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Abstract
The particle swarm optimization with an aging leader and chal-
lengers (ALC-PSO) algorithm is a recently developed optimi-
zation method which transplants the aging mechanism to PSO. 
The ALC-PSO prevents premature convergence and maintains 
the fast-converging feature of PSO. In this paper, a harmony 
search-based mechanism is used to handle the side constraints 
and it is combined with ALC-PSO, resulting in a new algorithm 
called HALC-PSO. These two algorithms are employed to opti-
mize different types of skeletal structures with continuous and 
discrete variables. The results are compared to those of some 
other meta-heuristic algorithms. The proposed methods find 
superior optimal designs in all problems investigated, illustrat-
ing the capability of the present methods in solving constrained 
problems. The convergence speed comparisons also reveal the 
fast-converging feature of the presented algorithms.

Keywords
Particle swarm optimization, Aging mechanism, Challengers, 
Harmony search, algorithm, Trusses, Frames

1 Introduction
Optimal design of engineering problems has received a great 

deal of attention in the recent decades. The aim of these prob-
lems is to minimize an objective function that is often the cost 
of the structure or a quantity directly proportional to the cost 
under certain constraints that may correspond to different engi-
neering demands like stresses, displacements, maximum inter-
story drift and other requirements.

The recent generation of the optimization methods com-
prises of meta-heuristic algorithms that are proposed to solve 
complex problems. A meta-heuristic method often consists of 
a group of search agents that explore the feasible region based 
on both randomization and some specified rules [1]. The basic 
idea behind these stochastic search techniques is to simulate 
natural phenomena such as survival of the fittest, swarm intel-
ligence and the cooling process of molten metals into a numeri-
cal algorithm. These algorithms are named according to the 
natural phenomenon used in the construction of the method 
[2]. Genetic algorithm (GA) is inspired by Darwin’s theory 
about biological evolutions [3, 4]. Particle swarm optimization 
(PSO) simulates the social interaction behavior of the birds 
flocking and fish schooling [5, 6]. Ant colony optimization 
(ACO) imitates the manner that ant colonies find the shortest 
route between the food and their nest [7]. Simulated annealing 
(SA) utilizes energy minimization that happens in the cooling 
process of molten metals [8]. Harmony search (HS) algorithm 
was conceptualized using the musical process of searching for 
a perfect state of harmony [9]. Charged system search (CSS) 
uses the electric laws of physics and the Newtonian laws of 
mechanics to guide the charged particles [10]. Firefly algo-
rithm (FA) is based on the flashing patterns and behaviors of 
fireflies [11]. Ray Optimization (RO) is based on the Snell’s 
light refraction law when light travels from a lighter medium 
to a darker medium [12]. Ant lion optimizer (ALO) mimics the 
hunting mechanism of ant lions in nature [13].

In this article, two PSO-based algorithms are utilized for 
optimal design of skeletal structures. PSO is a population-
based algorithm that has some advantages such as few parame-
ters implementation, easy programming for computer, effective 
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exploration of global solutions for some hard problems, and 
fast-converging behavior. However gBest, the historically 
best position of the entire swarm, leads all particles and when 
trapped at a local optimum may lead the entire swarm to that 
point resulting in a premature convergence. The PSO with an 
aging leader and challengers (ALC-PSO) algorithm, devel-
oped by Chen et al. [14], utilizes the aging theory in the parti-
cle swarm optimization to overcome this problem. ALC-PSO 
is characterized by assigning the leader of the swarm with a 
growing age and a lifespan. The lifespan is adaptively adjusted 
according to the leader’s leading power. If a leader shows strong 
leading power, it lives longer to attract the swarm toward bet-
ter positions and once the leader reaches a local optimum, it 
fails to improve the quality of the swarm and gets aged quickly. 
In this case, new challengers emerge to replace the old leader 
resulting in diversity. By adding these mechanisms to PSO, the 
fast-converging feature can be preserved. On the other hand, 
ALC-PSO has the ability to escape from local optima prevent-
ing premature convergence [14]. The other method is harmony 
aging leader challenger particle swarm optimization (HALC-
PSO) which utilizes HS algorithm in ALC-PSO for handling 
side constraints [15].

