ratio has not reach the maximum

value of unity and thus the weight of the structure is increased

compared to the continuous sizing variables case.

3.3 A 582-bar tower truss
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Fig. 5 Schematic of 582-bar tower truss and element numbering 

 

Table 7 

Optimum design cross-sections for the 582-bar tower truss with continuous variables 

 

Fig. 6. Schematic of 582-bar tower truss and element numbering.

The 582-bar spatial truss structure shown in Fig. 6 has been

studied by the researchers [13,36,37]. This structure is designed

both with discrete and continuous sizing variables. Due to struc-

tural symmetry, the 582 members are categorized as 32 inde-

pendent size variables as shown in Fig. 6. A single load case is

Period. Polytech. Civil Eng.262 Hossein Moez, Ali Kaveh, Nasser Taghizadieh



Tab. 5. Comparison of the NFR results for the 72-bar to those of the literature with continuous variables

Element Group

Erbatur et al.

[30]

Camp et al.

[31]

Perez et al.

[32]

Camp

[33]

Kaveh et al.

[9]

Kaveh et al.

[34]
Present work

GA ACO PSO BB–BC RO CBO NFR

1 A1–A4 1.755 1.948 1.7427 1.8577 1.8365 1.9028 1.8458

2 A5–A12 0.505 0.508 0.5185 0.5059 0.5021 0.518 0.5162

3 A13–A16 0.105 0.101 0.1 0.1 0.1 0.1001 0.1000

4 A17–A18 0.155 0.102 0.1 0.1 0.1004 0.1003 0.1000

5 A19–A22 1.155 1.303 1.3079 1.2476 1.2522 1.2787 1.3280

6 A23–A30 0.585 0.511 0.5193 0.5269 0.5033 0.5074 0.4992

7 A31–A34 0.1 0.101 0.1 0.1 0.1002 0.1003 0.1000

8 A35–A36 0.1 0.1 0.1 0.1012 0.1001 0.1003 0.1036

9 A37–A40 0.46 0.561 0.5142 0.5209 0.573 0.524 0.5092

10 A41–A48 0.53 0.492 0.5464 0.5172 0.5499 0.515 0.5187

11 A49–A52 0.12 0.1 0.1 0.1004 0.1004 0.1002 0.1002

12 A53–A54 0.165 0.107 0.1095 0.1005 0.1001 0.1015 0.1016

13 A55–A58 0.155 0.156 0.1615 0.1565 0.1576 0.1564 0.1565

14 A59–A66 0.535 0.55 0.5092 0.5507 0.5222 0.5494 0.5463

15 A67–A70 0.48 0.39 0.4967 0.3922 0.4356 0.4029 0.4316

16 A71–A72 0.52 0.592 0.5619 0.5922 0.5971 0.5504 0.5597

Best weight (lb) 386.4435 380.2387 381.9363 379.8404 380.4505 379.6943 379.9248

Average weight (lb) N/A 383.16 N/A 382.08 382.553 379.8961 380.2061

Stddev N/A 3.66 N/A 1.912 1.221 0.0791 0.3808

Number of structural analyses N/A 18,500 N/A 19,621 19,084 15,600 10,000

Tab. 6. Comparison of the NFR results for the 72-bar truss to those of the literature with discrete variables

Element Group

Wu and

Chow [29]

Lee and

Geem [25]
Li et al. [35]

Kaveh

and

Talatahari

[27]