These two algorithms are employed to optimize different 
types of skeletal structures consisting of trusses and frames, 
with continuous and discrete variables. The design constraints 
are imposed according to the provisions of ASD-AISC (Allow-
able Stress Design, American Institute of Steel Construction) 
[16] for truss structures and LRFD-AISC (Load and Resistance 
Factor Design) [17] for frame structures. In recent years, many 
optimization techniques have been studied in this application 
area. For example, Sonmez [18] utilized artificial bee colony, 
Degertekin and Hayalioglu [19] employed teaching-learning-
based optimization, Hosseini et al. [20] used multi objective 
particle swarm optimization and Ho-Huu et al. [21] utilized 
an adaptive elitist differential evolution for optimization of 
the truss structures.  Hasançebi and Kazemzadeh Azad [22] 
used exponential big bang-big crunch algorithm, Toǧan [23] 
employed teaching–learning based optimization and Hasançebi 
and Carbas [24] utilized bat inspired algorithm for size optimi-
zation of steel frames. Optimization results are compared to 
those of some other meta-heuristic algorithms. It appears that 
the proposed PSO variants are quite suitable for structural engi-
neering problems.

The remaining sections of this paper are organized as fol-
lows: The mathematical formulations of the structural optimiza-
tion and a brief explanation of the provisions of ASD-AISC and 
LRFD-AISC are presented in section 2. The optimization algo-
rithms are described in section 3. In section 4, optimal design 
of four skeletal structures are conducted to investigate the effi-
ciency, applicability and precision of the proposed approaches. 
Finally, concluding remarks are provided in section 5.

2 Optimum design of skeletal structures
Size optimization of skeletal structures is known as bench-

mark in the field of optimization problems. The mathematical 
formulation of these problems can be expressed as:

Find

to minimize

subjected to

where {X} is the vector containing the design variables; ng is 
the number of design variables; W({X}) presents weight of the 
structure; nm is the number of elements of the structure;  ρi ,  Ai 
and  Li  denote the material density, cross-sectional area, and 
the length of the ith member, respectively.  xi min  and  xi max  are 
the lower and upper bounds of the design variable xi , respec-
tively. gj({X}) denotes design constraints; and nc is the number 
of the constraints.

In order to handle the constraints, the penalty approach is 
employed [25]. Thus, the objective function is redefined as 
follows:

where υ denotes the sum of the violations of the design con-
straints. The constant ε1 is set to unity and ε2 is set to 1.5 and ulti-
mately increased to 3. Such a scheme penalizes the unfeasible 
solutions more severely as the optimization process proceeds.

 Design constraints for truss and frame structures, studied in 
this paper, are briefly explained in the following sections.

2.1 Constraint conditions for truss structures
The stress and stability limitations of the members are imposed 

according to the provisions of ASD-AISC [16] as follows:
The allowable tensile stresses for tension members are cal-

culated as:

where  Fy  stands for the yield strength.
The allowable stress limits for compression members are 

calculated depending on two possible failure modes of the 
members known as elastic and inelastic buckling:

X x x xng{ } =  1 2
, ,..,

W X ALi i i
i

nm

{ }( ) =
=
∑ρ

1

g X j nc
x x

j

i

({ }) , , ,...,

max

≤ =
≤ ≤





0 1 2

x
i min i

f X W X{ }( ) = + ⋅( ) × { }( )1
1

2ε υ ε

σ i
+ = 0 6. Fy

σ

λ λ λ λ

i

i

c
y

i

c

i

c
cC

F
C C

C
− =

−


















 + −









 <1

2

5

3

3

8 8

2

2

3

3
for

i

112

23

2

2

π
λ

λE C
i

cfor
i
≥













(1)

(2)

(3)

(4)



186 Period. Polytech. Civil Eng.� A. Kaveh, M. I. Ghazaan

where E is the modulus of elasticity; λi is the slenderness ratio 
(λi = kli / ri); Cc denotes the slenderness ratio dividing the elas-
tic and inelastic buckling regions ( C E Fc y= 2 2π ); k is the 
effective length factor (k is set 1 for all truss members); Li is 
the member length; and ri is the minimum radius of gyration.

In this design code provisions, the maximum slenderness 
ratio is limited to 300 for tension members, and it is recom-
mended to be 200 for compression members. The other con-
straint corresponds to the limitation of the nodal displacements:

where δi is the nodal deflection; δi
u is the allowable deflection 

of node i; nn is the number of nodes.

2.2 Constraint conditions for frame structures
Design constraints according to LRFD-AISC [17] require-

ments can be summarized as follows:
(a) Maximum lateral displacement:

where ΔT is the maximum lateral displacement; H is the 
height of the frame structure; R is the maximum drift index 
(1/300).

(b) The inter-story displacements:

where di is the inter-story drift; hi is the story height of the ith 
floor; ns is the total number of stories; RI is the inter-story drift 
index which is equal to 1/300.

(c) Strength constraints:

where Pu is the required strength (tension or compression); Pn 
is the nominal axial strength (tension or compression); φc is the 
resistance factor (φc = 0.9 for tension, φc = 0.85 for compres-
sion); Mu is the required flexural strength; Mn is the nominal 
flexural strengths; and φb denotes the flexural resistance reduc-
tion factor (φb = 0.90). The nominal tensile strength for yielding 
in the gross section is computed as:

The nominal compressive strength of a member is com-
puted as:

where Ag is the cross-sectional area of a member, l is the later-
ally unbraced length of member and r is the governing radius 
of gyration about the axis of buckling. k is the effective length 
factor determined by the approximated formula [26]:

where GA and GB are stiffness ratios of columns and girders at 
two end joints, A and B, of the column section being consid-
ered, respectively.

3 Optimization algorithms
Particle swarm optimization (PSO), introduced by Eber-

hart and Kennedy [5], is a population-based method inspired 
by the social behavior of animals such as fish schooling and 
bird flocking. The PSO algorithm is initialized with a popula-
tion of random candidate solutions in an n-dimensional search 
space, conceptualized as particles. Each particle in the swarm 
maintains a velocity vector and a position vector. During each 
generation, each particle updates its velocity and position by 
learning from the best position achieved so far by the particle 
itself and the best position achieved so far across the whole 
population. Let Vi(vi

1,vi
2,…,vi

n) and Xi(xi
1,xi

2,…,xi
n) be the ith 

particle’s velocity vector and position vector, respectively, and 
M be the number of particles in a population. The update rules 
in the PSO algorithm are based on the following two simple 
equations [27]:

where ω is an inertia weight, pBesti(pBesti
1, pBesti

2,…, pBesti
n) 

is the historically best position of particle i (i =1, 2, …, M), 
gBest(gBest1, gBest2, …, gBestn) is the historically best posi-
tion of the entire swarm, r1

j and r2
j are two random numbers 

uniformly distributed in the range of [0,1], c1 and c2 are two pa-
rameters to weigh the relative importance of pBesti and gBest, 
respectively and j(j=1, 2, …, n) represents the jth dimension of 
the search space.

The PSO algorithm has very few parameters to adjust, which 
makes it particularly easy to implement and it is effective to 
explore global solutions for a variety of difficult optimization 
problems. Another advantage of PSO is that all particles learn 
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from gBest in updating velocities and positions so the algorithm 
exhibits a fast-converging behavior. However, on multimodal 
problems, a gBest located at a local optimum may trap the 
whole swarm leading to premature convergence [14]. Differ-
ent variants of PSO have been developed to improve its perfor-
mance and two of them are described in the following sections.

3.1 Particle swarm optimization with an aging leader 
and challengers

In nature, when the leader of a colony gets too old to lead, 
new individuals emerge to challenge and claim the leader-
ship. In this way, the community is always led by a leader with 
adequate leading power. Inspired by this natural phenomenon, 
Aging mechanism has been transplanted into PSO leading to 
ALC-PSO [14]. In this method, the leader of the swarm ages 
and has a limited lifespan that is adaptively tuned according 
its leading power. When the lifespan is exhausted, the leader is 
challenged and replaced by newly generated particles. There-
fore, the leader in ALC-PSO is not necessarily the gBest, but a 
particle with adequate leading power guaranteed by the aging 
mechanism. In this way, ALC-PSO prevents the premature 
convergence and maintaining the fast-converging feature of the 
PSO. Let us change gBest into Leader in the velocity update 
rule of the PSO as:

This technique consists of the following steps:
Level 1: Initialization
Step 1: ALC-PSO parameters are set. The initial locations 

of particles are created randomly in an n-dimensional search 
space and their associated velocities are set to 0. The best parti-
cle is selected as the Leader. Its age θ and lifespan Θ are initial-
ized to 0 and Θ0 , respectively.