Kaveh et al. [28]
Present

Work

GA HS PSO PSOPC HPSO DHPSACO MCSS IMCSS NFR

1 A1–A4 1.5 1.9 2.6 3 2.1 1.9 1.8 2 2.0

2 A5–A12 0.7 0.5 1.5 1.4 0.6 0.5 0.5 0.5 0.5

3 A13–A16 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.1 0.1

4 A17–A18 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

5 A19–A22 1.3 1.4 2.1 2.7 1.4 1.3 1.3 1.3 1.3

6 A23–A30 0.5 0.6 1.5 1.9 0.5 0.5 0.5 0.5 0.5

7 A31–A34 0.2 0.1 0.6 0.7 0.1 0.1 0.1 0.1 0.1

8 A35–A36 0.1 0.1 0.3 0.8 0.1 0.1 0.1 0.1 0.1

9 A37–A40 0.5 0.6 2.2 1.4 0.5 0.6 0.7 0.5 0.5

10 A41–A48 0.5 0.5 1.9 1.2 0.5 0.5 0.6 0.5 0.5

11 A49–A52 0.1 0.1 0.2 0.8 0.1 0.1 0.1 0.1 0.1

12 A53–A54 0.2 0.1 0.9 0.1 0.1 0.1 0.1 0.1 0.1

13 A55–A58 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.2 0.2

14 A59–A66 0.5 0.5 1.9 1.9 0.5 0.6 0.6 0.6 0.6

15 A67–A70 0.5 0.4 0.7 0.9 0.3 0.4 0.4 0.4 0.5

16 A71–A72 0.7 0.6 1.6 1.3 0.7 0.6 0.4 0.6 0.5

Weight

(kg)
400.66 387.94 1089.88 1069.79 388.94 385.54 389.49 385.54 386.95

Number of

structural

analyses

N/A N/A N/A 150,000 50,000 5330 5400 3625 4000
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Tab. 7. Optimum design cross-sections for the 582-bar tower truss with continuous variables

Element groups
Kaveh et al. (CBO) [32] Present work (NFR)

Area (cm2) Area (cm2)

1 20.5226 20.3628

2 162.7709 159.3532

3 24.8562 24.3983

4 122.7462 123.5066

5 21.6756 20.4200

6 21.4751 20.4167

7 110.8568 109.9024

8 20.9355 22.3195

9 23.1792 20.5380

10 109.6085 109.6124

11 21.2932 20.3442

12 156.2254 156.7294

13 159.3948 160.6597

14 107.3678 106.8843

15 171.9150 170.8052

16 31.5471 29.4508

17 155.6601 153.9078

18 21.4951 22.5768

19 25.1163 23.5369

20 94.0228 93.8706

21 20.8041 21.5362

22 21.2230 20.4411

23 53.5946 52.6982

24 20.6280 20.8369

25 21.5057 20.2627

26 26.2735 25.1554

27 20.6069 20.7636

28 21.5076 21.2053

29 24.1394 24.2208

30 20.2735 21.5632

31 21.1888 22.9673

32 29.6669 27.7757

Volume (m3) 16.1520 16.0204

Number of structural analyses 20000 8000

considered consisting of lateral loads of 5.0 kN (1.12 kips) ap-

plied in both x- and y-directions and a vertical load of 30 kN

(6.74 kips) applied in the negative z-direction at all nodes of the

tower.

The allowable tensile and compressive stresses are used ac-

cording to the AISC-ASD [38] code, as follows: σ+
i

= 0.6Fy for σi > 0.0

σ−
i

for σi < 0.0
(11)

where σ−
i

is calculated according to slenderness ratio:

σ−i =


[(

1 −
λ2

i

2C2
c

)
Fy

] / (
5
3

+ 3
8

λi

Cc
−

λ3
i

8C3
c

)
for λi < Cc

12
23

π2E

λ2
i

for λi ≥ Cc

λi =
kli

ri

Cc =
√

2π2
/
Fy

(12)

where E is the modulus of elasticity, Fy is the yield stress of

steel, λi is the slenderness ratio, with k being the effective length

factor, li is the member length and ri is the radius of gyration.Cc

is the slenderness ratio dividing the elastic and inelastic buckling

regions.

The maximum slenderness ratio is limited to 300 for tension

members, and it is recommended to be limited to 200 for com-

pression members according to ASD-AISC [36]. The modulus

of elasticity is 29,000 ksi (203893.6 MPa) and the yield stress

of steel is taken as 36 ksi (253.1 MPa). Other constraints are

the limitations of nodal displacements which should be no more

than 8.0 cm (3.15 in.) in all directions.

In the case of continuous sizing variables, the lower and up-

per bounds of size variables are taken as 3.1 in.2 (20 cm2) and

155.0 in.2(1000 cm2), respectively. The radius of gyration ri, can

be expressed in terms of cross-sectional areas, i.e., ri = aAb
i

[39].