Level 2: Search
Step 1: Velocities are updated according to Eq. (16) and 

each particle moves to the new position based on its previous 
position and updated velocity as specified in Eq. (15).

Step 2: The historically best position Xi (i = 1, 2, …, M) of 
each particle is saved as its Pbesti. Moreover, if the best loca-
tion found in this iteration is better than the Leader, then the 
Leader is updated. 

Step 3: The Leader lifespan is updated by the following for-
mulas during a Leader’s lifetime (i.e., θ =0, 1, …, Θ):

where gBest and f (gBest(θ)) are the historically best solution 
and its objective function value when the age of the Leader is 
θ, respectively. These formulas create four cases:

I.	 Good Leading Power: If Eq. (17) is satisfied, it can be 
deduced that Eq. (18) and Eq. (19) also hold. Hence, the 
current Leader has a strong leading power to improve 
the swarm. Therefore, the lifespan Θ is increased by 2. 

II.	 Fair Leading Power: If only Eqs. (18) and (19) are sat-
isfied, the lifespan Θ is increased by 1 because it can 
be deduced that the current Leader still has potential to 
improve the swarm in the following iterations.

III.	 Poor Leading Power: If only Eq. (19) is satisfied, the 
lifespan Θ remains unchanged since the current Leader 
only has the ability to improve itself.

IV.	 No Leading Power: If none of the above formulas is 
satisfied, it demonstrates that the current Leader is not 
able to improve the swarm in the subsequent iterations. 
Therefore, the lifespan Θ decreased by 1.

After the lifespan Θ is adjusted, the age θ of the Leader is 
increased by 1. If the lifespan is exhausted, i.e., θ ≥ Θ, go to 
Step 4. Otherwise, go to Level 3.

Step 4: A new particle that is called Challenger has to be cre-
ated to challenge and try to replace the old Leader. With prob-
ability like pro, Challengerj  is determined randomly in the jth 
dimension. Otherwise, Challengerj is inherited from the Leader:

where L j and U j are the lower and upper bounds of the j-th 
design variable, respectively. rnd is a random number in the 
interval [0,1]. In this paper, pro is set to 1/n. If the Challenger 
is exactly the same as the previous Leader, one dimension of 
Challenger is randomly selected and its value is set at random 
with in its domain.

Step 5: The Challenger is utilized as a temporary Leader 
for T iterations to evaluate its leading power. In these T itera-
tions, the velocity is updated by:

The Challenger is accepted as Leader if any pBest is 
improved during these T iterations and its age θ and lifespan 
Θ are respectively set to 0 and Θ 0. Otherwise, the previous 
Leader is used and its lifespan Θ remains unchanged and its 
age θ is reset to θ = Θ-1.

Level 3: Terminal condition check
Step 1: After the predefined maximum evaluation number, 

the optimization process is terminated.
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3.2 Harmony search added to ALC-PSO 
In order to deal with the case of an agent violating side con-

straints is an important issue in most of the meta-heuristic algo-
rithms. One of the simplest approaches is utilizing the nearest 
limit values for the violated variable. Alternatively, one can 
force the violating particle to return to its previous position, 
or one can reduce the maximum value of the velocity to allow 
fewer particles to violate the variable boundaries. Although 
these approaches are simple, they are not sufficiently efficient 
and may lead to reduce the exploration of the search space [10].

This problem has previously been addressed and solved 
using the harmony search-based handling approach [10, 28, 
29]. In this technique, there is a possibility like HMCR (har-
mony memory considering rate) that specifies whether the vio-
lating component must be selected randomly from pBest or it 
should be determined randomly in the search space. So if xi

j is 
the jth component of the ith particle which violates the bound-
ary limitation, it must be regenerated by the following formula:

where “w ∙ p.” is the abbreviation for “with the probability” and 
PAR is the pitch adjusting rate which varies between 0 and 1. k 
is identified randomly from [1, M] (M be the number of parti-
cles). By adding this variable constraint handling approach to 
ALC-PSO, the HALC-PSO algorithm is developed.

4 Test problems and discussion of optimization 
results 

Four skeletal structures are optimized for minimum weight 
with the cross-sectional areas of the members being the design 
variables to verify the efficiency of the present methods. The 
parameters of ALC-PSO and HALC-PSO are set as follows: 
c1 and c2 are both set to 2; ω is set to 0.4; the legal velocity 
range Vmax is considered 50% of the search range; Θ0 and T are 
respectively set to 60 and 2. In HALC-PSO, HMCR is taken 
as 0.95 and PAR is set to 0.10. The population of 30 particles 
are utilized in test examples 1,2 and 4, while there are only 15 
particles in test problem 3. To reduce statistical errors, each 
test is repeated 30 times independently. For each independent 
run, 20,000 evaluations are considered as maximum function 
evaluations in test examples 1, 3 and 4 while in the case of test 
problem 2 it is set equal to 30,000.

In the discrete problems, particles are allowed to select dis-
crete values from the commercially available cross sections 
(real numbers are rounded to the nearest integer in each itera-
tion). This method is chosen due to its easy computer imple-
mentation. The algorithms are coded in MATLAB and the 
structures are analyzed using the direct stiffness method.

4.1 Spatial 120-bar dome shaped truss
The schematic and element grouping of the spatial 120-bar 

dome truss are shown in Fig. 1. For clarity, not all the element 
groups are numbered in this figure. The 120 members are cat-
egorized into seven groups because of symmetry. The modulus 
of elasticity is 30,450 ksi (210 GPa) and the material density is 
0.288 lb/in3 (7971.810 kg/m3). The yield stress of steel is taken 
as 58.0 ksi (400 MPa). The dome is considered to be subjected 
to vertical loading at all the unsupported joints. These loads 
are taken as −13.49 kips (−60 kN) at node 1, −6.744 kips (−30 
kN) at nodes 2 through 14, and −2.248 kips (−10 kN) at the all 
other nodes. Element cross-sectional areas can vary between 
0.775 in2 (5 cm2) and 20.0 in2 (129.032 cm2). Constraints on 
member stresses are imposed according to the provisions of 
ASD-AISC [16], as defined by Eqs. (3,4). Displacement limita-
tions of ±0.1969 in (±5 mm) are imposed on all nodes in x, y 
and z coordinate directions.

Fig. 1 Schematic of the 120-bar dome shaped truss

Table 1 shows the best solution vectors, the corresponding 
weights, the average weights and the Standard deviation for pre-
sent algorithms and some other meta-heuristic algorithms. It can 
be seen from Table 1 that the best design is obtained by HALC-
PSO which is 33250.01 lb. ICA [25], CSS [30] and IRO [31] 
algorithms found the best solution after 6,000, 7,000 and 18,300 
structural analyses, respectively. ALC-PSO and HALC-PSO 
achieved the optimum design after 10,000 and 13,000 structural 

Select a new value for a variable from pBestk

w ∙ p ∙  (1−PAR) do nothing,
w ∙ p ∙  PAR choose a neighboring value,

Select a new value randomly
(22)
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analyses, respectively. However, they can obtain the ICA and IRO 
optimized designs after about 5,500 structural analyses and CSS 
optimized designs after about 7,000 structural analyses. Fig. 2 
compares the best convergence history for the present algorithms.