Here, a and b are the constants depending on the types of sec-
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Tab. 8. Optimum design cross-sections for the 582-bar tower truss with discrete variables

Hasançebi et al. [40] (PSO) Kaveh et al. [36](DHPSACO) Kaveh et al. [20] (CBO) Present work (NFR)

Element Groups

Ready

Sec-

tion

Area

(cm2)

Area

(in2)

Ready

Sec-

tion

Area

(cm2)

Area

(in2)

Ready

Sec-

tion

Area

(cm2)

Area

(in2)

Ready

Sec-

tion

Area

(cm2)

Area

(in2)

1 W8X21 39.74 (6.16) W8X24 45.68 (7.08) W8X21 39.74 (6.16) W8X24 45.68 7.08

2 W12X79 149.68 (23.2) W12X72 136.13 (21.1) W12X79 149.68 (23.20) W12X72 136.13 21.10

3 W8X24 45.68 (7.08) W8X28 53.16 (8.24) W8X28 53.22 (8.25) W6X25 47.35 7.34

4 W10X60 113.55 (17.08) W12X58 109.68 (17) W10X60 90.96 (14.10) W10X60 114.19 17.70

5 W8X24 45.68 (7.08) W8X24 45.68 (7.08) W8X24 45.68 (7.08) W8X24 45.68 7.08

6 W8X21 39.74 (6.16) W8X24 45.68 (7.08) W8X21 39.74 (6.16) W8X24 45.68 7.08

7 W8X48 90.97 (14.1) W10X49 92.90 (14.4) W10X68 128.38 (19.90) W12X50 94.19 14.60

8 W8X24 45.68 (7.08) W8X24 45.68 (7.08) W8X24 45.68 (7.08) W8X24 45.68 7.08

9 W8X21 39.74 (6.16) W8X24 45.68 (7.08) W8X21 39.74 (6.16) W8X24 45.68 7.08

10 W10X45 85.81 (13.3) W12X40 75.48 (11.7) W14X48 90.96 (14.10) W8X40 75.48 11.70

11 W8X24 45.68 (7.08) W12X30 56.71 (8.79) W12X26 49.35 (7.65) W6X25 47.35 7.34

12 W10X68 129.03 (20) W12X72 136.129 (21.1) W21X62 118.06 (18.30) W10X68 128.39 19.90

13 W14X74 140.65 (21.8) W18X76 143.87 (23.3) W18X76 143.87 (22.30) W14X74 140.64 21.80

14 W8X48 90.97 (14.1) W10X49 92.90 (14.4) W12X53 100.64 (15.60) W14X48 90.97 14.10

15 W18X76 143.87 (22.3) W14X82 154.84 (24) W14X61 115.48 (17.90) W27X84 159.35 24.70

16 W8X31 55.90 (9.13) W8X31 58.84 (9.12) W8X40 75.48 (11.70) W8X31 58.90 9.13

17 W8X21 39.74 (6.16) W14X61 115.48 (17.9) W10X54 101.93 (15.80) W18X76 143.87 22.30

18 W16X67 127.10 (19.7) W8X24 45.68 (7.08) W12X26 49.35 (7.65) W8X24 45.68 7.08

19 W8X24 45.68 (7.08) W8X21 39.74 (6.16) W8X21 39.74 (6.16) W8X21 39.74 6.16

20 W8X21 39.74 (6.16) W12X40 75.48 (11.7) W14X43 81.29 (12.60) W10X45 85.81 13.30

21 W8X40 75.48 (11.7) W8X24 45.68 (7.08) W8X24 45.68 (7.08) W8X24 45.68 7.08

22 W8X24 45.68 (7.08) W14X22 41.87 (6.49) W8X21 39.74 (6.16) W10X22 41.87 6.49

23 W8X21 39.74 (6.16) W8X31 58.84 (9.12) W10X22 41.87 (6.49) W8X21 39.74 6.16

24 W10X22 41.87 (6.49) W8X28 53.16 (8.24) W8X24 45.68 (7.08) W12X26 49.35 7.65

25 W8X24 45.68 (7.08) W8X21 39.74 (6.16) W8X21 39.74 (6.16) W8X21 39.74 6.16

26 W8X21 39.74 (6.16) W8X21 39.74 (6.16) W8X21 39.74 (6.16) W8X21 39.74 6.16

27 W8X21 39.74 (6.16) W8X24 45.68 (7.08) W8X24 45.68 (7.08) W8X21 39.74 6.16

28 W8X24 45.68 (7.08) W8X28 53.16 (8.24) W8X21 39.74 (6.16) W8X24 45.68 7.08

29 W8X21 39.74 (6.16) W16X36 68.39 (10.6) W8X21 39.74 (6.16) W12X26 49.35 7.65

30 W8X21 39.74 (6.16) W8X24 45.68 (7.08) W6X25 47.35 (7.34) W10X33 62.65 9.71

31 W8X24 45.68 (7.08) W8X21 39.74 (6.16) W10X33 62.64 (9.71) W8X24 45.68 7.08

32 W8X24 45.68 (7.08) W8X24 45.68 (7.08) W8X28 53.22 (8.25) W8X21 39.74 6.16

Volume, m3, (in3) 22.3958 (1366674.89) 22.0607 (1346227.65) 21.8376 (1332612.11) 21.8151 (1331238.27)