Fig. 2 Convergence curves of the 120-bar dome problem

4.2 Spatial 582-bar tower
The second test problem regards the spatial 582-bar tower 

truss with the height of 3149.6 in (80 m), shown in Fig. 3. The 
tower is optimized for minimum volume with the cross-sec-
tional areas of the members being the design variables. The 
symmetry of the tower about x-axis and y-axis is considered 
to group the 582 members into 32 independent sizing vari-
ables. A single load case is considered consisting of the lat-
eral loads of 1.12 kips (5.0 kN) applied in both x- and y-direc-
tions and a vertical load of -6.74 kips (-30 kN) applied in the 
z-direction at all nodes of the tower. A discrete set of standard 
steel sections selected from W-shape profile list based on area 
and radii of gyration properties is used to size the variables. 
The lower and upper bounds of sizing variables are taken as 
6.16 in2 (39.74 cm2) and 215.0 in2 (1387.09 cm2), respectively 
[32]. The stress and stability limitations of the members are 
imposed according to the provisions of ASD-AISC [16]. Fur-
thermore, nodal displacements in all coordinate directions must 
be smaller than ±3.15 in (±8.0 cm).

Fig. 3 Schematic of the spatial 582- bar tower 

Optimization results are presented in Table 2. ALC-PSO 
obtained the lightest design overall. HALC-PSO obtained the 
second best design, which is only 0.5% larger than its coun-
terpart found by ALC-PSO. The optimized volumes of DHP-
SACO [29] and HBB-BC [33], respectively, are 4% and 5.4% 
larger than that of ALC-PSO. DHPSACO, BB-BC, ALC-PSO 
and HALC-PSO required 8,500, 12,500, 15,000 and 16,000 
structural analyses to converge to the optimum, respectively. 
However, the proposed method can obtain the DHPSACO and 
BB-BC optimized designs after about 5,500 and 5,000 struc-
tural analyses, respectively. The convergence curves of the 
present algorithms for the best optimum designs are compared 
in Fig. 4. Fig. 5 shows that the maximum element stress ratio 
evaluated at the optimum design for ALC-PSO and HALC-
PSO is 99.87% and 99.34%, respectively. The maximum 
element stress ratio achieved by DHPSACO and BB-BC are 
93.06% and 97.67%, respectively. Nodal displacements evalu-
ated at the optimized designs are shown in Figs. 6 through 8. 
Some stress and displacement constraint margins evaluated for 
ALC-PSO and HALC-PSO are critical. Maximum nodal dis-
placements obtained by DHPSACO, BB-BC, ALC-PSO and 
HALC-PSO, are 3.1498 in, 3.15 in, 3.1498 in and 3.1430 in, 
respectively.

Fig. 4 Convergence curves of the spatial 582- bar tower

Fig. 5 Stress margins evaluated at the optimum design  
of the 582-bar tower problem
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Table 1 Optimization results obtained for the 120-bar dome problem

Element group

Optimal cross-sectional areas (in2 )

Kaveh and Talatahari 
[25]

Kaveh and Talatahari 
[30] Kaveh et al. [31]

Present work

ALC-PSO HALC-PSO

1
2
3
4
5
6
7

3.0275 3.027 3.0252 3.02397
14.72544

3.02422
14.4596 14.606 14.8354 14.68930
5.2446 5.044 5.1139 5.04683 5.08822
3.1413 3.139 3.1305 3.13888 3.13922
8.4541 8.543 8.4037 8.53031 8.51643
3.3567 3.367 3.3315 3.29159 3.28574
2.4947 2.497 2.4968 2.49686 2.49644

Weight (lb) 33,256.2 33,251.9 33,256.48 33,250.18 33,250.01
Average weight (lb) N/A N/A 33280.85 33256.02 33256.93
Standard deviation (lb) N/A N/A N/A 5.28 4.16

1in2=6.4516cm2, 1lb=4.4482N

Table 2 Optimization results obtained for the 582-bar tower problem

Element Group

Optimal W-shaped sections

Kaveh and Talatahari 
[29]

Kaveh and Talatahari 
[33]