Number of structural analyses 50000 8500 6400 8000
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Fig. 6 Stress ratio in elements of the 582-bar truss with continous design variables 

 

Fig. 7 Nodal displacements in X, Y and Z directions of the 582-bar truss with continous design variables  
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Fig. 7. Stress ratio in elements of the 582-bar truss with continous design

variables.
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Fig. 7 Nodal displacements in X, Y and Z directions of the 582-bar truss with continous design variables  
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Fig. 8. Nodal displacements in X, Y and Z directions of the 582-bar truss

with continous design variables.
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tions adopted for the members such as pipes, angles, and tees.

In this example, pipe sections (a = 0.4993 and b = 0.6777) were

used for bars. Table 7 lists the optimal values of the 32 size

variables obtained by the present algorithm and a comparison

with the previously published results. It is obvious that the NFR

achieved better result than CBO with less number of structural

analyses Fig. 7 shows the allowable and existing stress ratio and

displacement values of the NFR. The displacements of nodes are

summarized in Fig. 8. Figs. 7 and 8 show that the displacement

controls the design and the stress is not determinative.
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Table 8 

Optimum design cross-sections for the 582-bar tower truss with discrete variables 

 

Element 
Groups 

Hasançebi et al.[34] (PSO) Kaveh et al.[30](DHPSACO) Kaveh et al.[14] (CBO) Present work (NFR) 

Ready 
Section 

Area (cm2) Area  (in2) Ready 
Section 

Area (cm2) Area (in2) Ready 
Section 

Area (cm2) Area (in2) Ready 
Section 

Area (cm2) Area (in2) 

1 W8X21 39.74 (6.16) W8X24 45.68 (7.08) W8X21 39.74 (6.16) W8X24 45.68 7.08 
2 W12X79 149.68 (23.2) W12X72 136.13 (21.1) W12X79 149.68 (23.20) W12X72 136.13 21.10 
3 W8X24 45.68 (7.08) W8X28 53.16 (8.24) W8X28 53.22 (8.25) W6X25 47.35 7.34 
4 W10X60 113.55 (17.08) W12X58 109.68 (17) W10X60 90.96 (14.10) W10X60 114.19 17.70 
5 W8X24 45.68 (7.08) W8X24 45.68 (7.08) W8X24 45.68 (7.08) W8X24 45.68 7.08 
6 W8X21 39.74 (6.16) W8X24 45.68 (7.08) W8X21 39.74 (6.16) W8X24 45.68 7.08 
7 W8X48 90.97 (14.1) W10X49 92.90 (14.4) W10X68 128.38 (19.90) W12X50 94.19 14.60 
8 W8X24 45.68 (7.08) W8X24 45.68 (7.08) W8X24 45.68 (7.08) W8X24 45.68 7.08 
9 W8X21 39.74 (6.16) W8X24 45.68 (7.08) W8X21 39.74 (6.16) W8X24 45.68 7.08 
10 W10X45 85.81 (13.3) W12X40 75.48 (11.7) W14X48 90.96 (14.10) W8X40 75.48 11.70 
11 W8X24 45.68 (7.08) W12X30 56.71 (8.79) W12X26 49.35 (7.65) W6X25 47.35 7.34 
12 W10X68 129.03 (20) W12X72 136.129 (21.1) W21X62 118.06 (18.30) W10X68 128.39 19.90 
13 W14X74 140.65 (21.8) W18X76 143.87 (23.3) W18X76 143.87 (22.30) W14X74 140.64 21.80 
14 W8X48 90.97 (14.1) W10X49 92.90 (14.4) W12X53 100.64 (15.60) W14X48 90.97 14.10 
15 W18X76 143.87 (22.3) W14X82 154.84 (24) W14X61 115.48 (17.90) W27X84 159.35 24.70 
16 W8X31 55.90 (9.13) W8X31 58.84 (9.12) W8X40 75.48 (11.70) W8X31 58.90 9.13 
17 W8X21 39.74 (6.16) W14X61 115.48 (17.9) W10X54 101.93 (15.80) W18X76 143.87 22.30 
18 W16X67 127.10 (19.7) W8X24 45.68 (7.08) W12X26 49.35 (7.65) W8X24 45.68 7.08 
19 W8X24 45.68 (7.08) W8X21 39.74 (6.16) W8X21 39.74 (6.16) W8X21 39.74 6.16 
20 W8X21 39.74 (6.16) W12X40 75.48 (11.7) W14X43 81.29 (12.60) W10X45 85.81 13.30 
21 W8X40 75.48 (11.7) W8X24 45.68 (7.08) W8X24 45.68 (7.08) W8X24 45.68 7.08 
22 W8X24 45.68 (7.08) W14X22 41.87 (6.49) W8X21 39.74 (6.16) W10X22 41.87 6.49 
23 W8X21 39.74 (6.16) W8X31 58.84 (9.12) W10X22 41.87 (6.49) W8X21 39.74 6.16 
24 W10X22 41.87 (6.49) W8X28 53.16 (8.24) W8X24 45.68 (7.08) W12X26 49.35 7.65 
25 W8X24 45.68 (7.08) W8X21 39.74 (6.16) W8X21 39.74 (6.16) W8X21 39.74 6.16 
26 W8X21 39.74 (6.16) W8X21 39.74 (6.16) W8X21 39.74 (6.16) W8X21 39.74 6.16 
27 W8X21 39.74 (6.16) W8X24 45.68 (7.08) W8X24 45.68 (7.08) W8X21 39.74 6.16 
28 W8X24 45.68 (7.08) W8X28 53.16 (8.24) W8X21 39.74 (6.16) W8X24 45.68 7.08 
29 W8X21 39.74 (6.16) W16X36 68.39 (10.6) W8X21 39.74 (6.16) W12X26 49.35 7.65 
30 W8X21 39.74 (6.16) W8X24 45.68 (7.08) W6X25 47.35 (7.34) W10X33 62.65 9.71 
31 W8X24 45.68 (7.08) W8X21 39.74 (6.16) W10X33 62.64 (9.71) W8X24 45.68 7.08 
32 W8X24 45.68 (7.08) W8X24 45.68 (7.08) W8X28 53.22 (8.25) W8X21 39.74 6.16 
Volume, 
m3,(in3) 