Present work

ALC-PSO HALC-PSO
1 W8×24 W8×24 W8×21 W8×21
2 W12×72 W24×68 W14×90 W21×93
3 W8×28 W8×28 W8×24 W8×24
4 W12×58 W18×60 W10×60 W12×58
5 W8×24 W8×24 W8×24 W8×24
6 W8×24 W8×24 W8×21 W8×21
7 W10×49 W21×48 W10×49 W10×45
8 W8×24 W8×24 W8×24 W8×24
9 W8×24 W10×26 W8×21 W8×21
10 W12×40 W14×38 W10×45 W12×50
11 W12×30 W12×30 W8×24 W8×24
12 W12×72 W12×72 W10×68 W21×62
13 W18×76 W21×73 W12×72 W14×74
14 W10×49 W14×53 W12×50 W10×54
15 W14×82 W18×86 W18×76 W18×76
16 W8×31 W8×31 W8×31 W8×31
17 W14×61 W18×60 W14×61 W10×60
18 W8×24 W8×24 W8×24 W8×24
19 W8×21 W16×36 W8×21 W8×21
20 W12×40 W10×39 W12×40 W12×40
21 W8×24 W8×24 W8×24 W8×24
22 W14×22 W8×24 W8×21 W8×21
23 W8×31 W8×31 W8×21 W10×22
24 W8×28 W8×28 W8×24 W8×24
25 W8×21 W8×21 W8×21 W8×21
26 W8×21 W8×24 W8×21 W8×24
27 W8×24 W8×28 W8×24 W6×25
28 W8×28 W14×22 W8×21 W8×21
29 W16×36 W8×24 W8×21 W8×21
30 W8×24 W8×24 W8×24 W8×24
31 W8×21 W14×22 W8×21 W8×21
32 W8×24 W8×24 W8×24 W8×24
Volume (in3) 1,346,227 1,365,143 1,294,682 1,301,106

Average Volume (in3) N/A N/A 1,304,307 1,312,284

Standard deviation (in3) N/A N/A 4,003 5,895



191Optimum Design of Skeletal Structures Using PSO-Based Algorithms� 2017 61 2

Fig. 6 Existing displacement in the x-direction for the 582-bar truss

Fig. 7 Existing displacement in the y-direction for the 582-bar truss

Fig. 8 Existing displacement in the z-direction for the 582-bar truss

4.3 Three-bay fifteen-story frame
The schematic, applied loads and the numbering of member 

groups for this test problem are shown in Fig. 9. This frame 
consists of 64 joints and 105 members. The displacement and 
AISC-LRFD combined strength constraints are the perfor-
mance constraint of this example [17]. An additional constraint 
of displacement control is the sway of the top story that is 
limited to 9.25 in (23.5 cm). The material has a modulus of 
elasticity equal to E=29,000 ksi (200 GPa) and a yield stress 
of Fy=36 ksi (248.2 MPa). The effective length factors of the 
members are calculated as kx≥0 for a sway-permitted frame and 
the out-of-plane effective length factor is specified as ky=1.0. 
Each column is considered as non-braced along its length, and 
the non-braced length for each beam member is specified as 
one-fifth of the span length.

Table 3 Optimization results obtained for the 3-bay 15-story frame problem

Element Group

Optimal W-shaped sections

Kaveh and Talatahari 
[33]

Kaveh and Talatahari 
[25]

Present work

ALC-PSO HALC-PSO

1 W24×117 W24×117 W14×99 W14×99

2 W21×132 W21×147 W27×161 W27×161

3 W12×95 W27×84 W27×84 W27×84

4 W18×119 W27×114 W24×104 W24×104

5 W21×93 W14×74 W14×61 W14×61

6 W18×97 W18×86 W30×90 W30×90

7 W18×76 W12×96 W14×48 W18×50

8 W18×65 W24×68 W12×65 W14×61

9 W18×60 W10×39 W8×28 W8×28

10 W10×39 W12×40 W10×39 W10×39

11 W21×48 W21×44 W21×44 W21×44

Weight (lb) 97,689 93,846 87,054 86,916

Average weight (lb) N/A N/A 88,114 88,329

Standard deviation (lb) N/A N/A 570 904
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Fig. 9 Schematic of the 3-bay 15-story frame 

Table 3 compares the designs developed by HBB-BC [33], 
ICA [25] and the present algorithms. It can be seen that the 
HALC-PSO designs a structure that is 11%, 8% and 0.2% 
lighter than the HBB-BC, ICA and ALC-PSO, respectively. 
HBB-BC and ICA found the best solution after 9,500 and 6,000 
structural analyses, respectively. ALC-PSO and HALC-PSO, 
respectively, require 13,395 and 9,390 analyses to converge 
to their best designs. However, they can obtain the ICA opti-
mized design after about 2,000 analyses. The average optimal 
weights of ALC-PSO and HALC-PSO for the 30 independent 
runs are 88,330 lb and 88,114 lb, respectively. The conver-
gence curves of the present algorithms for the best optimum 
designs are compared in Fig. 10. The maximum values of the 
stress ratio for ICA, ALC-PSO and HALC-PSO are 98.45%, 
99.45% and 99.74%, respectively. The maximum inter-story 
drifts achieved by these methods, are 0.4094 in, 0.4348 in and 
0.4348 in, respectively.

Fig. 10 Convergence curves of the 3-bay 15-story frame problem

4.4 Three-bay twenty four-story frame
Fig. 11 shows the structural scheme, service loading condi-

tions and member group numbering of the three-bay twenty 
four-story frame as the last test problem in this study [34]. This 
frame consists of 100 joints and 168 members. The member 
grouping results in 16 column sections and 4 beam sections 
for a total of 20 design variables. In this example, each of the 
four beam element groups is chosen from all 267 W-shapes, 
while the 16 column member groups are selected from only 
W14 sections. The material has a modulus of elasticity equal 
to E=29,732 ksi (205 GPa) and a yield stress of Fy=33.4 ksi 
(230.3MPa). The frame is designed following the AISC-LRFD 
specifications [17]. The effective length factors of the mem-
bers are calculated as kx≥0 for a sway-permitted frame and the 
out-of-plane effective length factor is specified as ky=1.0. All 
columns and beams are considered as non-braced along their 
lengths.

Results of the present study and some meta-heuristic tech-
niques are provided in Table 4. It can be seen that best design 
is found by using HALC-PSO which is 201,906 lb. The opti-
mized weights of ACO [35], HS [34], ICA [25] and ALC-PSO, 
respectively, are 8.4%, 6.0%, 5.3%, and 0.2% larger than that 
of HALC-PSO. The ICA required 7,500 structural analyses to 
converge to the optimal solution, which is less than number 
of analyses required by other methods. Here, 13,000 analyses 
were required by ALC-PSO and 18,000 analyses by HALC-
PSO. However, they can obtain the ICA optimized design after 
about 5,500 analyses. Member stress ratio values computed 
at the optimized design are shown in Fig. 12. The maximum 
values of the stress ratio for ALC-PSO and HALC-PSO are 
96.64% and 96.91%, respectively. Fig. 13 shows the inter-story 
drift constraint margins. It can be seen that the inter-story in 
many stories for ALC-PSO and HALC-PSO are close to the 
allowable values.
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Fig. 11 Schematic of the 3-bay 24-story frame

Fig. 12 Stress margins evaluated at the optimum design of the 3-bay 24-story 
frame problem

Fig. 13 Interstory-drift margins evaluated at the optimum design of the 3-bay 
24-story frame problem

5 Conclusions
In this study, the particle swarm optimization with an aging 

leader and challengers is employed for size optimization of 
skeletal structures. Also, a new meta-heuristic algorithm so-
called HALC-PSO is developed to improve the performance of 
the ALC-PSO method. This technique applies Harmony Search 
to handle the side constraints.

The merits of these two algorithms lie in three aspects. First, 
the whole swarm is attracted by a leader with adequate leading 
power just like what the gBest does in the PSO. Thus, the fast con-
verging feature of the PSO is preserved. Second, when a leader 
has poor leading power, gets aged quickly and new challengers 
emerge to replace the old leader. Therefore, the algorithm can 
maintain diversity and prevent premature convergence. Finally, 
the proposed algorithms still have a simple structure because the 
mechanisms added to PSO are conceptually simple.
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The efficiency of ALC-PSO and HALC-PSO is investigated 
to find optimum design of truss and frame structures with con-
tinuous and discrete variables. Optimization results are com-
pared to those of some other well-known meta-heuristics. The 
optimum design obtained by HALC-PSO is lighter than other 
methods in three of four examples, and its reliability of search 
is shown through statistical information. The convergence rate 
of ALC-PSO and HALC-PSO are approximately identical, and 
better than other methods. To sum up, optimization results con-
firm the validity of the proposed approaches.
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