22.3958 (1366674.89) 22.0607 (1346227.65) 21.8376 (1332612.11) 21.8151 (1331238.27) 

Number of 
structural 
analysis 

50000 8500 6400 8000 

 

 

 

Fig. 8 Stress ratio in elements of the 582-bar truss wioth discrete design variables 
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Fig. 9. Stress ratio in elements of the 582-bar truss wioth discrete design

variables.
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Fig. 9 Nodal displacements in X, Y and Z directions of the 582-bar truss with discrete design variables  

 

 

 

4. Conclusion 

The application of the recently developed methaheuristic algorithm, known as Natural Forest 

Regeneration, for truss structures is studied in this paper. Although the presented algorithm is 

simple and easy to implement, but comparable results are provided by utilizing it. Three 

benchmark truss structures are studied here with discrete and continous sizing variables. 

Comparison of results with previously published results, show that the NFR achieves comparable 

solution in all the cases.  
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Fig. 10. Nodal displacements in X, Y and Z directions of the 582-bar truss

with discrete design variables.

In the case of discrete sizing variables, design variables were

selected from a discrete set of 137 standard steel W-shaped sec-

tions based on the area and radii of gyration of the sections

[40]. Design variables can range between 6.16 in.2 (39.74) and

215 in.2 (1387.09 cm2). Comparison of the optimal values of

the 32 size variables with those of literature are listed in Table 8

It is clear that NFR reached the best solution and the number

of structural analysis for NFR is comparable with the minimum

value of the CBO method. Stress ratio in the elements of 582-

bar truss with discrete design variables is presented in Fig. 9 and

the nodal displacements for this case are summarized in Fig. 10.

4 Conclusions

The application of the recently developed methaheuristic al-

gorithm, called as Natural Forest Regeneration, is extended in

this paper for optimal design of truss structures. The presented

algorithm is simple and easy to implement and comparable re-

sults are obtained by its use. Three benchmark truss structures

are studied here with discrete and continous sizing variables.

Comparison of the results with those of the previously published

results, show that the NFR achieves comparable solution in most

of the cases.
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